|
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import os\n",
|
|
"import sys\n",
|
|
"import pandas as pd\n",
|
|
"import numpy as np\n",
|
|
"from datetime import datetime, timedelta\n",
|
|
"from scipy import stats\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"plt.rcParams['font.family'] = 'Malgun Gothic'\n",
|
|
"import matplotlib.dates as mdates\n",
|
|
"\n",
|
|
"def get_hstr(path):\n",
|
|
" hstr = pd.read_csv(path)\n",
|
|
" hstr['datetime'] = pd.to_datetime(hstr['CLCT_UNIX_TM'], unit='s', utc=True)\n",
|
|
" hstr['datetime'] = hstr['datetime'].dt.tz_convert('Asia/Seoul').dt.strftime('%Y-%m-%d %H:%M:%S')\n",
|
|
" hstr['datetime'] = hstr['datetime'].astype('datetime64[ns]')\n",
|
|
" hstr.columns = ['현장교차로ID', '수집유닉스시각', '수집일시', '제어구분코드', '제어상태코드', '주기시간', '옵셋시간',\n",
|
|
" 'A링1현시시간', 'A링2현시시간', 'A링3현시시간', 'A링4현시시간', 'A링5현시시간', 'A링6현시시간',\n",
|
|
" 'A링7현시시간', 'A링8현시시간', 'B링1현시시간', 'B링2현시시간', 'B링3현시시간', 'B링4현시시간',\n",
|
|
" 'B링5현시시간', 'B링6현시시간', 'B링7현시시간', 'B링8현시시간', 'A링1현시보행시간',\n",
|
|
" 'A링2현시보행시간', 'A링3현시보행시간', 'A링4현시보행시간', 'A링5현시보행시간', 'A링6현시보행시간',\n",
|
|
" 'A링7현시보행시간', 'A링8현시보행시간', 'B링1현시보행시간', 'B링2현시보행시간', 'B링3현시보행시간',\n",
|
|
" 'B링4현시보행시간', 'B링5현시보행시간', 'B링6현시보행시간', 'B링7현시보행시간', 'B링8현시보행시간',\n",
|
|
" '수집날짜시각']\n",
|
|
" cols = list(hstr.columns).copy()\n",
|
|
" cols.remove('수집날짜시각')\n",
|
|
" cols.insert(1, '수집날짜시각')\n",
|
|
" hstr = hstr[cols]\n",
|
|
" return hstr\n",
|
|
"\n",
|
|
"inter_nos = list(range(5031, 5048))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"soitdspotintsoperhstr_202312110921\n",
|
|
"2023-12-10 09:00:00\n",
|
|
"2023-12-11 09:21:31\n",
|
|
"soitdspotintsoperhstr_202312120814\n",
|
|
"2023-12-11 09:00:57\n",
|
|
"2023-12-12 08:14:02\n",
|
|
"soitdspotintsoperhstr_202312131102\n",
|
|
"2023-12-12 09:00:58\n",
|
|
"2023-12-13 11:02:54\n",
|
|
"soitdspotintsoperhstr_202312141254\n",
|
|
"2023-12-13 09:00:58\n",
|
|
"2023-12-14 12:53:54\n",
|
|
"soitdspotintsoperhstr_202312150926\n",
|
|
"2023-12-14 09:00:58\n",
|
|
"2023-12-15 09:26:01\n",
|
|
"soitdspotintsoperhstr_202312151700\n",
|
|
"2023-12-15 09:00:58\n",
|
|
"2023-12-15 16:59:54\n",
|
|
"32466\n",
|
|
"2023-12-12 00:00:09\n",
|
|
"2023-12-15 16:59:54\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# 성남시 신호이력 데이터\n",
|
|
"s_tod_his = pd.read_csv('seongnam/S_TOD_HIS_1702597659892.csv')\n",
|
|
"\n",
|
|
"# 인천시 신호이력 데이터\n",
|
|
"'''SELECT * FROM soitdspotintsoperhstr WHERE SPOT_INTS_ID BETWEEN 5031 AND 5047'''\n",
|
|
"csv_files = [f for f in os.listdir('incheon') if f.endswith('.csv')]\n",
|
|
"\n",
|
|
"dfs = []\n",
|
|
"for file in csv_files:\n",
|
|
" df_name = file.replace('.csv', '')\n",
|
|
" print(df_name)\n",
|
|
" globals()[df_name] = get_hstr(f'incheon/{file}')\n",
|
|
" dfs.append(globals()[df_name])\n",
|
|
" print(sorted([dt for dt in globals()[df_name]['수집날짜시각'] if dt.hour != 23])[0])\n",
|
|
" print(sorted([dt for dt in globals()[df_name]['수집날짜시각'] if dt.hour != 23])[-1])\n",
|
|
"hstr = pd.concat(dfs).drop_duplicates().sort_values(by='수집날짜시각').reset_index(drop=True)\n",
|
|
"hstr = hstr[['현장교차로ID', '수집날짜시각', '주기시간', '옵셋시간',\n",
|
|
" 'A링1현시시간', 'A링2현시시간', 'A링3현시시간', 'A링4현시시간', 'A링5현시시간', 'A링6현시시간',\n",
|
|
" 'B링1현시시간', 'B링2현시시간', 'B링3현시시간', 'B링4현시시간', 'B링5현시시간', 'B링6현시시간']]\n",
|
|
"hstr = hstr[hstr.수집날짜시각.dt.day >= 12]\n",
|
|
"print(len(hstr))\n",
|
|
"print(sorted([dt for dt in hstr['수집날짜시각'] if dt.hour != 23])[0])\n",
|
|
"print(sorted([dt for dt in hstr['수집날짜시각'] if dt.hour != 23])[-1])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"infos = {}\n",
|
|
"# 신호이력\n",
|
|
"infos['hstr'] = {inter_no:hstr_temp for (inter_no, hstr_temp) in hstr.groupby('현장교차로ID')}\n",
|
|
"# 현시 개수\n",
|
|
"infos['number_of_phases'] = {}\n",
|
|
"for inter_no in inter_nos:\n",
|
|
" a_ring_columns = [col for col in infos['hstr'][inter_no].columns if 'A링' in col]\n",
|
|
" b_ring_columns = [col for col in infos['hstr'][inter_no].columns if 'B링' in col]\n",
|
|
" max_a_ring = max([int(col[2]) for col in a_ring_columns if infos['hstr'][inter_no][col].any() != 0])\n",
|
|
" max_b_ring = max([int(col[2]) for col in b_ring_columns if infos['hstr'][inter_no][col].any() != 0])\n",
|
|
" if max_a_ring == max_b_ring:\n",
|
|
" infos['number_of_phases'][inter_no] = max_a_ring\n",
|
|
" else:\n",
|
|
" raise \"A링, B링 현시번호 최댓값이 서로 다름\"\n",
|
|
"# 현시시간 목록\n",
|
|
"infos['durations'] = {inter_no:np.unique(infos['hstr'][inter_no].iloc[:,4:].values.flatten()) for inter_no in inter_nos}"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# TOD 계획 데이터\n",
|
|
"todplans = pd.read_csv(\"soitdtodplan_202312181440.csv\")\n",
|
|
"todplans.columns = [\"현장교차로ID\", \"시각계획번호\", \"시각운영번호\", \"수집유닉스시각\", \"수집일시\", \"시작시\", \"시작분\", \"현시운영번호\", \"현시운영계획번호\"]\n",
|
|
"todplans = todplans[(todplans['수집일시'] == 20231212) & (todplans['시각계획번호'] == 1) & (todplans['시작시']!=0)]\n",
|
|
"\n",
|
|
"# 전이시각, ID\n",
|
|
"infos['transition_times'] = {inter_no:todplans[todplans.현장교차로ID == inter_no][['시작시', '시작분']] for inter_no in inter_nos}\n",
|
|
"infos['ID'] = {inter_no:todplans[todplans.현장교차로ID == inter_no].현시운영계획번호.unique() for inter_no in inter_nos}\n",
|
|
"\n",
|
|
"# 시간계획 데이터\n",
|
|
"timeplans = pd.read_csv(\"soitdtimeplan_202312180943.csv\")\n",
|
|
"timeplans.columns = [\"현장교차로ID\", \"시간계획번호\", \"현시운영번호\", \"현시운영계획번호\", \"수집유닉스시각\", \"수집일시\", \"주기시간\", \"옵셋시간\",\n",
|
|
" \"A링1현시시간\", \"A링2현시시간\", \"A링3현시시간\", \"A링4현시시간\", \"A링5현시시간\", \"A링6현시시간\", \"A링7현시시간\", \"A링8현시시간\",\n",
|
|
" \"B링1현시시간\", \"B링2현시시간\", \"B링3현시시간\", \"B링4현시시간\", \"B링5현시시간\", \"B링6현시시간\", \"B링7현시시간\", \"B링8현시시간\"]\n",
|
|
"timeplans = timeplans[(timeplans.시간계획번호 == 1)]\n",
|
|
"timeplan_list = []\n",
|
|
"for inter_no in inter_nos:\n",
|
|
" timeplan_list.append(timeplans[(timeplans.현장교차로ID==inter_no) & (timeplans.현시운영계획번호.isin(infos['ID'][inter_no]))])\n",
|
|
"timeplans = pd.concat(timeplan_list)\n",
|
|
"\n",
|
|
"# 이상치로 판단하지 않는 현시시간 / 이상치로 판단하는 현시시간\n",
|
|
"infos['accepted_durations'] = {}\n",
|
|
"infos['unaccepted_durations'] = {}\n",
|
|
"\n",
|
|
"# 현시시간 빈도, 옵셋\n",
|
|
"infos['unique_durations'] = {}\n",
|
|
"infos['duration_frequencies'] = {}\n",
|
|
"infos['offsets'] = {}\n",
|
|
"infos['cycles'] = {}\n",
|
|
"\n",
|
|
"for inter_no in inter_nos:\n",
|
|
" phase_times = np.unique(timeplans[timeplans.현장교차로ID == inter_no].iloc[:, 8:].values.flatten())\n",
|
|
" accepted_phase_times = np.unique(np.concatenate([phase_times - 1, phase_times, phase_times + 1]))\n",
|
|
" infos['accepted_durations'][inter_no] = accepted_phase_times\n",
|
|
" unaccepted_phase_times = sorted(set(infos['durations'][inter_no]) - set(accepted_phase_times))\n",
|
|
" infos['unaccepted_durations'][inter_no] = unaccepted_phase_times\n",
|
|
"\n",
|
|
" unique_durations, frequencies = np.unique(infos['hstr'][inter_no].iloc[:,4:].values, return_counts=True)\n",
|
|
" sorted_indices = np.argsort(frequencies)[::-1]\n",
|
|
" infos['unique_durations'][inter_no] = unique_durations[sorted_indices]\n",
|
|
" infos['duration_frequencies'][inter_no] = frequencies[sorted_indices]\n",
|
|
"\n",
|
|
" infos['offsets'][inter_no] = {}\n",
|
|
" infos['cycles'][inter_no] = {}\n",
|
|
" for _, row in infos['transition_times'][inter_no].iterrows():\n",
|
|
" hour = row.시작시\n",
|
|
" minute = row.시작분\n",
|
|
" ID = todplans[(todplans.현장교차로ID==inter_no) & (todplans.시작시==hour) & (todplans.시작분==minute)].iloc[0].현시운영계획번호\n",
|
|
" offset = timeplans[(timeplans.현장교차로ID==inter_no)&(timeplans.현시운영계획번호==ID)].iloc[0].옵셋시간\n",
|
|
" cycle = timeplans[(timeplans.현장교차로ID==inter_no)&(timeplans.현시운영계획번호==ID)].iloc[0].주기시간\n",
|
|
" infos['offsets'][inter_no][(hour, minute)] = offset\n",
|
|
" infos['cycles'][inter_no][(hour, minute)] = cycle\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"[ 35 27 0 20 25 49 16 37 29 33 65 31 34 58 19 28 17 44\n",
|
|
" 18 51 30 43 40 39 50 32 66 36 48 26 56 21 54 38 22 52\n",
|
|
" 41 46 42 70 72 76 59 80 67 23 126 156 90 45 69 78 71 47\n",
|
|
" 161 179]\n",
|
|
"[4186 3992 3948 1586 1392 1384 1306 1306 1170 404 394 350 322 280\n",
|
|
" 276 162 142 140 130 120 98 94 92 82 50 44 20 20\n",
|
|
" 18 16 16 16 14 14 14 10 10 8 8 8 6 4\n",
|
|
" 4 4 4 4 2 2 2 2 2 2 2 2 2 2]\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"print(infos['unique_durations'][5031])\n",
|
|
"print(infos['duration_frequencies'][5031])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAB8YAABGJCAYAAACfB8UdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdf3wU1b3/8fcmwYQEshIREn4jCIJYvSC/rhbUQsVW9NpKbRVvsV644q2CP9pean0galUsWqy90ntrUfnagrbFh2AVS6X4o6QgIlYEf/KzmggE2IVAAtns94/IQrI/mJnMzM7Mvp6Pxz6cOTNzzmfOOYNzcnZmQ/F4PC4AAAAAAAAAAAAAAAIqL9sBAAAAAAAAAAAAAADgJCbGAQAAAAAAAAAAAACBxsQ4AAAAAAAAAAAAACDQmBgHAAAAAAAAAAAAAAQaE+MAAAAAAAAAAAAAgEBjYhwAAAAAAAAAAAAAEGhMjAMAAAAAAAAAAAAAAo2JcQAAAAAAAAAAAABAoDExDgAAAAAAAAAAAAAINCbGAQBw0bRp03TuuedmOwwAAAAAAAKDsTYAADCCiXEAAFzUtWtX9enTx/RxVVVVevzxxx2IyDt69eqlUCjU7HPBBRc02+fw4cP67//+b3Xp0kVt27bV+eefr7feeqvZPn/60590/vnnq0OHDurQoYO+/vWva8OGDSnLjMVimjt3rkaMGOHUaQEAAAAAHMZYOz03x9qff/65rr/+epWXl6ukpETnnnuulixZ4vQpAgBgGBPjAAC46Ic//KGeeeYZ08c988wzuvfeex2IyFt+8pOfaMuWLYnPokWLmm2/4YYb9Nxzz+mpp57SmjVr1L17d40dO1ZVVVWJfd5++23dcMMNev311/XCCy8oFotp7NixikajiX0OHTqkJ554QmeddZZuv/121dXVuXaOAAAAAAB7MdbOzK2x9k033aRYLKY//vGPWrVqlS688EJdccUVeu2111w7VwAAMinIdgAAAMA9jY2NiW+Ie1H//v3Vq1evlNs2bdqkJ598Um+99Zb+5V/+RZL01FNP6fTTT9e8efN09913S2oa8B/vySefVEVFhd566y1deOGFkqTVq1dr2rRp+q//+i/FYjH9+c9/du6kAAAAAACBxli7aaw9a9YsDRgwILHP2WefrTfffFNPPvmkRo0a5cCZAQBgDk+MAwDgounTpzd7Zdldd92lc845R+vWrdO//uu/qri4WGeddZb+8pe/JPbp1auXbrnlFm3bti1poB2NRnXjjTfq1FNPVXFxsS655BJ98sknie0rV65UKBTSO++8o5EjR6pNmzb64IMPMsZ49JiPP/5Y3/rWt9S+fXv16tVLDz30UNK+69ev1/jx43XyySerqKhI5557rp5//vnE9traWvXq1UuPPPKIofrp3Llz2m1LlizRgAEDEgN1STrppJP0b//2b1q+fHna42KxWFLeQ4YMUVVVle6//34VFxcbig0AAAAA4E2MtTNza6x9/KT4Uf369dPnn39uKE4AAJzGxDgAAFm2e/duTZ06VXfccYfeeOMNnX766briiitUU1MjSXrjjTd05513qmvXronXnklSQ0ODvva1r+nVV1/Vb3/7W7366qsqKCjQ17/+9cQA9ajbbrtNt956q9566y1VVFQYiuu73/2uvvKVr2jVqlW67rrrdPvtt+vll19ObF+3bp3OO+88lZaWaunSpXr99dd1wQUX6Bvf+Ib++Mc/SpIKCgrUvXt3nXLKKYbKvPLKK1VaWqpBgwbpwQcfbHYeGzZs0FlnnZV0zMCBA/Xxxx8npR85ckTvvPOOJk2apOuvv14DBw5MbGvfvr1KSkoMxQQAAAAA8B/G2se4NdZO5a233tKZZ55pKE4AAJzGq9QBAMiyzz77TC+++KK+9KUvSZIef/xxVVRU6KWXXtLEiRPVrVs3lZWVqaCgoNmrzxYuXKh169Zp06ZN6tmzpyTpd7/7nbp3767nnntOV155ZWLfr33ta5owYYKpuL797W/rP//zPyVJZ511ll544QX9/ve/18UXXyxJ+sEPfqAvf/nL+u1vf5s4ZujQodq3b59mzJihb37zmyosLNTrr79uqLzf/va3atu2rerr67Vy5Urdfffd+uSTT/S///u/kqRdu3apT58+SceVlZUpEok0SysvL9fOnTsVj8c1efJkzZ0719S5AwAAAAD8jbF2k2yOtefNm6ePPvpIf/jDHwzFCgCA03hiHACALOvWrVtioC41DT67d++uHTt2ZDzupZde0pgxYxIDdanpSehzzjlH77zzTrN9L7nkEtNxff3rX2+2fvbZZydiqqur06uvvqrrr78+6bhrrrlGH330kaqqqkyVd95552nw4MEaOXKkZsyYoUcffVSPP/64PvvsM0lN39rPy0u+dUn1O26vv/663nzzTT3zzDP68MMPNXjwYO3cudNUPAAAAAAA/2Ks3SQbY+3Gxkbddddd+tGPfqTf//736t27t6mYAQBwChPjAABkWVlZWVJau3btVF9fn/G4Xbt26cUXX1RRUVGzz+uvv54Y4B6V6ffEjMZ1fEw1NTWKxWLq3r170nFHXx+3d+9e02Ue7/LLL1djY6P+8Y9/SJJKS0uTvq0uSfv27Ut6fdzpp5+uIUOG6Fvf+paWL1+ugoIC3X///a2KBwAAAADgH4y1U3N6rL1z50599atf1TPPPKNVq1YlnoQHAMALeJU6AAA+dfLJJ2v8+PEpJ3zD4XCz9VTf/m6NcDisUCikTz/9NGlbdXW1JOnUU09tVRmHDx+WJBUWFkqS+vXrpxUrViTtt2nTJg0aNChtPm3atNHw4cP1/vvvtyoeAAAAAEDwMdZuYmWsXVVVpS9/+cs677zztGTJEhUXF7cqVgAA7MYT4wAA+ECbNm2SvtV+/vnn6x//+Id69+6tM844o9nn6DfJndKuXTuNGDFC8+fPT9q2cOFCDR48uNWD9UWLFqlt27YaPHiwJOniiy/WW2+9pY8//jixz5EjR/Tcc8/p8ssvlyTF4/GkfGKxmN566y3169evVfEAAAAAAIKFsba9Y+3//M//1NChQ/XUU08xKQ4A8CQmxgEA8IF+/fqpurpaf/jDH/T3v/9dknTdddepoaFBl156qV555RVt3LhRS5Ys0fjx41O+Bs1uDz74oJYvX66JEyfqb3/7m9auXasf/vCHWrBggX7+859Lavom+pgxY7Ro0aKMeb300kuaNm2aXn/9db3zzju6//779d///d+68847E9/Iv/DCC3X++efryiuv1GuvvaZ//OMf+vd//3eddNJJid9f27Ztmy666CItXrxYGzdu1MqVK/XNb35Tn332mW677TZnKwQAAAAA4CuMte0bax88eFAvvviiLrnkEm3dujXpk2pyHQAAt/EqdQAAfGDMmDG6/vrrdd1116msrEzbtm1TaWmpXn31Vd1+++36xje+oXg8rr59++r6669X+/btHY/p/PPP18qVK/WTn/xEX/3qVxUKhTRixAitWLFCI0eOlNT0LfMPPvhAn3/+eca8evTooTVr1ujJJ59UXV2dBgwYoF/96leaNGlSs/0WL16sadOmafz48YrH47r44ov1yiuvqKioSFLTK+X69Omj6dOna+fOneratavGjBmj9evXq0uXLo7UAwAAAADAnxhrN7FjrL17927FYjF997vfTRnL/v371a5du1bWDgAArROK81UtAAAAAAAAAAAAAECA8Sp1AAByzFe/+lUVFRWl/Py///f/sh0eAAAAAAC+w1gbAADv44lxAAByzPbt23Xw4MGU2yoqKhK/MwYAAAAAAIxhrA0AgPcxMQ4AAAAAAAAAAAAACDRepQ4AAAAAAAAAAAAACDQmxgEAAAAAAAAAAAAAgVaQ7QD8prGxUZ999pnat2+vUCiU7XAAAAAAAB4Qj8e1f/9+denSRXl5fAfdLMbaAAAAAICW7B5rMzFu0meffabu3btnOwwAAAAAgAft2LFD3bp1y3YYvsNYGwAAAACQjl1jbSbGTWrfvr2kpgYoLS3NbjBHjkhPPNG0fN11Ups2yWlS8j65xkidWK1LI8cZqXOj+ViJycnzDXreRjgZk12s9i8nY5DcLR8AAMBh0WhU3bt3T4wZYY5nxtrp7knNpsM/7GrzTH0hm2UEhRevTTvb3G/caI+glGFWLvcrAABSsHusHYrH43FbcsoR0WhU4XBYkUgk+xPjAAAAAABPYKzYOtQfAAAAAKAlu8eK/PAZAAAAAAAAAAAAACDQeJW6n8Vi0uuvNy1/+ctSfn5ympS8T64xUidW69LIcUbq3Gg+VmJy8nyDnrcRTsZkF6v9y8kYJHfLBwAAAIxId09qNh3+YVebZ+oL2SwjKLx4bdrZ5n7jRnsEpQyzcrlfAQDgAl6lbpKnXu9WWyu1a9e0fOCAVFKSnCYl75NrjNSJ1bo0cpyROjeaj5WYnDzfoOdthJMx2cVq/3IyBsnd8gEAABzmqbGiD3mm/tLdk5pNh3/Y1eaZ+kI2ywgKL16bdra537jRHkEpw6xc7lcAAKTAq9QBAAAAAAAAAAAAADCBiXEAAAAAAAAAAAAAQKAxMQ4AAAAAAAAAAAAACDQmxgEAAAAAAAAAAAAAgcbEOAAAAAAAAAAAAAAg0JgYBwAAAAAAAAAAAAAEWkG2A0ArtGkjPfjgseV0aS3Xc42ROrFal0aPsxKjnTGRt7V9jHAyJru0pn85GYOb5QMAAABGpLsnNZsO/7CrzTP1hWyWERRevDbtbHO/caM9glKGWbncrwAAcEEoHo/Hsx2En0SjUYXDYUUiEZWWlmY7HAAAAACABzBWbB3qDwAAAADQkt1jRZ4YB2CrWGNca7bs0c79derUvkjDepcpPy+U7bAAAAAAAPAUxs8AAACAu5gY97NYTFq3rml58GApPz85TUreJ9cYqROrdWnkOCN1bjQfKzE5eb4t9lm2aafuef5dnfLhe5KkDZ37qHOHEs38Wn+NO1zl2bgtt5vkbEx2sdq/nIxBcrd8AAAAwIh096Rm0+EfdrV5pr6QYtuyDVWpx8/jB2rcgE62lBEoXrw2rbRHUNrJjfYIShlm5XK/AgDABbxK3SRPvd6ttlZq165p+cABqaQkOU1K3ifXGKkTq3Vp5DgjdW40HysxOXm+x+2zfPXHmrL4fRUdrtOmn18pSRpwyx9Ud1KR2h6u08Yv0rwWd6vaTXI2JrtY7V9OxiC5Wz4AAIDDPDVW9CHP1F+6e1Kz6fAPu9o8U19osW3ZlqimPr0u5fhZkv7vG2do7PC+rSojcH3Ri9emlfYISju50R5BKcOsXO5XAACkYPdYMc+GmABA9720Sam+ZcM3bwAAAAAAaBJrjGvW0o0Zx8/3vbTJzZAAAACAnMHEOABbVEfq025jchwAAAAAAGnt1j2qitSl3R5X5vE1AAAAAOuYGAcAAAAAAABcsOsAk94AAABAtjAxDgAAAAAAALjg1HaF2Q4BAAAAyFlMjAOwRXm4UKE029KlAwAAAACQS87tVaaKcFHG8XN5mMlzAAAAwAlMjAOwxY8vGSApeRKcSXEAAAAAAJrk54U0c/xASenHz0fH1wAAAADsVZDtANAKbdpIM2ceW06X1nI91xipE6t1afQ4KzHaGZMLeY89p7vmFRfrp8+9o7nnfUeS1JCfr/Jwke4aN0gq9WbcrWo3p2OyS2v6l5MxuFk+AAAAYES6e1Kz6fAPu9o8U19osW3coArNmzg45fh55viBGtvvlFaXEThevDattEdQ2smN9ghKGWblcr8CAMAFoXg8Hs92EH4SjUYVDocViURUWlqa7XAAz4k1xrVmyx7t3F+nTu2LNKx3mfLzeG4cAAAAwcZYsXWoP+Qixs8AAABAZnaPFXliHICt8vNCGtnnlGyHAQAAAACApzF+BgAAANzFxLifNTZKmzY1LQ8YIOXlJadJyfvkGiN1YrUujRxnpM6N5mMlJifPN+h5G+FkTHax2r+cjEFyt3wAAADAiHT3pGbT4R92tXmmvpDNMoLCi9emnW3uN260R1DKMCuX+xUAAC7gVeomeer1brW1Urt2TcsHDkglJclpUvI+ucZInVitSyPHGalzo/lYicnJ8w163kY4GZNdrPYvJ2OQ3C0fAADAYZ4aK/qQZ+ov3T2p2XT4h11tnqkvZLOMoPDitWlnm/uNG+0RlDLMyuV+BQBACnaPFfn6GAAAAAAAAAAAAAAg0JgYBwAAAAAAAAAAAAAEGhPjAAAAAAAAAAAAAIBAY2IcAAAAAAAAAAAAABBonp8Ynzp1qs4444zE+ttvv60RI0aoZ8+eGjhwoJYvX95s/7lz56pv377q2rWrrrjiCtXU1CS21dTUaMKECerRo4d69uyphx56yLXzAJwQa4wnlldvrmm2DgAAAAAAAAAAAKCJpyfGd+zYoQULFiTW9+/fr/Hjx+vee+/Vtm3bNG/ePE2YMEHV1dWSpGeffVYLFizQmjVrtH37dpWXl2vKlCmJ46+99loNGjRI27ZtU2VlpR599FEtXbrU9fMC7LD8vWqNeXhlYn3SE2/q/NkrtPy96uwFBQAAAAAAAAAAAHhQQbYDyOSWW27Rddddp7/85S+SpIULF2ro0KEaM2aMJGn06NEaNWqUnnnmGU2bNk1z587VzJkzVVZWJkm65557VFFRoT179mj37t1au3atlixZolAopC5duujmm2/W/PnzNX78+KydY6u0aSPdfvux5XRpLddzjZE6sVqXRo+zEmOGtC27D+i/fv+u4pL+d9g3JEkN+fmqjtTpv37/rl6edIN6d2znzvkGOW8jnIzJLib7l2sxuFk+AAAAYES6e1Kz6fAPu9o8U1/IZhlB4cVr08429xs32iMoZZiVy/0KAAAXhOLxuCffvfynP/1Jc+bM0cyZM3XDDTfo/fff13XXXaczzzxTtx/9H72kn/70p/r444/161//WsXFxfrss8/UsWPHxPbTTz9djz/+uLZu3arf//73euGFFxLb/va3v2nixInasmVL2jjq6+tVX1+fWI9Go+revbsikYhKS0ttPmvgxGKNcZ0/e4WqInUpt4cklYeL9MaPLlJ+Xsjd4AAAAIAcFY1GFQ6HGStaRP0BAAAAAFqye6zoyVep19TU6Oabb9a8efOapVdVValz587N0jp16qSamhrt3r1bsVis2aT48dszHZvJ/fffr3A4nPh07969FWfmvFhjXJWf1Oj59Z+q8hN+czqI1mzZk3ZSXJLikqoidVqzZY97QQEAAAAAAAAAAAAe5rlXqcfjcV1//fWaPn26zjjjjMTvh0tSQ0ODWj7gHovFFAqF1NDQkDg+FAql3J7u2ExmzJihW2+9NbF+9IlxT2hslLZvb1ru0UPLNn6uu5/foLx/7pAkfVp6qipKi3T/uWGN7t9J6tFDyvPkdyGc1aKeJDVfz8tL3idVmtXjjNS50XwaG7X/g4/ULfK5Pi09VZLUNbpLUlN7x0N5CsUb1TW6S/s/+Ejq3cHZ8w163kY4GZNdTPQv12KQ3C0fAAAAMCLdPanZdPiHXW2eqS9ks4yg8OK1aWeb+40b7RGUMszK5X4FAIALPDcx/sADD+jIkSP6/ve/n7StrKxMu3fvbpa2a9culZeXq0OHDorH49q7d2/iN8aP315VVaU1a9akPDaTwsJCFRYWtuKMHHTokNS7tyRp+eqPNXXx+yo6XKdNv7pekjTglj9oX81hjR731ab9DxyQSkqyFW32HFdPOnCg6b/Hr5eUJO+TKs3qcUbq3Gg+hw7pq18fqa+qqX0l6Y3j2vvQSUUqOnK4Ke1XLpxv0PM2wsmY7GKif7kWg+Ru+QAAAIAR6e5JzabDP+xq80x9IZtlBIUXr00729xv3GiPoJRhVi73KwAAXOC5r4/94he/0Ouvv64OHTro5JNP1qWXXqqPPvpIJ598soYMGaJVq1Y123/VqlUaOXKkSkpK1L9//2bbq6qq9Pnnn+vss8/WkCFDtHr1ajU2NiYdGwT3vbRJqV6afnwar1UPlnTvOuBXxQEAAAAAAAAAAIDmPDcxXlVVpWg0qn379mnfvn164YUXdPrpp2vfvn265ppr9Morr2jFihWSpBdffFGbNm3ShAkTJElTpkzRrFmztG/fPh0+fFgzZszQ5MmTVVxcrGHDhqmiokKzZ89WY2OjNm/erMcee0w33XRTNk/XNtWR+hPus3YrvzkdNC0nwZkUBwAAAJDJ97//fYXDYfXq1Svx2bZtmyTp7bff1ogRI9SzZ08NHDhQy5cvb3bs3Llz1bdvX3Xt2lVXXHGFampqEttqamo0YcIE9ejRQz179tRDDz3k6nkBAAAAAHAinpsYz6Rbt25atGiRbrzxRnXq1En33nuvli5dqpIvXg8zbdo0jR49Wv369VOvXr3Utm1bPfDAA5KkUCikxYsX6+WXX1bnzp01btw4zZkzR0OGDMnmKblq14ETT57DPx759jnqHG7+mv/ycJEe+fY52QkIAAAAgC9Mnz5dW7duTXx69uyp/fv3a/z48br33nu1bds2zZs3TxMmTFB1dbUk6dlnn9WCBQu0Zs0abd++XeXl5ZoyZUoiz2uvvVaDBg3Stm3bVFlZqUcffVRLly7N1ikCAAAAAJDEc78x3tIFF1yg999/P7F+8cUXN1s/Xl5enubMmaM5c+ak3H7aaadp5cqVToTpC6e28+hvpcOSsWeW66IBnaW7mtafvG6ozj2zu/IPHcxqXAAAAAC87eSTT05KW7hwoYYOHaoxY8ZIkkaPHq1Ro0bpmWee0bRp0zR37lzNnDlTZWVlkqR77rlHFRUV2rNnj3bv3q21a9dqyZIlCoVC6tKli26++WbNnz9f48ePd/PUAAAAAABIy1dPjCO98nDhCV+jfW6vMldigXvy8461+vDTTmm2DgAAAACppJoYr6ys1Hnnndcsbfjw4Vq/fr0aGhq0du3aZts7duyoXr166d1331VlZaWGDRumgoKCpGPTqa+vVzQabfYBAAAAAMBJTIwHxI8vGSAp829OM2kKAAAAAJgxY4Z69OihCy+8UH/+858lSVVVVercuXOz/Tp16qSamhrt3r1bsVhMHTt2TLk907Hp3H///QqHw4lP9+7dbTo7AAAAAABS8/yr1JFBQYF0442SpLFnd9O84mLd99x6LfiXr0uSYnn5Kg8XattV31XPU0qa9s9Fx9VTog5arqfax87jrMRoZ0zkbW0fI5yMyS6t6V9OxuBm+QAAAJAk/eIXv9Avf/lLxWIxvfzyy/rWt76lV155RQ0NDYrH4832jcViCoVCamhokCTF43GFQqGU29Mdm86MGTN06623Jtaj0ag3JsfT3ZOaTYd/2NXmmfpCNssICi9em3a2ud+40R5BKcOsXO5XAAC4IBRvOXpFRtFoVOFwWJFIRKWlpdkOJ0msMa41W/Zo5/46dWpfpGG9y3hSHAAAAAAc5vWxYjpTp05Vx44d9cEHH2jEiBHNJqvvuece/fOf/9TDDz+s9u3ba/fu3YnfGJekPn366Omnn9bbb7+tZcuWacmSJYltr7/+uv7jP/5DH3zwgaE4/Fp/AAAAAADn2D1W5FXqAZOfF9LIPqfo8nO6amQffnMaAAAAAJBeQ0ODTjrpJA0ZMkSrVq1qtm3VqlUaOXKkSkpK1L9//2bbq6qq9Pnnn+vss8/WkCFDtHr1ajU2NiYdCwAAAACAVzAx7mfxuLRrV9Pn6IP/LdNS7ZNrjNSJ1bo0mmY2RjtjIm/redvVdtm+Vp3su1ZjcLt8AAAASJJefvnlxAT2n//8Z/3xj3/UN7/5TV1zzTV65ZVXtGLFCknSiy++qE2bNmnChAmSpClTpmjWrFnat2+fDh8+rBkzZmjy5MkqLi7WsGHDVFFRodmzZ6uxsVGbN2/WY489pptuuilr52lZuntSs+nwD7vaPFNfyGYZQeHFa9PONvcbN9ojKGWYlcv9CgAAF/AqdZM89Xq32lqpXbum5QMHpJKS5DQpeZ9cY6ROrNalkeOM1LnRfKzE5OT5Bj1vI5yMyS5W+5eTMUjulg8AAOAwT40VMxg3bpzWrVun4uJi9ejRQ/fcc49Gjx4tqWnSfNq0adqzZ4/69u2r//3f/9VZZ50lSWpsbNQPf/hDLViwQAUFBbr88ss1d+5cFRYWSpI2b96s733ve3rvvffUoUMH/fSnP01MqhvhmfpLd09qNh3+YVebZ+oL2SwjKLx4bdrZ5n7jRnsEpQyzcrlfAQCQgt1jxQIbYgIAAAAAAD6wbNmytNsuvvhivf/++ym35eXlac6cOZozZ07K7aeddppWrlxpR4gAAAAAADiCV6kDAAAAAAAAAAAAAAKNiXEAAAAAAAAAAAAAQKAxMQ4AAAAAAAAAAAAACDQmxgEAAAAAAAAAAAAAgcbEOAAAAAAAAAAAAAAg0AqyHQBaoaBA+u53jy2nS2u5nmuM1InVujR6nJUY7YyJvK3tY4STMdmlNf3LyRjcLB8AAAAwIt09qdl0+IddbZ6pL2SzjKDw4rVpZ5v7jRvtEZQyzMrlfgUAgAtC8Xg8nu0g/CQajSocDisSiai0tDTb4QAAAAAAPICxYutQfwAAAACAluweK/IqdQAAAAAAAAAAAABAoPFuFT+Lx6WDB5uWi4ulUCg5TUreJ9cYqROrdWnkOCN1bjQfKzE5eb5Bz9sIJ2Oyi9X+5WQMkrvlAwAAAEakuyc1mw7/sKvNM/WFbJYRFF68Nu1sc79xoz2CUoZZudyvAABwARPjfnbwoNSuXdPygQNSSUlympS8T64xUidW69LIcUbq3Gg+VmJy8nyDnrcRTsZkF6v9y8kYJHfLBwAAAIxId09qNh3+YVebZ+oL2SwjKLx4bdrZ5n7jRnsEpQyzcrlfAQDgAl6lDgAAAAAAAAAAAAAINCbGAQAAAAAAAAAAAACBxsQ4AAAAAAAAAAAAACDQmBgHAAAAAAAAAAAAAAQaE+MAAAAAAAAAAAAAgEBjYhwAAAAAAAAAAAAAEGgF2Q4ArZCfL1155bHldGkt13ONkTqxWpdGj7MSo50xkbe1fYxwMia7tKZ/ORmDm+UDAAAARqS7JzWbDv+wq80z9YVslhEUXrw27Wxzv3GjPYJShlm53K8AAHBBKB6Px7MdhJ9Eo1GFw2FFIhGVlpZmOxwAAAAAgAcwVmwd6g8AAAAA0JLdY0VepQ4AAAAAAAAAAAAACDQmxgEAAAAAAAAAAAAAgcbEuJ/V1kqhUNOntjZ1Wqp9co2ROrFal0bTzMZoZ0zkbT1vu9ou29eqk33Xagxulw8AAAAYke6e1Gw6/MOuNs/UF7JZRlB48dq0s839xo32CEoZZuVyvwIAwAVMjAMAAAAAAAAAAAAAAo2JcQAAAAAAAAAAAABAoDExDgAAAAAAAAAAAAAINCbGAQAAAAAAAAAAAACBxsQ4AAAAAAAAAAAAACDQmBgHAAAAAAAAAAAAAARaQbYDQCvk50tf+9qx5XRpLddzjZE6sVqXRo+zEqOdMZG3tX2McDImu7SmfzkZg5vlAwAAAEakuyc1mw7/sKvNM/WFbJYRFF68Nu1sc79xoz2CUoZZudyvAABwQSgej8ezHYSfRKNRhcNhRSIRlZaWZjscAAAAAIAHMFZsHeoPAAAAANCS3WNFXqUOAAAAAAAAAAAAAAg0XqUOAAAAAAAAHCfWGNeaLXu0c3+dOrUv0rDeZcrPC2U7LAAAAACtwBPjflZbK5WUNH1qa1Onpdon1xipE6t1aTTNbIx2xkTe1vO2q+2yfa062XetxuB2+QAAAIAR6e5JzabDP1K04bINVRpzz5909oCuGjusj773Pyt1/uwVWrahylpfsKtfWSkjKLx4bdrZ5n7jRnsEpQyzcrlfAQDgAp4Y97uDB0+clmqfXGOkTqzWpdG0E3EyJvK2nrcRTsZkFyf7rtUY3C4fAAAAMCLdPanZdPjHcW24bEOVpj69TkWH61V8pD6RXh2p09Sn1+n/vnGGxlrpC3b1KytlBIUXr00729xv3GiPoJRhVi73KwAAHMYT4wAAAAAAAMh5sca4Zi3dqHiKbUfT7ntpk5shAQAAALARE+MAAAAAAADIeWu37lFVpC7t9rik6kh92u0AAAAAvI2JcQAAAAAAAOS8XQeY9AYAAACCjIlxAAAAAAAA5LxT2xVmOwQAAAAADmJiHAAAAAAAADnv3F5lqggXKZRme0hSeZjJcwAAAMCvCrIdAFohL08aPfrYcrq0luu5xkidWK1Lo8dZidHOmMjb2j5GOBmTXVrTv5yMwc3yAQAAACPS3ZOaTYd/HNeG+QX5mjl+oKY+vU7xUEh/7z5IktQYCiUmy2d8faD0V5N9wa5+ZaWMoPDitWlnm/uNG+0RlDLMyuV+BQCAC0LxeDye7SD8JBqNKhwOKxKJqLS0NNvhAAAAAAA8gLFi61B/8JJlG6o0a+lGVUXqEmkV4SLNHD9Q4wZVZDEyAAAAILfYPVbkiXEAAAAAAADgC+MGVWjswHKt2bJHO/fXqVP7Ig3rXab8vHQvWQcAAADgB0yMAwAAAAAAAMfJzwtpZJ9Tsh0GAAAAABvxoyN+VlsrnXpq06e2NnVaqn1yjZE6sVqXRtPMxmhnTORtPW+72i7b16qTfddqDG6XDwAAABiR7p7UbDr8w642z9QXsllGUHjx2rSzzf3GjfYIShlm5XK/AgDABTwx7ne7d584LdU+ucZInVitS6NpJ+JkTORtPW8jnIzJLk72XasxuF0+AAAAYES6e1Kz6fAPu9o8U1/IZhlB4cVr08429xs32iMoZZiVy/0KAACH8cQ4AAAAAAAAAAAAACDQmBgHAAAAAAAAAAAAAAQaE+MAAAAAAAAAAAAAgEBjYhwAAAAAAAAAAAAAEGhMjAMAAAAAAAAAAAAAAq0g2wGgFfLypHPPPbacLq3leq4xUidW69LocVZitDMm8ra2jxFOxmSX1vQvJ2Nws3wAAADAiHT3pGbT4R92tXmmvpDNMoLCi9emnW3uN260R1DKMCuX+xUAAC4IxePxeLaD8JNoNKpwOKxIJKLS0tJshwMAAAAA8ADGiq1D/QEAAAAAWrJ7rMhXyAAAAAAAAAAAAAAAgcbEOAAAAAAAAAAAAAAg0JgY97ODB6VevZo+Bw+mTku1T64xUidW69JomtkY7YyJvK3nbYSTMdnFyb5rNQa3ywcAAACMSHdPajYd/mFXm2fqC9ksIyi8eG3a2eZ+40Z7BKUMs3K5XwEA4IKCbAeAVojHpW3bji2nS2u5nmuM1InVujR6nJUY7YyJvK3tY4STMdmlNf3LyRjcLB8AAAAwIt09qdl0+IddbZ6pL2SzjKDw4rVpZ5v7jRvtEZQyzMrlfgUAgAt4YhwAAAAAAAAAAAAAEGhMjAMAAAAAAAAAAAAAAo2JcQAAAAAAAAAAAABAoDExDgAAAAAAAAAAAAAINCbGAQAAAAAAAAAAAACBVpDtANAKoZA0cOCx5XRpLddzjZE6sVqXRo+zEqOdMZG3tX2McDImu7SmfzkZg5vlAwAAAEakuyc1mw7/sKvNM/WFbJYRFF68Nu1sc79xoz2CUoZZudyvAABwQSgej8ezHYSfRKNRhcNhRSIRlZaWZjscAAAAAIAH+HGsOHXqVP31r3/V+++/L0l6++23NXXqVFVVVamkpESPPPKIxo4dm9h/7ty5+uUvf6lDhw5p2LBhevzxx3XKKadIkmpqanTDDTdo9erVCoVCuvnmm3XbbbcZjsWP9QcAAAAAcJbdY0VepQ4AAAAAQI7ZsWOHFixYkFjfv3+/xo8fr3vvvVfbtm3TvHnzNGHCBFVXV0uSnn32WS1YsEBr1qzR9u3bVV5erilTpiSOv/baazVo0CBt27ZNlZWVevTRR7V06VLXzwsAAAAAgHSYGAcAAAAAIMfccsstuu666xLrCxcu1NChQzVmzBhJ0ujRozVq1Cg988wzkpqeFp85c6bKysqUn5+ve+65R0uWLNGePXv04Ycfau3atbrjjjsUCoXUpUsX3XzzzZo/f35Wzg0AAAAAgFSYGPezgwelM89s+hw8mDot1T65xkidWK1Lo2lmY7QzJvK2nrddbZfta9XJvms1BrfLBwAAQMKf/vQn1dTU6Morr0ykVVZW6rzzzmu23/Dhw7V+/Xo1NDRo7dq1zbZ37NhRvXr10rvvvqvKykoNGzZMBQUFScemU19fr2g02uzjCenuSc2mwz/savNMfSGbZQSFF69NO9vcb9xoj6CUYVYu9ysAAFxQcOJd4FnxuLRx47HldGkt13ONkTqxWpdGj7MSo50xkbe1fYxwMia7tKZ/ORmDm+UDAABAUtNvgd98883605/+lHhNuiRVVVXpoosuarZvp06dtHr1au3evVuxWEwdO3ZM2l5TU6Oqqip17tw55bZ07r//fs2aNcuGM7JZmnvSWKxR+V+kr/5kt849s7vy80LcwwZBuja0Kz3bZQSFnXXldEzZjssNbrRHUMowK5f7FQAALuCJcQAAAAAAckA8Htf111+v6dOn64wzzmi2raGhQfEWf0yPxWIKhUJqaGhIHJ9ue7pt6cyYMUORSCTx2bFjR2tOzVHLNlRpzMMrE+uTnnhT589eoWUbqrIXFABJUqzx2L89qzfXNFsHAAAAWmJiHAAAAACAHPDAAw/oyJEj+v73v5+0raysTLt3726WtmvXLpWXl6tDhw6Kx+Pau3dvyu2Zjk2nsLBQpaWlzT5etGxDlaY+vU7Vkfpm6dWROk19ep2Wv1ed5kgATuNLKwAAADCLiXEAAAAAAHLAL37xC73++uvq0KGDTj75ZF166aX66KOPdPLJJ2vIkCFatWpVs/1XrVqlkSNHqqSkRP3792+2vaqqSp9//rnOPvtsDRkyRKtXr1ZjY2PSsX4Wa4xr1tKNSvX86dG0+17a5GZIAL7Al1YAAABgBRPjAAAAAADkgKqqKkWjUe3bt0/79u3TCy+8oNNPP1379u3TNddco1deeUUrVqyQJL344ovatGmTJkyYIEmaMmWKZs2apX379unw4cOaMWOGJk+erOLiYg0bNkwVFRWaPXu2GhsbtXnzZj322GO66aabsnm6rbZ26x5VRerSbo9LSZNyAJzHl1YAAABgVUG2AwAAAAAAANnVrVs3LVq0SDfeeKP27Nmjvn37aunSpSopKZEkTZs2TZ9++qn69eungoICXX755XrggQckSaFQSIsXL9b3vvc9Pfzww+rQoYPmzJmjIUOGZPOUWm3XASa9AS/iSysAAACwiolxPwuFpJ49jy2nS2u5nmuM1InVujR6nJUY7YyJvK3tY4STMdmlNf3LyRjcLB8AAABJLrjgAr3//vuJ9YsvvrjZ+vHy8vI0Z84czZkzJ+X20047TStXrnQiTHcdd096avuiRHI8JP2ztFNi+fj0uq7dVVSQxz2sX6Ubh9iVnu0yguK489t14HAiOdO1ebCim4pPyneuPuxsc7+xs+8GvQyzcrlfAQDgglA8Hk/15iGkEY1GFQ6HFYlEVFpamu1wAAAAAAAewFixdbxYf7HGuM6fvULVkbqUr2wOSSoPF+mNH12k/DwmIgC3VH5So+/8+u8n3G/h5BEa2ecUFyICAACAU+weK3r2N8YffPBB9evXTz169NBZZ52lJUuWJLa9/fbbGjFihHr27KmBAwdq+fLlzY6dO3eu+vbtq65du+qKK65QTU1NYltNTY0mTJigHj16qGfPnnrooYdcOycAAAAAAOAP+XkhzRw/UFLTJPjxjq7PHD+QSXHAZcN6l6kiXJR0XR4VklQRLtKw3mVuhgUAAAAf8OzE+PDhw/Xee+9p+/bt+p//+R9dddVVqqmp0f79+zV+/Hjde++92rZtm+bNm6cJEyaourpakvTss89qwYIFWrNmjbZv367y8nJNmTIlke+1116rQYMGadu2baqsrNSjjz6qpUuXZus0AQAAAACAR40bVKF5EwerPFzULL08XKR5Ewdr3KCKLEUG5C6+tAIAAACrPDsxPnr0aLVp00aSNGrUKBUXF2vXrl1auHChhg4dqjFjxiT2GzVqlJ555hlJTU+Lz5w5U2VlZcrPz9c999yjJUuWaM+ePfrwww+1du1a3XHHHQqFQurSpYtuvvlmzZ8/P2vn2SqHDklDhzZ9Dh1KnZZqn1xjpE6s1qXRNLMx2hkTeVvP2662y/a16mTftRqD2+UDAAAARqS4Jx03qEJv3DxSG178id5eeoeeufZsvfGji5omxbmH9b90bWhXerbLCIoW53f0Sys9i0N6/qlb9PxTt6jwSP2xL630Odn5+rCzzf3Gzr4b9DLMyuV+BQCACzz/G+N1dXX61a9+pWXLlmnZsmW67rrrdOaZZ+r2229P7PPTn/5UH3/8sX7961+ruLhYn332mTp27JjYfvrpp+vxxx/X1q1b9fvf/14vvPBCYtvf/vY3TZw4UVu2bElZfn19verr6xPr0WhU3bt398bvntXWSu3aNS0fOCCVlCSnScn75BojdWK1Lo0cZ6TOjeZjJSYnzzfoeRvhZEx2sdq/nIxBcrd8AAAAh3nxN7L9xDP1l+6e1Gw6/MOuNs/UF7JZRlCkOb/Y/gPKL20vSVr9j20698zuTU+Ku1Efdra537jxb2VQyjArl/sVAAAp5MxvjH/yySfq3r27iouLtWjRIj322GOSpKqqKnXu3LnZvp06dVJNTY12796tWCzWbFL8+O2Zjk3n/vvvVzgcTny6d+9u0xkCAAAAAAAAsOr416UPP+0UXp8OAACAjDw7Md6nTx/t2LFDBw8e1M0336yRI0fqo48+UkNDg1o+5B6LxRQKhdTQ0CBJGben25bOjBkzFIlEEp8dO3bYdIYAAAAAAAAAAAAAADd4dmL8qKKiIl199dW69NJL9dRTT6msrEy7d+9uts+uXbtUXl6uDh06KB6Pa+/evSm3Zzo2ncLCQpWWljb7AAAAAAAAAAAAAAD8w/MT40cVFhaqbdu2GjJkiFatWtVs26pVqzRy5EiVlJSof//+zbZXVVXp888/19lnn60hQ4Zo9erVamxsTDoWAAAAAAAAAAAAABBMnpwY//TTT7Vw4cLEq9Ffe+01Pffcc5owYYKuueYavfLKK1qxYoUk6cUXX9SmTZs0YcIESdKUKVM0a9Ys7du3T4cPH9aMGTM0efJkFRcXa9iwYaqoqNDs2bPV2NiozZs367HHHtNNN92UtXMFAAAAAAAAAAAAADirINsBpFJYWKjf/OY3mjZtmtq3b69evXrpueeeU79+/SRJixYt0o033qg9e/aob9++Wrp0qUpKSiRJ06ZN06effqp+/fqpoKBAl19+uR544AFJUigU0uLFi/W9731PDz/8sDp06KA5c+ZoyJAhWTvXVuvY8cRpqfbJNUbqxGpdGk07ESdjIm/reRvhZEx2cbLvWo3B7fIBAAAAI9Ldk5pNh3/Y1eaZ+kI2ywgKL16bdra537jRHkEpw6xc7lcAADgsFI/H49kOwk+i0ajC4bAikQi/Nw4AAAAAkMRYsbWoPwAAAABAS3aPFT35KnUAAAAAAAAAAAAAAOzCxDgAAAAAAAAAAAAAINCYGPezQ4ekCy5o+hw6lDot1T65xkidWK1Lo2lmY7QzJvK2nrcRTsZkFyf7rtUY3C4fAAAAMCLdPanZdPiHXW2eqS9ks4yg8OK1aWeb+40b7RGUMszK5X4FAIAL+I1xkzz1u2e1tVK7dk3LBw5IJSXJaVLyPrnGSJ1YrUsjxxmpc6P5WInJyfMNet5GOBmTXaz2LydjkNwtHwAAwGGeGiv6kGfqL909qdl0+IddbZ6pL2SzjKDw4rVpZ5v7jRvtEZQyzMrlfgUAQAr8xjgAAAAAAAAAAAAAACYwMQ4AAAAAAAAAAAAACDQmxgEAAAAAAAAAAAAAgcbEOAAAAAAAAAAAAAAg0JgYBwAAAAAAAAAAAAAEWkG2A0ArFRefOC3VPrnGSJ1YrUujaSfiZEzkbT1vI5yMyS5O9l2rMbhdPgAAAGBEuntSs+nwD7vaPFNfyGYZQeHFa9PONvcbN9ojKGWYlcv9CgAAh4Xi8Xg820H4STQaVTgcViQSUWlpabbDAQAAAAB4AGPF1qH+AAAAAAAt2T1W5FXqAAAAAAAAAAAAAIBAY2IcAAAAAAAAAAAAABBoTIz7WV2d9PWvN33q6lKnpdon1xipE6t1aTTNbIx2xkTe1vO2q+2yfa062XetxuB2+QAAAIAR6e5JzabDP+xq80x9IZtlBIUXr00729xv3GiPoJRhVi73KwAAXMBvjJvkqd89q62V2rVrWj5wQCopSU6TkvfJNUbqxGpdGjnOSJ0bzcdKTE6eb9DzNsLJmOxitX85GYPkbvkAAAAO89RY0Yc8U3/p7knNpsM/7GrzTH0hm2UEhRevTTvb3G/caI+glGFWLvcrAABS4DfGAQAAAAAAAAAAAAAwgYlxAAAAAAAAAAAAAECgMTEOAAAAAAAAAAAAAAg0JsYBAAAAAAAAAAAAAIHGxDgAAAAAAAAAAAAAINCYGAcAAAAAAAAAAAAABFooHo/Hsx2En0SjUYXDYUUiEZWWlmY7HAAAAACABzBWbB3qDwAAAADQkt1jRZ4YBwAAAAAAAAAAAAAEGhPjAAAAAAAAAAAAAIBAY2Lcz+rqpAkTmj51danTUu2Ta4zUidW6NJpmNkY7YyJv63nb1XbZvlad7LtWY3C7fAAAAMCIdPekZtPhH3a1eaa+kM0ygsKL16adbe43brRHUMowK5f7FQAALuA3xk3y1O+e1dZK7do1LR84IJWUJKdJyfvkGiN1YrUujRxnpM6N5mMlJifPN+h5G+FkTHax2r+cjEFyt3wAAACHeWqs6EOeqb9096Rm0+EfdrV5pr6QzTKCwovXpp1t7jdutEdQyjArl/sVAAAp8BvjAAAAAAAAAAAAAACYwMQ4AAAAAAAAAAAAACDQmBgHAAAAAAAAAAAAAAQaE+MAAAAAAAAAAAAAgEBjYhwAAAAAAAAAAAAAEGhMjAMAAAAAAAAAAAAAAi0Uj8fj2Q7CT6LRqMLhsCKRiEpLS7MbTDwuHTzYtFxcLIVCyWlS8j65xkidWK1LI8cZqXOj+ViJycnzDXreRjgZk12s9i8nY5DcLR8AAMBhnhor+pBn6i/dPanZdPiHXW2eqS9ks4yg8OK1aWeb+40b7RGUMszK5X4FAEAKdo8VmRg3yTODdQAAAACAZzBWbB3qDwAAAADQkt1jRV6lDgAAAAAAAAAAAAAINCbG/ay+Xpo0qelTX586LdU+ucZInVitS6NpZmO0Mybytp63EU7GZBcn+67VGNwuHwAAADAi3T2p2XT4h11tnqkvZLOMoPDitWlnm/uNG+0RlDLMyuV+BQCAC3iVukmeer1bba3Url3T8oEDUklJcpqUvE+uMVInVuvSyHFG6txoPlZicvJ8g563EU7GZBer/cvJGCR3ywcAAHCYp8aKPuSZ+kt3T2o2Hf5hV5tn6gvZLCMovHht2tnmfuNGewSlDLNyuV8BAJACr1IHAAAAAAAAAAAAAMAEJsYBAAAAAAAAAAAAAIHGxDgAAAAAAAAAAAAAINCYGAcAAAAAAAAAAAAABBoT4wAAAAAAAAAAAACAQGNiHAAAAAAAAAAAAAAQaAXZDgCtUFws7dx5bDldWsv1XGOkTqzWpdHjrMRoZ0zkbW0fI5yMyS6t6V9OxuBm+QAAAIAR6e5JzabDP+xq80x9IZtlBIUXr00729xv3GiPoJRhVi73KwAAXBCKx+PxbAfhJ9FoVOFwWJFIRKWlpdkOBwAAAADgAYwVW4f6AwAAAAC0ZPdYkVepAwAAAAAAAAAAAAACjYlxP6uvl/7rv5o+9fWp01Ltk2uM1InVujSaZjZGO2Mib+t529V22b5Wney7VmNwu3wAAADAiHT3pGbT4R92tXmmvpDNMoLCi9emnW3uN260R1DKMCuX+xUAAC7gVeomeer1brW1Urt2TcsHDkglJclpUvI+ucZInVitSyPHGalzo/lYicnJ8w163kY4GZNdrPYvJ2OQ3C0fAADAYZ4aK/qQZ+ov3T2p2XT4h11tnqkvZLOMoPDitWlnm/uNG+0RlDLMyuV+BQBACrxKHQAAAAAAWPLggw+qX79+6tGjh8466ywtWbIkse3tt9/WiBEj1LNnTw0cOFDLly9vduzcuXPVt29fde3aVVdccYVqamoS22pqajRhwgT16NFDPXv21EMPPeTaOQEAAAAAYAQT4wAAAAAA5Ijhw4frvffe0/bt2/U///M/uuqqq1RTU6P9+/dr/Pjxuvfee7Vt2zbNmzdPEyZMUHV1tSTp2Wef1YIFC7RmzRpt375d5eXlmjJlSiLfa6+9VoMGDdK2bdtUWVmpRx99VEuXLs3WaQIAAAAAkISJcQAAAAAAcsTo0aPVpk0bSdKoUaNUXFysXbt2aeHChRo6dKjGjBmT2G/UqFF65plnJDU9LT5z5kyVlZUpPz9f99xzj5YsWaI9e/boww8/1Nq1a3XHHXcoFAqpS5cuuvnmmzV//vysnScAAAAAAC0xMQ4AAAAAQI6pq6vT3LlzNXToUJ1xxhmqrKzUeeed12yf4cOHa/369WpoaNDatWubbe/YsaN69eqld999V5WVlRo2bJgKCgqSjk2nvr5e0Wi02QcAAAAAACcxMQ4AAAAAQI745JNP1L17dxUXF2vRokV67LHHJElVVVXq3Llzs307deqkmpoa7d69W7FYTB07dky5PdOx6dx///0Kh8OJT/fu3W06QwAAAAAAUmNiHAAAAACAHNGnTx/t2LFDBw8e1M0336yRI0fqo48+UkNDg+LxeLN9Y7GYQqGQGhoaJCnj9nTb0pkxY4YikUjis2PHDpvOEAAAAACA1ApOvAs8q21bacuWY8vp0lqu5xojdWK1Lo0eZyVGO2Mib2v7GOFkTHZpTf9yMgY3ywcAAEAzRUVFuvrqq/XKK6/oqaeeUllZmXbv3t1sn127dqm8vFwdOnRQPB7X3r17VVZWlrS9qqpKa9asSXlsOoWFhSosLLT3pOyQ7p7UbDr8w642z9QXsllGUHjx2rSzzf3GjfYIShlm5XK/AgDABaF4y691I6NoNKpwOKxIJKLS0tJshwMAAAAA8AC/jhVvvPFGde3aVQUFBXrzzTf1hz/8IbHtkksu0VVXXaVJkyZpwIAB+tnPfqZLL71UUtOr108//XTt3LlT7777ri677DJVVVUpL6/pxXSzZ8/Wpk2b9OSTTxqKw6/1BwAAAABwjt1jRV6lDgAAAABADvj000+1cOHCxKvRX3vtNT333HOaMGGCrrnmGr3yyitasWKFJOnFF1/Upk2bNGHCBEnSlClTNGvWLO3bt0+HDx/WjBkzNHnyZBUXF2vYsGGqqKjQ7Nmz1djYqM2bN+uxxx7TTTfdlLVzBQAAAACgJSbG/ezwYekHP2j6HD6cOi3VPrnGSJ1YrUujaWZjtDMm8raet11tl+1r1cm+azUGt8sHAACACgsL9Zvf/EZdunRRnz59NGvWLD333HPq16+funXrpkWLFunGG29Up06ddO+992rp0qUqKSmRJE2bNk2jR49Wv3791KtXL7Vt21YPPPCAJCkUCmnx4sV6+eWX1blzZ40bN05z5szRkCFDsnm61qS7JzWbDv+wq80z9YVslhEUXrw27Wxzv3GjPYJShlm53K8AAHABr1I3yVOvd6utldq1a1o+cEAqKUlOk5L3yTVG6sRqXRo5zkidG83HSkxOnm/Q8zbCyZjsYrV/ORmD5G75AAAADvPUWNGHPFN/6e5JzabDP+xq80x9IZtlBIUXr00729xv3GiPoJRhVi73KwAAUuBV6gAAAAAAAAAAAAAAmMDEOAAAAAAAAAAAAAAg0JgYBwAAAAAAAAAAAAAEGhPjAAAAAAAAAAAAAIBAY2IcAAAAAAAAAAAAABBoTIwDAAAAAAAAAAAAAAKtINsBoBXatpU2bDi2nC6t5XquMVInVuvS6HFWYrQzJvK2to8RTsZkl9b0LydjcLN8AAAAwIh096Rm0+EfdrV5pr6QzTKCwovXpp1t7jdutEdQyjArl/sVAAAuCMXj8Xi2g/CTaDSqcDisSCSi0tLSbIcDAAAAAPAAxoqtQ/0BAAAAAFqye6zo6qvUhw8f7mZxAAAAAAAEHmNtAAAAAABOzNFXqR85ckRt2rRJrG/fvt3J4nLP4cPSffc1Lf/4x9JJJyWnScn75BojdWK1Lo0cZ6TOjeZjJSYnzzfoeRvhZEx2sdq/nIxBcrd8AACAAGGs7aB096Rm0+EfdrV5pr6QzTKCwovXpp1t7jdutEdQyjArl/sVAAAusO1V6qNHj9arr77aLK1Tp07auXNnYr1Lly767LPP7Cguazz1erfaWqldu6blAwekkpLkNCl5n1xjpE6s1qWR44zUudF8rMTk5PkGPW8jnIzJLlb7l5MxSO6WDwAA4DCnxoqMtV2W7p7UbDr8w642z9QXsllGUHjx2rSzzf3GjfYIShlm5XK/AgAgBc++Sn3Tpk1Jafx8OQAAAAAA1jHWBgAAAADAHo7+xngoFHIyewAAAAAAcg5jbQAAAAAAzHP0N8bj8bgWL16cWK6vr3eyOAAAAAAAAo+xNgAAAAAA5jk6MS5JTzzxRGL50KFDThcHAAAAAEDgMdYGAAAAAMAcRyfGQ6GQli5dmlivqKhwsjgAAAAAAAKPsTYAAAAAAOY5+hvjLfE7aAAAAAAA2IuxNgAAAAAAJ2bbE+N79+7V4MGDE+vxeFz79u2zK3ukUlQkrVlzbDldWsv1XGOkTqzWpdHjrMRoZ0zkbW0fI5yMyS6t6V9OxuBm+QAAAD7FWNtl6e5JzabDP+xq80x9IZtlBIUXr00729xv3GiPoJRhVi73KwAAXBCKx+NxOzJ66623UqYPGTIksdylSxd99tlndhSXNdFoVOFwWJFIRKWlpdkOBwAAAADgAU6NFRlrAwAAAAByld1jRdueGD9+UJ6OTXPwAAAAAADkBMbaAAAAAADYw7aJcSMWL17sZnHBd/iw9MgjTcvTpkknnZScJiXvk2uM1InVujRynJE6N5qPlZicPN+g522EkzHZxWr/cjIGyd3yAQAAAoyxto3S3ZOaTYd/2NXmmfpCNssICi9em3a2ud+40R5BKcOsXO5XAAC4wLZXqZtRU1OjU045JeM+K1as0J133qnPP/9c8Xhc06dP10033SRJ2rp1qyZPnqwPP/xQbdq00V133aWJEycmjl24cKHuvvtu7d+/X6effrrmz5+v3r17S5IOHTqkadOm6eWXX1YsFtPVV1+t2bNnKxQKGYrdU693q62V2rVrWj5wQCopSU6TkvfJNUbqxGpdGjnOSJ0bzcdKTE6eb9DzNsLJmOxitX85GYPkbvkAAAAO88JY0chY26u8UH+S0t+Tmk2Hf9jV5pn6QjbLCAovXpt2trnfuNEeQSnDrFzuVwAApODJV6lfeOGFJ5xYvuyyyzR9+nRJ0llnnXXC3z97/vnnNX/+fPXv31+bN2/WqFGjdPrpp2vs2LEaP368brvtNk2aNEkbN27U+eefr0GDBumcc85RZWWlfvzjH+vVV19Vjx49dN9992nChAlau3atJOm2225TY2OjPvnkE9XW1mrMmDH65S9/mZh0BwAAAADAC5wYawMAAAAAkKtsmRj/yU9+csJ9unXrllg28pD6I0df/yLptNNO07e+9S2tWLFCeXl5Kigo0KRJkyRJAwcO1MSJE/XUU0/pnHPO0aOPPqrp06erR48ekqQf/vCHeuihh/TOO++oT58+euqpp7Rjxw4VFBQoHA5rxowZuueee5gYBwAAAAB4ihNjbQAAAAAAcpUtE+Nf+cpXTO1v9LXlx9u1a5fOOOMMVVZW6rzzzmu2bfjw4Xr88cclSZWVlbr11lsT2woKCjR48GCtX79e+/btU+/evVVWVtbs2A0bNigWiyk/Pz+p3Pr6etXX1yfWo9Go6dgBAAAAADDLjbE2AAAAAAC5wpaJcUl67bXXUqYPGDBAp556aqvyXrNmjV544QXdfffdmj17trp27dpse6dOnVRTUyNJqqqqUufOnVNuLywsTLmtoaFBkUik2YT5Uffff79mzZrVqvgBAAAAALDCybE2AAAAAAC5xLaJ8ZkzZ0qSNm3apC5duigcDmvr1q366U9/qquvvtpyvosWLdL06dP11FNPqXfv3mpoaEh6PVwsFkt8Mz7T9nTbpPTfrJ8xY0azJ9Cj0ai6d+9u+XwAAAAAADDKqbE2AAAAAAC5xraJ8b/+9a+SpO985zuaOnWqRo0apTvvvNNyfrFYTDfddJP++te/6uWXX9bZZ58tSSorK9Pu3bub7btr1y6Vl5c32370N8aP3x4Oh1MeW1RUpHA4nDKOwsJCFRYWWj4PAAAAAACssnusDQAAAABArrJtYtxu06dP1+bNm7V27VqVlJQk0ocMGaKf/exnzfZdtWqVRo4cmdi+atUqDR48WJJ0+PBhvfXWW3r88cfVtm1bffDBB9q7d686dOiQOHb48OHKy8tz6cxsVFQkffFHEhUVpU9ruZ5rjNSJ1bo0epyVGO2Mibyt7WOEkzHZpTX9y8kY3CwfAAAAMCLdPanZdPiHXW2eqS9ks4yg8OK1aWeb+40b7RGUMszK5X4FAIALQvGW7xZvpZbfYh8wYIC+/OUv69///d8VCoUUj8dVWVmpurq6tHnU1dWpXbt22rFjhyoqKpptO3jwoPr27asHH3xQEydO1Nq1a3XZZZdpzZo16tatm5577jndeuutev3111VRUaG77rpLGzZs0HPPPSdJuvzyy9WlSxc9+uij2rdvny666CLdfffd+rd/+zdD5xeNRhUOhxWJRFRaWmq5ngAAAAAAweH0WNGOsbaXMdYGAAAAALRk91jRtifGX3vtNUlNryZfv369JGn79u0aMGCAOnbsqJ/85CeG89q8ebMaGxsTT4Ef1b9/f7388staunSpJk+erFtvvVXl5eX63e9+p27dukmSrrjiCn388ccaNmyYGhsbdcEFF2j+/PmJPH7zm9/o+uuvV0VFhUpKSnT77bcbnhQHAAAAAMBNdo61AQAAAADIZbY9MX7hhRemTP/JT36ir3zlK3YU4Qme+hb7kSPS//1f0/KUKVKbNslpUvI+ucZInVitSyPHGalzo/lYicnJ8w163kY4GZNdrPYvJ2OQ3C0fAADAYU6NFRlruyzdPanZdPiHXW2eqS9ks4yg8OK1aWeb+40b7RGUMszK5X4FAEAKdo8VbX+VetB5ZrAuSbW1Urt2TcsHDkglJclpUvI+ucZInVitSyPHGalzo/lYicnJ8w163kY4GZNdrPYvJ2OQ3C0fAADAYZ4aK/qQZ+ov3T2p2XT4h11tnqkvZLOMoPDitWlnm/uNG+0RlDLMyuV+BQBACnaPFfNsiAkAAAAAAAAAAAAAAM9iYhwAAAAAAAAAAAAAEGhMjAMAAAAAAAAAAAAAAo2JcQAAAAAAAAAAAABAoDExDgAAAAAAAAAAAAAINCbGAQAAAAAAAAAAAACBVpDtANAKhYXSCy8cW06X1nI91xipE6t1afQ4KzHaGRN5W9vHCCdjsktr+peTMbhZPgAAAGBEuntSs+nwD7vaPFNfyGYZQeHFa9PONvcbN9ojKGWYlcv9CgAAF4Ti8Xg820H4STQaVTgcViQSUWlpabbDAQAAAAB4AGPF1qH+AAAAAAAt2T1W5FXqAAAAAAAAAAAAAIBA41XqfnbkiPTb3zYtX3ON1KZNcpqUvE+uMVInVuvSyHFG6txoPlZicvJ8g563EU7GZBer/cvJGCR3ywcAAACMSHdPajYd/mFXm2fqC9ksIyi8eG3a2eZ+40Z7BKUMs3K5XwEA4AJepW6Sp17vVlsrtWvXtHzggFRSkpwmJe+Ta4zUidW6NHKckTo3mo+VmJw836DnbYSTMdnFav9yMgbJ3fIBAAAc5qmxog95pv7S3ZOaTYd/2NXmmfpCNssICi9em3a2ud+40R5BKcOsXO5XAACkwKvUAQAAAAAAAAAAAAAwgYlxAAAAAAAAAAAAAECgMTEOAAAAAAAAAAAAAAg0JsYBAAAAAAAAAAAAAIHGxDgAAAAAAAAAAAAAINCYGAcAAAAAAAAAAAAABFpBtgNAKxQWSs8+e2w5XVrL9VxjpE6s1qXR46zEaGdM5G1tHyOcjMkurelfTsbgZvkAAACAEenuSc2mwz/savNMfSGbZQSFF69NO9vcb9xoj6CUYVYu9ysAAFwQisfj8WwH4SfRaFThcFiRSESlpaXZDgcAAAAA4AGMFVuH+gMAAAAAtGT3WJFXqQMAAAAAAAAAAAAAAo1XqftZQ4P03HNNy1dcIRUUJKdJyfvkGiN1YrUujRxnpM6N5mMlJifPN+h5G+FkTHax2r+cjEFyt3wAAADAiHT3pGbT4R92tXmmvpDNMoLCi9emnW3uN260R1DKMCuX+xUAAC7gVeomeer1brW1Urt2TcsHDkglJclpUvI+ucZInVitSyPHGalzo/lYicnJ8w163kY4GZNdrPYvJ2OQ3C0fAADAYZ4aK/qQZ+ov3T2p2XT4h11tnqkvZLOMoPDitWlnm/uNG+0RlDLMyuV+BQBACrxKHQAAAAAAAAAAAAAAE5gYBwAAAAAAAAAAAAAEGhPjAAAAAAAAAAAAAIBAY2IcaIVYYzyxvHpzTbN1AAAAAAAAAAAAAN7AxDhg0bINVRrz8MrE+qQn3tT5s1do+XvV2QsKAAAAAAAAAAAAQJKCbAcA+NHy96o1dfH7Kjpc3yy9OlKnaYvWa2OW4gIAAAAAAAAAAACQjIlxPzvpJOmJJ44tp0truZ5rjNSJibpsbIxr1p8/VlzSkfwC3f616dIXy0fT7vnmD3TH1wYoz2idGy3f6rmQt7V9jHAyJru0pn85GYOb5QMAAECStGLFCt155536/PPPFY/HNX36dN10002SpK1bt2ry5Mn68MMP1aZNG911112aOHFi4tiFCxfq7rvv1v79+3X66adr/vz56t27tyTp0KFDmjZtml5++WXFYjFdffXVmj17tkKhUFbO07J096Rm0+EfdrV5pr6QzTKCwovXpp1t7jdutEdQyjArl/sVAAAuCMXjcX4U2YRoNKpwOKxIJKLS0tJsh4MsqPykRt/59d9PuN/CySM0ss8pLkQEAAAAINv8MlacNm2abrzxRvXv31+bN2/WqFGj9Pjjj2vs2LE655xzdNttt2nSpEnauHGjzj//fK1YsULnnHOOKisrdfXVV+vVV19Vjx49dN9992nx4sVau3atJOnGG2/U4cOH9atf/Uq1tbUaM2aM/v3f/z0x6X4ifqk/AAAAAIB77B4r8hvjgEk799fZuh8AAAAAuOWRRx5R//79JUmnnXaavvWtb2nFihV65ZVXVFBQoEmTJkmSBg4cqIkTJ+qpp56SJD366KOaPn26evToIUn64Q9/qC1btuidd97RgQMH9NRTT+nBBx9UQUGBwuGwZsyYofnz52flHAEAAAAASIVXqftZQ4P08stNyxdfLBUUJKdJyfvkGiN1YqIu+1VFld9YolhevvIbYxq1ZZ0k6bXeg5ul9VsblQZNMFbnRso32r42n29O522EkzHZxWr/cjIGyd3yAQAAkNKuXbt0xhlnqLKyUuedd16zbcOHD9fjjz8uSaqsrNStt96a2FZQUKDBgwdr/fr12rdvn3r37q2ysrJmx27YsEGxWEz5+flJ5dbX16u+vj6xHo1G7T41a9Ldk5pNh3/Y1eaZ+kI2ywgKL16bdra537jRHkEpw6xc7lcAALiAV6mb5KnXu9XWSu3aNS0fOCCVlCSnScn75BojdWKyLi+8a6m2Hgqp6HCdNv38SknSgFv+oEMnFan4cJ02fpFmuM6NlG+0fR0435zN2wgnY7KL1f7lZAySu+UDAAA4zFNjRYPWrFmjiy++WOvWrdPs2bPVtWtX3XnnnYnty5cv12233aZ//OMfKioq0kcffaTu3bsntl9zzTUaMmSIunTpol//+td65ZVXEtuOHDmik046STU1Nc0mzI+66667NGvWrKT0rNdfuntSs+nwD7vaPFNfyGYZQeHFa9PONvcbN9ojKGWYlcv9CgCAFHiVOuABP75kgCQp1CK95ToAAAAAeNGiRYt02WWX6amnnlLv3r3V0NCglt+bj8ViCoWaRjmZtqfbJilxfEszZsxQJBJJfHbs2GHXqQEAAAAAkBLvVQEsGHtmueYVF2v2H99qll4eLtLdXzlD+nmWAgMAAACADGKxmG666Sb99a9/1csvv6yzzz5bklRWVqbdu3c323fXrl0qLy9vtv3ob4wfvz0cDqc8tqioSOFwOGUchYWFKiwstPPUAAAAAADIiCfGAYvGDarQX269ILH+5HVD9caPLtLYM8uzFxQAAAAAZDB9+nRt3rxZa9euTUyKS9KQIUO0atWqZvuuWrVKI0eOTLn98OHDeuuttzRixAgNHjxYH3zwgfbu3dvs2OHDhysvjz87AAAAAAC8gREq0Ar5ecdeCzj8tFOarQMAAACAl9TV1WnevHl64oknVNLi90fHjx+vzz77TE8//bQkae3atXr++ef1H//xH5KkKVOm6KGHHtI///lPxWIx3XPPPbrwwgvVu3dvlZeXa9y4cfrxj3+shoYG7d69Wz/96U81ffp0t08RAAAAAIC0eJU6AAAAAAA5YPPmzWpsbEw8BX5U//799fLLL2vp0qWaPHmybr31VpWXl+t3v/udunXrJkm64oor9PHHH2vYsGFqbGzUBRdcoPnz5yfy+M1vfqPrr79eFRUVKikp0e23365/+7d/c/P0AAAAAADIiIlxAAAAAABywMCBA9XY2Jh2+5AhQ7Ru3bq023/wgx/oBz/4QcptHTt21PPPP9/qGAEAAAAAcAoT43520knSL395bDldWsv1XGOkTqzWpdHjrMRoZ0zkbW0fI5yMyS6t6V9OxuBm+QAAAIAR6e5JzabDP+xq80x9IZtlBIUXr00729xv3GiPoJRhVi73KwAAXBCKx+PxbAfhJ9FoVOFwWJFIRKWlpdkOBwAAAADgAYwVW4f6AwAAAAC0ZPdYMc+GmAAAAAAAAAAAAAAA8Cxepe5nsZj0+utNy1/+spSfn5wmJe+Ta4zUidW6NHKckTo3mo+VmJw836DnbYSTMdnFav9yMgbJ3fIBAAAAI9Ldk5pNh3/Y1eaZ+kI2ywgKL16bdra537jRHkEpw6xc7lcAALiAV6mb5KnXu9XWSu3aNS0fOCCVlCSnScn75BojdWK1Lo0cZ6TOUxwT239A+aXtJUmr/7FN557ZXfmHDpqPycnzDXreRhhpu15lifWsXKtG+6nVOrASg+Ru+QAAAA7z1FjRhzxTf+nuSc2mwz/savNMfSGbZQSFF69NO9vcb9xoj6CUYVYu9ysAAFKwe6zIE+OABy3bUKXZf3xLf/1ifdITb+rkUz/S3V/ppbFZjQwnkqrtysOFiXUAAAAAAAAAAAC4j4lxwGOWv1etqYvfV9Hh+mbp1ZE6TVu0XhuzFBdOLF3bfR6pT3MEAAAAAAAAAAAA3JCX7QAANHffS5uU6vcN+M0D7zPSdrFGWhIAAAAAAAAAAMBtTIwDHlOd4eliplS9LVPbHbV26x4XIgEAAAAAAAAAAMDxmBgHABftOsBr1QEAAAAAAAAAANzGxDgAuOjUdoXZDgEAAAAAAAAAACDnFGQ7ALRCmzbSgw8eW06X1nI91xipE6t1afQ4gzE2xuPqWF+if9bG1JCfr/suuE6S1JCfL0mK5efrl+Mm68YL+yrPTExOnm+Q8zbCYNvdf8F1al9UoKmndzYek12M1pvVOrAag5vlAwAAAEakuyc1mw7/sKvNM/WFbJYRFF68Nu1sc79xoz2yWEYsv0D//NFMHahv0P7tUQ3tX6z8vBD9CgCAAAjF43F+ttiEaDSqcDisSCSi0tLSbIcDC2KNca3Zskc799epU/siDetd1nRz6xHLNlRp6tPrJDX/TfGjEc6bOFjjBlW4HpedvN4GVuVC2wEAACA1xoqtQ/0BALxg2YYqzVq6UVWRukRaRbhIM8cP5G86AABkgd1jRSbGTWKw7m9+ubn1S5xWBPncpOCfHwAAAFJjrNg61B8AINuOPvDQ8o/lPPAAAED2MDGeZZ4arMdi0rqmp1M1eLCUn5+cJiXvk2u+qJNVn+zWteuOKC5p0OefSJI2dO6jeF6+8hpj+n+D2+hf+3Q0V5dG2sBInac4JnakQe+98FftPXhYJw0dqmF9T1V+vNF8TFbjdiBvU23ghbiNMNJ2vcuUv/5t8zHZxWg/tVoHVmKQ3C0fAADAYZ4aK/qQZ+ov3T2p2XT4h11tnqkvZLOMoPDitWlnm/uNG+3hchmxc/5F5895VVWROuU1xpr93aoxL18hSV3at9FrY05ueush/QoAAFcwMZ5lnhmsS1JtrdSuXdPygQNSSUlympS8T645rk4G3PIHSdKmn1+ZWD90UpGKD9dp4xdppurSSBsYqXOj+ViJyWrcDuVtuA28ELcRTsZkF6v9y8kYJHfLBwAAcJinxoo+5Jn6S3dPajYd/mFXm2fqC9ksIyi8eG3a2eZ+40Z7uFzG6n9s01W/fVeS1PZwXdLfrVqm068AAHCH3WPFPBtiAnyPb4dkH20AAAAAAACAbNh1oD7bIQAAABcwMQ4AAAAAAAAAyFmntivMdggAAMAFTIwDAAAAAAAAAHLWub3KVBEuUijN9pCk8jCT5wAA+B0T48gpmW5u4Q7aAAAAAAAAAF6SnxfSzPEDJSX/jero+o8vGeBqTAAAwH5MjCPnpLu5hXtoAwAAAAAAAHjJuEEVmjdxsDq3eDK8PFykeRMHa+yZ5VmKDAAA2IWJceSUR759Tsqb20e+fU52AspBtAEAAAAAAAC8aNygCv3l1gsS609eN1Rv/OgijRtUkb2gAACAbQqyHQBaoU0baebMY8vp0lqu55rj6mTsOd110Ze6aUfND1R7uEFPTP5XDe1frvyGI9bq0mgbmIjRdN5Oxu1A3qbaINtxG+FkTHZpTf9yMgY3ywcAAACMSHdPajYd/mFXm2fqC9ksIyi8eG3a2eZ+40Z7ZLGM/MKTEunD+5dLeSHrZZiVy/0KAAAXhOLxeDzbQfhJNBpVOBxWJBJRaWlptsMBAAAAAHgAY8XWof4AAAAAAC3ZPVbkiXEg4GKNca3Zskc799epU/siDetdpvw8ftUbAAAAAAAAAAAAuYOJcT9rbJQ2bWpaHjBAystLTpOS98k1RurEal0aOc5InRvNx2RMy2In6+6lG1Wy+SNJ0scdu6v85GLN/PoZGpe/r/Xn62RdeiFvI5yMyS5W+5eTMUjulg8AAAAYke6e1Gw6/MOuNs/UF7JZRlB48dq0s839xo32CEoZZuVyvwIAwAW8St0kT73erbZWateuafnAAamkJDlNSt4n1xipE6t1aeQ4I3VuNB+TMQ285Q+KS9r08yslSQNu+YPqTipS28N12vhFWqvO18m69ELeRjgZk12s9i8nY5DcLR8AAMBhnhor+pBn6i/dPanZdPiHXW2eqS9ks4yg8OK1aWeb+40b7RGUMszK5X4FAEAKdo8V+foYEGCpvvXCN2EAAAAAAAAAAACQa5gYB3IQk+MAAAAAAAAAAADIJUyMAwAAAAAAAAAAAAACjYlxAAAAAAAAAAAAAECgMTEOBFjIZDoAAAAAAAAAAAAQREyMAwHXchKcSXEAAAAAAAAAAADkmoJsB4BWaNNGuv32Y8vp0lqu5xojdWK1Lo0eZyVGG2L6+dXn6t4XNul/h31DktSQn6/ycJHuGjdIyrfpfJ2sy2znbYSTMdmlNf3LyRjcLB8AAAAwIt09qdl0+IddbZ6pL2SzjKDw4rVpZ5v7jRvtEZQyzMrlfgUAgAtC8Xg8nu0g/CQajSocDisSiai0tDTb4QAnFGuMa82WPdq5v06d2hdpWO8y5efx3DgAAABgJ8aKrUP9AQAAAABasnusyBPjQMDl54U0ss8p2Q4DAAAAAAAAAAAAyBomxv2ssVHavr1puUcPKS8vOU1K3ifXGKkTq3Vp5DgjdW40HysxOXm+Qc/bCCdjsovV/uVkDJK75QMAAABGpLsnNZsO/7CrzTP1hWyWERRevDbtbHO/caM9glKGWbncrwAAcAGvUjfJU693q62V2rVrWj5wQCopSU6TkvfJNUbqxGpdGjnOSJ0bzcdKTE6eb9DzNsLJmOxitX85GYPkbvkAAAAO89RY0Yc8U3/p7knNpsM/7GrzTH0hm2UEhRevTTvb3G/caI+glGFWLvcrAABSsHusyNfHAAAAAAAAAAAAAACBxsQ4AAAAAAAAANgk1njsBZ2rN9c0WwcAAED2MDEOAAAAAAAAADZYtqFKYx5emVif9MSbOn/2Ci3bUJW9oAAAACDJ4xPj8XhcCxYs0MiRI5ulv/322xoxYoR69uypgQMHavny5c22z507V3379lXXrl11xRVXqKamJrGtpqZGEyZMUI8ePdSzZ0899NBDrpwLAAAAAAAAgOBatqFKU59ep+pIfbP06kidpj69Tsvfq85SZAAAAJA8PDG+bNkyfelLX9Ldd9+tvXv3JtL379+v8ePH695779W2bds0b948TZgwQdXVTTeWzz77rBYsWKA1a9Zo+/btKi8v15QpUxLHX3vttRo0aJC2bdumyspKPfroo1q6dKnr5wcAAAAAAAAgGGKNcc1aulGpXpp+NO2+lza5GRIAAABa8OzEeG1trWbPnq3HH3+8WfrChQs1dOhQjRkzRpI0evRojRo1Ss8884ykpqfFZ86cqbKyMuXn5+uee+7RkiVLtGfPHn344Ydau3at7rjjDoVCIXXp0kU333yz5s+f7/r5AQAAAAAAAAiGNVv2qCpSl3Z7XEp6khwAAADuKsh2AOl885vflCStXLmyWXplZaXOO++8ZmnDhw/X+vXr1dDQoLVr1zbb3rFjR/Xq1Uvvvvuutm7dqmHDhqmgoKDZsY8++mjaOOrr61Vff+ymNRqNtua07FVQIN1447HldGkt13ONkTqxWpdGj7MSo50xkbe1fYxwMia7tKZ/ORmDm+UDAAAARqS7JzWbDv+wq80z9YVslhEUXrw2W5Sxc/+xSfFYXr4W/MvXE8vHp2/51nfVu2OJv9vJjfYIShlm2flvCQAASBKKx+Op3vDjGStXrtQNN9yg999/X5I0btw4XXPNNbr22msT+/z617/W0qVL9X//93/q2rWrYrFYszzOO+883Xbbbfrwww/10Ucf6Te/+U1i20cffaQhQ4aknfC+6667NGvWrKT0SCSi0tJSO04RAAAAAOBz0WhU4XCYsaJF1B8Av6v8pEbf+fXfT7jfwskjNLLPKS5EBAAA4H92jxU9+yr1dBoaGtRyLj8WiykUCqmhoUGSMm5Pty2dGTNmKBKJJD47duyw6UwAAAAAAAAABMGw3mWqCBcp3V8ZQ5IqwkUa1rvMzbAAAABwHN+9W6WsrEy7d+9ulrZr1y6Vl5erQ4cOisfj2rt3r8rKypK2V1VVac2aNSmPTaewsFCFhYX2noRd4nHpaF107CiFQslpUvI+ucZInVitSyPHGalzo/lYicnJ8w163kY4GZNdrPYvJ2OQ3C0fAAAAMCLdPanZdPiHXW2eqS9ks4yg8OK12aKM/LyQZo4fqKlPr1MoHleHQ01vp9zTtjTxUM7MSwcovyYA7eRGewSlDLPs/LcEAAAk8d3E+JAhQ7Rq1SrdeuutibRVq1bpqquuUklJifr3769Vq1bp0ksvlSRVVVXp888/19lnn628vDzNmjVLjY2NysvLSxw7cuTIrJxLqx08KHXq1LR84IBUUpKcJiXvk2uM1InVujRynJE6N5qPlZicPN+g522EkzHZxWr/cjIGyd3yAQAAACPS3ZOaTYd/2NXmmfpCNssICi9emynKGDeoQvMmDtbsP76lvz54jSRpwC1/0MmnnqyZ4wdqXO9SqV07Z+NygxvtEZQyzLLz3xIAAJDEd69Sv+aaa/TKK69oxYoVkqQXX3xRmzZt0oQJEyRJU6ZM0axZs7Rv3z4dPnxYM2bM0OTJk1VcXKxhw4apoqJCs2fPVmNjozZv3qzHHntMN910UzZPCQAAAAAAAEAAjBtUob/cekFi/cnrhuqNH12kcYMqshcUAAAAJPnwifFu3bpp0aJFuvHGG7Vnzx717dtXS5cuVckX34SbNm2aPv30U/Xr108FBQW6/PLL9cADD0iSQqGQFi9erO9973t6+OGH1aFDB82ZM0dDhgzJ5ikBAAAAAAAACIj8vGOvsh5+2ilSHq+2BgAA8ALPT4xfcMEFev/995ulXXzxxUlpR+Xl5WnOnDmaM2dOyu2nnXaaVq5caXeYAAAAAAAAAAAAAACP8t2r1AEAAAAAAAAAAAAAMIOJcQAAAAAAAAAAAABAoDExDgAAAAAAAAAAAAAINM//xjgyKCiQvvvdY8vp0lqu5xojdWK1Lo0eZyVGO2Mib2v7GOFkTHZpTf9yMgY3ywcAAACMSHdPajYd/mFXm2fqC9ksIyi8eG3a2eZ+40Z7BKUMs3K5XwEA4IJQPB6PZzsIP4lGowqHw4pEIiotLc12OAAAAAAAD2Cs2DrUHwAAAACgJbvHirxKHQAAAAAAAAAAAAAQaLxbxc/icengwabl4mIpFEpOk5L3yTVG6sRqXRo5zkidG83HSkxOnm/Q8zbCyZjsYrV/ORmD5G75AAAAgBHp7knNpsM/7GrzTH0hm2UEhRevTTvb3G/caI+glGFWLvcrAABcwMS4nx08KLVr17R84IBUUpKcJiXvk2uM1InVujRynJE6N5qPlZicPN+g522EkzHZxWr/cjIGyd3yAQAAACPS3ZOaTYd/2NXmmfpCNssICi9em3a2ud+40R5BKcOsXO5XAAC4gFepAwAAAACQQ+LxuBYsWKCRI0c2S3/77bc1YsQI9ezZUwMHDtTy5cubbZ87d6769u2rrl276oorrlBNTU1iW01NjSZMmKAePXqoZ8+eeuihh1w5FwAAAAAAjGJiHAAAAACAHLFs2TJ96Utf0t133629e/cm0vfv36/x48fr3nvv1bZt2zRv3jxNmDBB1dXVkqRnn31WCxYs0Jo1a7R9+3aVl5drypQpieOvvfZaDRo0SNu2bVNlZaUeffRRLV261PXzAwAAAAAgHSbGAQAAAADIEbW1tZo9e7Yef/zxZukLFy7U0KFDNWbMGEnS6NGjNWrUKD3zzDOSmp4WnzlzpsrKypSfn6977rlHS5Ys0Z49e/Thhx9q7dq1uuOOOxQKhdSlSxfdfPPNmj9/vuvnBwAAAABAOvzGOAAAAAAAOeKb3/ymJGnlypXN0isrK3Xeeec1Sxs+fLjWr1+vhoYGrV27ttn2jh07qlevXnr33Xe1detWDRs2TAUFBc2OffTRR9PGUV9fr/r6+sR6NBptzWkBAAAAAHBCPDEOAAAAAECOq6qqUufOnZulderUSTU1Ndq9e7disZg6duyYcnumY9O5//77FQ6HE5/u3bvbdzIAAAAAAKTAxDgAAAAAADmuoaFB8Xi8WVosFlMoFFJDQ4MkZdyebls6M2bMUCQSSXx27Nhh05kAAAAAAJAar1L3s/x86corjy2nS2u5nmuM1InVujR6nJUY7YyJvK3tY4STMdmlNf3LyRjcLB8AAAAZlZWVaffu3c3Sdu3apfLycnXo0EHxeFx79+5VWVlZ0vaqqiqtWbMm5bHpFBYWqrCw0N6TsEO6e1Kz6fAPu9o8U1/IZhlB4cVr08429xs32iMoZZiVy/0KAAAXhOItv9aNjKLRqMLhsCKRiEpLS7MdDgAAAADAA/w2Vly5cqVuuOEGvf/++5Kk2bNn680339Qf/vCHxD6XXHKJrrrqKk2aNEkDBgzQz372M1166aWSml69fvrpp2vnzp169913ddlll6mqqkp5eXmJ/DZt2qQnn3zSUDx+qz8AAAAAgPPsHivyKnUAAAAAAHLcNddco1deeUUrVqyQJL344ovatGmTJkyYIEmaMmWKZs2apX379unw4cOaMWOGJk+erOLiYg0bNkwVFRWaPXu2GhsbtXnzZj322GO66aabsnlKAAAAAAA0w6vUAQAAAADIcd26ddOiRYt04403as+ePerbt6+WLl2qkpISSdK0adP06aefql+/fiooKNDll1+uBx54QJIUCoW0ePFife9739PDDz+sDh06aM6cORoyZEg2TwkAAAAAgGZ4YtzPamulUKjpU1ubOi3VPrnGSJ1YrUujaWZjtDMm8raet11tl+1r1cm+azUGt8sHAABAMxdccEHiNepHXXzxxXr//fe1c+dOrVq1SmeddVZiW15enubMmaOdO3fqs88+07x585r9Rvhpp52mlStXateuXfrwww8TT5r7Trp7UrPp8A+72jxTX8hmGUHhxWvTzjb3GzfaIyhlmJXL/QoAABcwMQ4AAAAAAAB4XKwxnlhevbmm2ToAAACAE2NiHAAAAAAAAPCwZRuqNObhlYn1SU+8qfNnr9CyDVXZCwoAAADwGSbGAQAAAAAAAI9atqFKU59ep+pIfbP06kidpj69jslxAAAAwCAmxgEAAAAAAAAPijXGNWvpRqV6afrRtFlLN/JadQAAAMAAJsYBAAAAAAAAD1q7dY+qInVpt8clVUXqtHbrHveCAgAAAHyKiXEAAAAAAADAg3YdqD/xTib2AwAAAHJZQbYDQCvk50tf+9qx5XRpLddzjZE6sVqXRo+zEqOdMZG3tX2McDImu7SmfzkZg5vlAwAAAEakuyc1mw7/sKvNM/WFVuTVMVycSG7My9OK085NLB+vY7g42H3Ri9emnW3uN260R1DKMCuX+xUAAC4IxeNxfoTIhGg0qnA4rEgkotLS0myHAwAAAADwAMaKrUP9AanFGuM6f/YKVUfqUv7OeEhSebhIb/zoIuXnhdwODwAAAHCU3WNFXqUOAAAAAAAAeFB+Xkgzxw+U1DQJfryj6zPHD2RSHAAAADCAiXEAAAAAAADAo8YNqtC8iYNVHi5qll4eLtK8iYM1blBFliIDAAAA/IWJcT+rrZVKSpo+tbWp01Ltk2uM1InVujSaZjZGO2Mib+t529V22b5Wney7VmNwu3wAAADAiHT3pGbT4R92tXmmvmBDXuMGVeiN7w/XJ7/4lj5+ZIKeueYsvfGji45Nige9L3rx2rSzzf3GjfYIShlm5XK/AgDABQXZDgCtdPDgidNS7ZNrjNSJ1bo0mnYiTsZE3tbzNsLJmOziZN+1GoPb5QMAAABGpLsnNZsO/7CrzTP1BRvyys8LSYea0oefdorU8vXpQe+LXrw27Wxzv3GjPYJShlm53K8AAHAYT4wDAAAAAAAAAAAAAAKNiXEAAAAAAAAAAAAAQKAxMQ4AAAAAAAAAAAAACDQmxgEAAAAAAAAAAAAAgcbEOAAAAAAAANAKscZ4Ynn15ppm6wAAAAC8oSDbAaAV8vKk0aOPLadLa7mea4zUidW6NHqclRjtjIm8re1jhJMx2aU1/cvJGNwsHwAAADAi3T2p2XT4hw1tvmxDlR5Y/LYe6D5IkvTdJ9eqrONHmjl+oMYNqrCvX2Xqb0Hvi168Nq20R1DayY32CEoZZuVyvwIAwAWheDzOV1hNiEajCofDikQiKi0tzXY4AAAAAAAPYKzYOtQf/GrZhipNfXqdWv5xLfTFf+dNHNw0OQ4AAADANLvHinyFDAAAAAAAADAp1hjXrKUbkybFJSXSZi3dyGvVAQAAAI9gYhwAAAAAAAAwac2WPaqK1KXdHpdUFanTmi173AsKAAAAQFpMjPtZba106qlNn9ra1Gmp9sk1RurEal0aTTMbo50xkbf1vO1qu2xfq072XasxuF0+AAAAYES6e1Kz6fCPVrR5zc5jE95tD9fprV9crbd+cbXaHm4+WV6zc489/SpTfwt6X/TitWmlPYLSTm60R1DKMCuX+xUAAC4oyHYAaKXdu0+clmqfXGOkTqzWpdG0E3EyJvK2nrcRTsZkFyf7rtUY3C4fAAAAMCLdPanZdPiHxTY/tV1hs+RTDkVT7n5qu0L7+lWm/hb0vujFa9NKewSlndxoj6CUYVYu9ysAABzGE+MADDv+d9FWb67hd9IAAAAAADnr3F5lqggXKZRme0hSRbhI5/YqczMsAAAAAGkwMQ7AkGUbqjTm4ZWJ9UlPvNlsHTCDL1kAAAAA8Lv8vJBmjh8oSUmT40fXZ44fqPy8dFPnAAAAANzExDiAE1r+XrWmPr1O1ZH6Zumft1gHjFj+XnXSlyzOn71Cy9+rzl5QAAAAAGDBuEEVmjdxsDqHm79WvTxcpHkTB2vcoIosRQYAAACgJX5jHMAJ3ffSJsVTvBzu+Gd8Y41x5bsXEnxs2qL1avl8eHWkTtMWrdfGrEQEAAAAANaNG1ShsT0vkO5qWn/yuqE698zuPCkOAAAAeAxPjAM4oZZPiqeyduseFyJBEKR6aTovUgcAAADgZ8dPgg8/7RQmxQEAAAAP4olxP8vLk84999hyurSW67nGSJ1YrUujx1mJ0c6YDOwTU0iHzjpHR2Jxfbh1r87tVab8c8/V3oNH1BhqGtA3hkJ6p/z0xLKkxPrO2sNZidvRvI1wMia7tKZ/2RjDgbPO0Se7apP6ztH12Bf9q8+pJWqXq/9eAQAAILvS3RObTYd/2NXmmfpCNssICi9em3a2ud+40R5BKcOsXO5XAAC4IBSPx3lQz4RoNKpwOKxIJKLS0tJshwPYYtmGKs1aulFVkbpEWkW4SDPHD1S47Un6zq//fsI8Fk4eoZF9TnEyTPjc8+s/1bRF60+43yPfPkeXn9PV+YAAAABsxFixdag/AAAAAEBLdo8V+QoZkOOWbajS1KfXNZsUl5p+83nq0+u0t/awKsJFKX5hvElITZPow3qXOR4r/K1T+yJb9wMAAAAAAMgVsca4Kj+p0fPrP1XlJzWKNfK8GwAAZvEqdSCHxRrjmrV0Y9rffA5JuudPG3Xn1wfov373tkJK/i3ouKSvDSrXmi17NKx3Gb+jhrSG9S5TRbhI1ZG6lH0uJKmcL1kAAAAAAAA0k+ltj+MGVWQxMgAA/IUnxv3s4EGpV6+mz8GDqdNS7ZNrjNSJ1bo0mmY2RjtjyrDPkR49tXf3PklS0ZE6vTHve3pj3vdUdKRORUfq9Pq87+n3D1ytU/JimjdxsHq2VbN9ihuajrlu4kW67rGVOn/2Cv35zU8cj9u1vO1qu2xfq072XRMx5J/WWyt+OUlFR+rUtkV/C6mpD6745STln9Y7d/+9AgAAQHaluyc2mw7/sKvNM/WFbJYRFF68Nu1sc79xoz2CUoZZKco4+rbHvbv3NftbytG3Pab8WxwAAEiJJ8b9LB6Xtm07tpwureV6rjFSJ1br0uhxVmK0M6Y0+xRJCn2RFIpL3aI7E8vSsfX1++t06cjTNbbnaOXfdWyfeItjqiN1mr5wvTY6HLdreRvhZEx2aU3/sjmGtpJ+cdU5uu+lTc36Tnm4SHd/5Qy1ffifzpQPAAAAGJHunthsOvzDrjbP1BeyWUZQePHatLPN/caN9ghKGWa1KOP4tz22/NtdXE1v37v/xU36ahD6FQAALmBiHMAJndquUJJO+Jp0br39I9YYV/4Xy6s31+jcM4sT604be2a5LhrQWbqraf3J64bq3DO7K/8Q32oGAAAAAAA4as2WPc1en95SXFJ1pN69gAAA8DlepQ4YFGs8Nu27enNNs3U/Kw8X6kS/Cn5uL+O/+RyMWgm2ZRuqNObhlYn1SU+8qfNnr9Dy96pdi+H4L1kMP+0UfpseAAAAAACghZ3700+KAwAA85gYBwxY/l511icSnfLjSwZIUtLk+PHrTFoGx/L3qjX16XVJ3yaujtRp2qL12QkKAAAAAAAASTq1L8p2CAAABAoT44AB0xatD+xE4tgzyzVv4mB1Dhc2S2+5jmC476VNKZ/q50l/AAAAAAAAbxnWu0wV4aK0b3sMqeltkAAAwBgmxgEDgj6ROG5Qhf5y6wWJ9SevG9psPZVMN+Twrky/OxWkPg0AAAAAAOB3+XkhzRw/UFL6tz0efRskAAA4sYJsB4BWCIWkgQOPLadLa7mea4zUSZq6PNi3v/6595DiXyR9eEoPSUqsN4aa0rp1aKviTHlZidFq+1rcJz8/L5E2vE/HjMftr29IWSehL/67v08/tS8scCVuR/M2wsmY7PJFWdG6Y+0WDyX356Np5eEilToUQ2JZsq8NAAAAALukuyc1mw7/sKvNM/WFbJYRFF68Nu1sc79xoz2CUoZZKcoYN6hC8yYO1gN/XNfsbznl4SLNHD9QY08LB6NfAQDgglA8HuchQROi0ajC4bAikYhKS0uzHQ4c9vz6Tw29Lv2Rb5+jy8/p6nxAHrJsQ5VmLd2oqkhdIq3iixvycYMqshgZ0qn8pEbf+fXfT7jfwskjNLLPKS5EBAAAEByMFVuH+gMAILNYY1xrtuzRzv116tS+SMN6lyk/j4lwAECw2T1W5IlxIINO7Yts3S9Ixg2q0NiB5dyQ+8jR36WqjtSlfG16SE3fNh7Wu8zt0AAAAAAAAJBBfl6IBxkAAGglfmMcyODoRGK6qd6Qmp6SztWJxKM35Jef01Uj+5zCpLjHGfldqpnjB9KOAAAAAAAAAAAgcJgY97ODB6Uzz2z6HDyYOi3VPrnGSJ2kScs/a5D+/JsbVXSkTm2P1OnPj9+oPz/etB6SVHSkTn/+zY3KP2tQ5rzMxmg0za59yNv6teJkTHY5Lu9xp4U1b+Jg9WyrZv25PFyk//3mGRp31RjHY7C9DQAAAAC7pLsnNZsO/7CrzTP1hWyWERRevDbtbHO/caM9glKGWbncrwAAcAGvUvezeFzauPHYcrq0luu5xkidZKjL9pJ+cdU5uu+lTepXs12SFIo3vXL67q+cofYPf3jivKzEaLV9W3m+5H1cmhFOxmSXFmWNG1ShsT1HK/+upv781KShOvfM7so/dNC1GCTZ1wYAAACAXdLdk5pNh3/Y1eaZ+kI2ywgKL16bdra536Q5j1isUflfpK/+ZHfT3xryQvb9rcxKerbLMCuX+xUAAC7giXHAgLFnlusvt16QWH/yuqF640cXaeyZ5dkLKo1Y47Eb4NWba5qtA0cd/7r04afxGnwAAAAAAGDdsg1VGvPwysT6pCfe1PmzV2jZhipby+HvXgAAoDWYGAcM8sNEYqpByPHrAAAAAAAAgJ2WbajS1KfXqTpS3yy9OlKnqU+v0/L3qm0rx43JdwAAEFxMjAMKxrdNl79XnXIQ8nmLdQSjvQEAAAAAALIt1hjXrKUbleovK0fT7ntpU6vLcWvyHQAABBsT48h56b5t+vK7x75t6ofJ0/te2pRxECLJ8+fghuXvVadsbwZQAAAAAAAA5qzdukdVkbq02+NS0mS2WW5NvgMAgOBjYhw5Ld1T1lWROk1/9p3Euh9eSW5kkLF26x4XIvG2aYvWp/x28bRF612Ng6fWAQAAAACA3+064PybCt2YfAcAALmhINsBoBVCIalnz2PL6dJarueaNHUSl/TTl95XXFI8JP2ztJP0xbJSpFVH6/XP0k46pd1JapupvlOlWYnRRPsePBxLG7d0bH3XgcOm87ZlHw/kHe/ZU9WROjW2qJN4SIk+UHVyZ5WHixQyc61YiGnZhio98Md1evqLGL775JsqLy3SS126qW2bfPuv1db0LydjcLN8AAAAwIh096Rm0+EfdrV5pr6QzTKCwovXpp1t7jfHncep7YsSyan+JnV0ua5rdxUV5Fn6W1ni71knKONgRTcVn2Ti7yr0KwAAck4oHo/zmKIJ0WhU4XBYkUhEpaWl2Q4HrVD5SY2+8+u/mzomJKk8XKQ3fnSR8vO8c6Np9FwWTh6hkX1OUawxrjVb9mjn/jp1al+kYb3LPHU+dos1xvXk37bonj+d+LVaR+vIKUd/E6vlP7xHa3/exMEaN6jCsfIBAADgDMaKrUP9AYA/xRrjOn/2ClVH6lK+6tyOv6WZ/bsXAAAIDrvHijwxjpy1c3/6VzClE1fTa9bXbNnjqRvtYb3LVBEuOuEgZFjvMi3bUKVZSzc2ewVVRbhIM8cP9NSEbKrJe0mmJ/RTnW8mVvqFUSf6TayQpFlLN2rswPJAf1EBAAAAALwi1744DtgtPy+kmeMHaurT6xSSmv3N4+iVNHP8wFZdV2b+7gUAAJAJE+PIWZ2Oe9WTWU5OnlphdBCyfGN1yqeVqyN1mvr0Os88rZxqMvvk4jaSpH0HjyTSTjShn+7p7Exa0y9OZM2WE/8mlhe/eAEAAAAAQeTWF8eZfEfQjRtUoXkTByddT+U2XU9uTL4DAIDckJftANAKhw5JQ4c2fQ4dSp2Wap9ck6ZORnx7nHoVhxSSVHikXs8/dYuef+oWFR6pl1KkHb9e3iaeOu90aWZjNJp23Pq4Pidr3sTB6lkcahZ3z+KQ1r9why6+7jI9sPhtxVOc29G0HuMuUDxT3zHSv1p5XGTQOZr+RKX27I40i3HfwSM6FDnQLK06UqfpT1QqMuicpLzjQ4emPd9U7V10pF4vPn2rRnx7nLlrxcT5nnHZVwz1r9279hov364Y06U5FYPb5QMAAABGpLsnNZsOzzv6ReqWY8+jXxz/89rNtvSFZRuq9JV7X1Lx+SPV65ILNemxV3X+7BVatqHK3v4W9L7oxWvTSnsEpZ1SnMe4QRV64+aR2vDiT/T20jv0zLVn640fXdQ0KW7D38qOTr63/LtXebio6UGPPifb8/c4K+l2yuV+BQCAC3hi3M8aG6W1a48tp0truZ5r0tRJSNId/9NfUxa/r/x4XGdXfyRJyovHE/9tmXZ0Pdbj5PR5p0qzEqOF9h03qEJje7ZX/symOBdMOlfn9ipT/sx3JEmff/mQdFJRynMLxeMa+OmH0qep8zZSvtW4j98nLCn01bhC0gnbJP7Ff8PvvZOUd+gE53v8euiL/yadvxEGzjfWGFf+2rXqICnv4hP3r7qSk4yXb1OMadOcjMHN8gEAAAAj0t2Tmk2Hpx3/M1epxpkhSff/aaO+mqJtYw0x5X+RvvrjXTr3zO5NT6mm6AtHJ9+LDtc1K+Po5Pv/feMMjW1lGQlB74tevDattEdQ2inNeeQrrnbvrpckDe/VQTr6BLdNfytL+Xevo9dHba09f4+zkm6nXO5XAAC4gCfGkdPGnlmueRMHq3O48IT7Hv8yJi+/mun42IafdorlWGONx15MtXpzTbN1L7EjqvJwkR759jk25JRs+XvVGvPwSlPHnNuL38QCAAAAAKcY+Zmr6kh9UvqyDVXNxneTnnjz2NPfLRw/+Z4qf0m676VNrSrDCbHGuCo/qdHz6z9V5Sfe/VsAcpddf/cCAAC5iSfGkfOavm16gXRX0/qT1w1VTbyNfvbcW832MzJ5HhTL36vWfS9t0l+/WJ/0xJs6+dSPdPdXemlsViOz33+P66+JY85U/qGDjuQ/bdF6Q5P3fvniBQAAAAD43c796SfF0zn29HfzCfNmT38fl25l8t1sGXZz6zfXAQAAgGzhiXFAyd82/dqXKvSXWy9IpD153dBm65k4+aR1a/MuDxcq3ZTr8enTFq1PGqBXR+o0bdF6U+Udla2nzzOd71ETR/Zq1UT0ic7N6Jna+cULv37D3y9vKQAAAADgb53aF5na38rT32Yn360+YX788UcdP55KNz5smf7iPz7T1KfXJU3mH52U54l1AAAABAFPjANptJwsN2LZhirN/uNbzZ60Dnf8UN8Z1kO9OpaoU/siDetdZmkiNlXe5eHCxLoRP75kgKYsfj9psrjleqaBuFlG4441xpVvsYyjVm+u0b/06KCjv9B95eBu+tnfPs14vpnaItYY15ote7Rzf13Ktkt1blaerH/yuqH6lx4dEm8tWL25RueeWZwyNiMxtfyGf++2cVP9JBvS1aWVJxNOVEdG9wEAAAAQDC3v/4f07KCKcJGq0zzRHVLTF62PWrvV/NPfZiffrZRxVLrx1GVnV2jJO1VJT4CnSs8Lpf9bQEjSrKUbNXZgualxU7pxV7r0jE+s9y41XK7dgjJ+tHIe2Tz34/9OlOnvJF4vI1PZ2axbu8o2e51nmxtxefXcAQBNmBgHbLL8vWpNXfx+8ivPovX6+V8+SqxXhIt059cHqENJ4bEbpE6FGSeF0+X9eZpBcTpjzyzXvOJizf5j89fEl4eLdPdXzpB+nvl4s5PjRuNuOYi3atITbyovJL33xfov//qJTj65vYoKYs32S/V0dsvBUE08onv+tKnZgLy8tDDxJYetu2v18798pLYpXnE3bdF6bTQRd/TQEV0899UTTgqf6LV2R1+717KdjPaTbA0I0/WTqkidbnh6na4/r5fGDCxPO5A4fsCxdXetFq7ZrurosbxaXnPp9rH6ekC7JuL9OnDya9wINvoljHC6n9AP7UE9AsHn9HWebhx12dkV+r/XtqT9IvWPLxmQ+PLyrgPmxt6SNKx32f9n787jo6jvP46/NwQSEshCTEnCGRRREDyIXEK5xGqtSFHiUdRqKVQoAuLVFBURD7CoKP6kthQVbfGoWEERRCmoDQVB8ASpcogSjgSSkAAJSfb3R8yaTXY3u8ns7OzO6/l45MHOzsx+P9/5fr7DfPe7OxvU5HtDypB83349t/CEnnl/V53tfT3v74vZrh/227jrsPqfVveLA97acPWX+30ed1+T9X95f1ed8Wz1N9b//MszdPEPzwUyXjVqfGvWZH24+oG/cbCRdffXHr7yx+eH532UbUYZRgnnh0CM/MkEf+dXb/083D/L4K/uF3VPM6QPGnl8uQ4GEGp2Pc/YcmL8+PHjmjJlilatWqWKigr96le/0pw5c+RwRGCDp6TU/5y3bewmkGPS0GOZkiKXqm5p5vphCJ3f3PdFbG7hCU38xxaP5zo3d2lV62Q1a1Lr1w3qeW3XD8sxDoeSan7j2k/c1b+pfvKJU1Tpcum5m3rr/LM6qMnxYyptlazi0nL3tt7qkd88SS3iYuUevjfgmNSMe+Nn+zXhX1WTorXLq7ncOqGp4mIrfMZUrdLluVx47KTKyk7qmLO1mjgcVfXNSJae+jHu6on5f/6w343PfqTjzep+ur/2hxy8lV89iD+S4FSly+V1m5rPNW/WxP075DW3qR78L7iul99J7+rt/u9XvTTrLd+33asvT7wdg4Z+Y9snL3kZSN/5239262//2e11IOFtwFGbtz5XW+3jHahABjxGbWNFkRo3oht5iUCEOk/IQ2NwHCNP1Iy1fY2hg30e9TLjfOxrHPWX93dp/KDOeuejnR7jkLTqSZLOSe62/UkLzw9X+xrzn2x9ipo2qcr3JjEOzRjRXRNe/FiOWvt4TL4/1fAyat9+3d97EUbwdnt4b23YKqGpCo6drLOtr0n5/T6el34cY0979RO97228WqOdasZkxPi2vnH4X644Uxf56/8BnjPC2Q98jYMbVfcg2kOSz/xpXut9In9lm1GGr/oFy6y8akjZwbwn4uu1/PXzhrzvYhR/db/5xY/rnLca0geNPr5cBwMIJTufZxwul8vbPEpUmzhxosrKyvTnP/9ZJSUlGj58uG644Qbdcsst9e5bVFQkp9OpwsJCJSWF7zZOsJb13+Tr2r/+t8H7Vw+KvV0gBfraS8b18/rJ7WAYWVagr5Wc2EyHS8p8rm+V0FT/d20v9fuhvI27Dmt/4XHNemub3/1qqvokfrw+vGtYnU88+bpoNUJyYlMdKTnp9bUdklKT4iQ5tL/I3zcI4rXujqEa/Kd/+5z8dajqOOYHcDy8tZ2vY+AvL40STN+pHY/RbecvT7wJ5LhJMmQbK16MhDNvAF/ISwQi1HlCHhojEo8jY0XG2ghOqPt5RaVLA+es8TuOqh5vbd5zpN67Ow2cs0b7C0/4HN/5G3MG8qZjQ8po7HsRwao9ngzleLo+vvLEqLwKNH8CHT/6YpV+ULMeRtbdX/0akjfeyjajDKOYlVehLru+1/IllPXzpyHxhvOcEYnXwQAiS6SdZ4weK8bUv0l0KS4u1vPPP69HHnlEsbGxcjqdys7O1qJFi8IdGiKYt09NB6P6BDRz+ZeqqHX/skBfu7ExSD/e6s3X5ZlDVQP4Pp2TDYunvsntgmMnFRPjUJMf/vqfdorSnM0DnhSXPG/7VlPtT9cbbdS57STV/Q336uVr+3T0OSku/Rj3C+t31/tbc4FMikt128XfMfCXl0YJJm9rxlNWXml42/nKE28COW73LftC9y2r/9jet+yLsB3/hgp33gDekJcIRKjzhDw0BscxMjHWRjDM6Ocbd9X/m925hSe0ec8R9T/tFI08t536n3aK1wmL6m9/S77HdzNGdPe67yU90vXhXcO0ZFw/PXHNuVoyrp8+vGtYnTcbG1KGEe8DBMLbewGhHk/Xx1ueGJlXgeZPIONHX6zUD2rWw6i6B1K/YNUu24wyjGRGXplRdn2vZUQZRmpIvOE6Z3AdDCDUOM/YcGJ88+bN6ty5s5KTf7yY79u3rz7//HNVVFTU2b60tFRFRUUef0BtbVrWve12sHxdIAX62kbE0JjBfijiqVZ7sN/QwX/t/Rp6IR+o4d3TtOC6Xkpzeh6LNGe8FlzXSxkpiQG9zp7DxwyLqXa7hHNQ5i2e+gT6YYHGCCS/Ajlu+4tKA/rgQ83fOve1jdmDxvqEO28Ab8hLBCLUeUIeGoPjGJkYayMYZvRzoz9kfkmPdL/jO3/fqqn+kLe/yfeGlGHkuNsXX+8FhHo8HYjaeWJkXpnxJQWr9gOj6h7KHKku24wywvGaVi+7sfGZ9aGexpYXjnMG18EAQo3zjA1/Yzw3N1epqakez7Vp00bl5eUqLCz0GMRL0sMPP6yZM2eaGWLgjh+Xfv7zqsdvvy01b173OanuNnYTyDFp6LH8YZt+kjKG3ak9x1xqdrJUz786Q5L066yZKm3q+Tth3sTV2OfQL1+XTjsloNeWpOdfnaFmsTE65571htT3EknPzF2kh1Zs1+yFd7nLSk5xauZFnfWzSdc2+phUxx3bJEZjrpih0qZxHseg5jaS5Lj+bY+6DTl+UnEDb6t3v+rjX71Nt38nSWvfdcd9enGp4gbf4fV1Amm32m1XvV/8yVL94/WZOu+/reV4+21dNLm/ioddpJMVlfrm+Vd1frd2alJ6QoVDhuul3CKfcVfrlJwQUCy+bt1eHaO3PAn0GDR60OIjLxvad4z8sEBtgby5FCmDuFAJ52Ae8IW8RCBCnSfkoTE4jpEpasba3sZKDXkefpnRzwOdNE5r6pKGDKlaqKdtL+mRros6O+uO72Ic/nMhiPwJpozqu77tLzzRoPcivIlxSDW/IJTm47cmzT4H+xqvxp0s1elXXya1iFPe7IX1bi8FFnsg+RN3slRDfneV1Lxpg9q8Zrz+mNEPam7XqLr7qF9D3nPx1+bVZZtRhpHnfDPyyldcRn7xprEfyjHjQz1GlmfUOSOQ7bgOBhBqnGdsODFeXl6u2j+rXv3pdYej7id2s7OzNW3aNPdyUVGROnToENogA1VZKa1b9+NjX8/VXrabQI5JQ4/lD9s4JE1/5G8av3S7mrhc6rf3c0lSjKv2FKV3MTX22ZDYLODXdkjuZfeNLgyo78+6perCM9qoyYyq11584/k6/6wOanL8mCHHpGbcbZOaafdxz2NQfdyqlys6tvJ4baektpdm17tf9bK7/L2ecadIihnkqtMGgbabt/0cP/zba9en0q6q8ppIcm7MkSSlZLT+4Z2GSjk35qjfD/G5vMRd/ftD1/fP0MIPd9X7W3P3/KKbfv+PLXV+R6vm8a+dJ4Eeg0YPWnzkZUP7TqAfFghG9XEM5KcCIm0QZzQz72QBBIq8RCBCnSfkoTE4jpEpasba3q5bG/I8/DKjn9ecNPY3jjq/Y6ug2raJXHXHd36297uukWVU3/VtwosfN+i9iJqqe+lT1/ZS68Rmfn9zXTL/HOxrvBrjcill83+rYqp+P8XP9lJgsQeSP22TmrnbqSFtXjNef8zoBzXHwY2qu4/6NeQ9F2/71C7bjDKMPOebkVe+4mpILjS0Hr4EU4aRGhpvNaPOGYHUnetgAKHGecaGt1JPTk5WXl6ex3OHDh1SfHy8nE5nne3j4uKUlJTk8Qd4c9FZVbfNTnU27FPZ1c7PqHuB5Ou1G1uWPzUHvn1P9X2rN38CifuPP+8myfet22vHUt9+tdW3Ps0ZV+82wUhzxuuJa84Nej9/t65vFhsT0C3uLz27rdfb7tWXJ/6OQTC/K99QwfSd6niu75+hdGe8YW0X7E8FVA94/B23tKQ4pSX53ybdGa+0pPAe/4YIpP5WjBvRjbxEIEKdJ+ShMTiOkYmxNoJhRj838qfCrKz69uu1x1Ppznj9blBnpdcaH/p6vvp27ZeenR7Qbd/ra8NgOH748xaXv+apmmj6sd7nZxiXV4HkT/X7Eg1lZLy+NKQfGFX3+uoXLG9lm1GGkczIq8aUHeg50d9r+RLO825D4q3e1shzRiB15zoYQKhxnrHhxHivXr301Vdf6ciRI+7ncnJy1LdvX8XE2O5wwGCX9EjXu9OGuJcnDe2itKT6P1lT3ySwt9d+7qbeHstWVV/cDZ3097Vf7cNX30R1oBPs3lQP3qs9d1NvfXjXMF10VlpQr/PENefWqUft35AL9LfmLumRrg/vGqYl4/rpiWvO1ZJx/erNk/o+nGDGoKV2ntQXj78PCzREIL8LWFMgA577Lj9L911e/6DovsvPqncbq71ZZ5c3GRFZyEsEItR5Qh4ag+MYmRhrIxhm9fPG/C54JPE27v7wrmHKvrR7nfGhv+eDOR6BtGGrhKYez9c3Ke8trqeu7VVn7F2zjJqTiEbnVX35E+zYvzYr9wMj6h5I/fytc9bKH29lm1GG0UKdV40pO5hzgK/Xqq+fh+u86yve6vOUGeeMQOrOdTCAUOM8Izlcte91ZgMjR45U27ZtNX/+fBUUFGjYsGG6//779ctf/rLefYuKiuR0OlVYWBj+T7SXlEgtWlQ9Li6WEhPrPifV3cZuAjkmDT2WAexX0TxBG3cddt+G7EhJmWa99aVyC3/8jYbOzV36930jQhNTKOtr4GtXHC1Wk6SWkqQNn+7R+RnJ7mV/r117v/M6tlazVkk/vk71LeD9lL9yV5HmvLbZ3Qbdbv2nWv2kle75RXf3LeR25x3Tko3fan/Rj+2W7ozX/Rdm6KK+XRp9nCoqXZ71P6uD1/98KipdHvnk67Z2HgJoE1/HwNtvyTVIkMdk9Yavde97uz36SbqX37Zb+XmuZi7/ss521/TuqIyUBJ99rvY2AR1HL3yVXzNOo7axokiNG9GNvEQgQp0n5KExIu04WmqsGCZRMdb2du3ckOcRELP6ud9xlFFt7i8XwllGiPlrw4u6p3k97sGOa1d+nut7vNo5qU69/W7fgLzyGa9BbW6JfhDsPkHWz1d7SPKdP51aen+fJExl+KpfQ4U6rxpUtoH1MLIMI3mLa/WX+w3tg0bUPdKugwFEnkg6zxg9VrTlxHheXp7Gjh2rnJwcJSYm6vbbb9ekSZMC2tcyg3WJifFAhXli3Nsxr3OB1CYuoEngcE9eR/Nr15mY9zIx7fXCtvaku5H1NUqAeRrIMTAsBinoD5X4GkgEMuAI5YDMqPKtOmisT6TGjehGXiIQoc4T8tAYkXQcLTVWDJOoGGszMW66sPdzJsYbzYw29Dle9VHvkI5vqxnY5mHvB8EKtn5+2sOIyXezyjCln5kwMY66rNgHrRgTgOgSKecZo8eKsQbEFHFSUlL0xhtvhDsM2FiTGIf6n3bKj0+UlIQvGEiq+5vq3n7IrE67RZlAjoGZAj3egWwXyrYzqvxIza9IjRvRjbxEIEKdJ+ShMTiOkYWxNhqCfh75zGjDYMerVhvf1ifa+4G/9jCq7maUgehlxRyxYkwAootdzzO2nBiPKgkJ9T/nbRu7CeSYNPRYBvpcfUIZE6/d8NcORChjMkooc7ehMZhdPgAAABAIX9ekwT6PyGFUm/vLhXCWES2s2DeNbPNIY0Z7REsZwbJzXgEAEGK2vJV6Y1jm9m4AAAAAAMtgrNg4HD8AAAAAQG1GjxVjDIgJAAAAAAAAAAAAAADLYmIcAAAAAAAAAAAAABDVmBiPZCdOSL/4RdXfiRPen/O2jd0EckwaeiwDfS7YGI2Middu+Gsb1Xbh7quhzN2GxmB2+QAAAEAgfF2TBvs8IodRbe4vF8JZRrSwYt80ss0jjRntES1lBMvOeQUAgAn4jfEgWep3z0pKpBYtqh4XF0uJiXWfk+puYzeBHJOGHstA9gvkmAf6Og2JKZT1jfbXDkQoYzJKQ/MrlDFI5pYPAAAQYpYaK0Ygyxw/X9ekwT6PyGFUm/vLhXCWES2s2DeNbPNIY0Z7REsZwbJzXgEA4AW/MQ4AAAAAAAAAAAAAQBCYGAcAAAAAAAAAAAAARDUmxgEAAAAAAAAAAAAAUY2JcQAAAAAAAAAAAABAVGNiHAAAAAAAAAAAAAAQ1WLDHUCkcblckqSioqIwRyKppOTHx0VFUkVF3edqqt7GbgI5Jg09loHsF8gxD/R1GhJTQ+PmtRWQUMZklIbmVyhjqMmM8gEAAEKseoxYPWZEcCwz1vZ1TRrs84gcRrW5v1wIZxnRwop908g2jzRmtEe0lBEsO+cVAABeGD3WdrgYtQflu+++U4cOHcIdBgAAAADAgvbu3av27duHO4yIw1gbAAAAAOCLUWNtJsaDVFlZqX379qlly5ZyOBzhDseroqIidejQQXv37lVSUlK4w0Ej0JbRg7aMHrRl9KAtowvtGT1oy+hht7Z0uVw6evSo2rZtq5gYfrUsWIy1YUW0uf3Q5vZDm9sPbW4/tLn90ObRxeixNrdSD1JMTEzEfPo/KSmJTh8laMvoQVtGD9oyetCW0YX2jB60ZfSwU1s6nc5whxCxGGvDymhz+6HN7Yc2tx/a3H5oc/uhzaOHkWNtPsYOAAAAAAAAAAAAAIhqTIwDAAAAAAAAAAAAAKIaE+NRKC4uTjNmzFBcXFy4Q0Ej0ZbRg7aMHrRl9KAtowvtGT1oy+hBWyLakNP2Q5vbD21uP7S5/dDm9kOb2w9tDn8cLpfLFe4gAAAAAAAAAAAAAAAIFb4xDgAAAAAAAAAAAACIakyMAwAAAAAAAAAAAACiGhPjAAAAAAAAAAAAAICoxsQ4AAAAAAAAAAAAACCqMTEeZY4fP67x48erU6dOat++ve688065XK5wh4UArFmzRgMGDFCXLl102mmnaf78+e51PXr0UGpqqjIyMpSRkaH+/fuHMVLUZ9KkSXI6ne72ysjI0J49eyRJW7ZsUb9+/dSpUyd1795dq1evDnO08OXtt9/2aMOMjAylpqaqZcuWkqQWLVqoXbt27nVZWVlhjhjeuFwuLV68uM55s76+OG/ePHXp0kXt2rXTqFGjlJ+fb2bY8MJbW548eVL333+/evbsqQ4dOuinP/2ptm7d6l6/adMmNWnSxKMfP/roo2GIHjX56pf1nVfpl9bjrS3Hjh1b5//PxMRE3XLLLZKkf/7zn4qLi/NY//LLL4erCkDAGGtHP39j8t27d+uiiy5Sp06d1KVLF7344othjBRGmzBhgs4880z3MuP26LZx40YNGjRInTp1Utu2bbV06VJJtHu0+v777zVixAi1a9dOp556qmbNmuVeR5tHD977sZ+GvEckSUuWLFG3bt3Uvn17DR06VLt27TI5cliCC1FlwoQJrrFjx7pOnjzpKigocJ1//vmuJ598MtxhIQCTJ092bd++3eVyuVzffPONq127dq63337b5XK5XGeddZZrzZo14QwPQfj973/vuvfee+s8X1RU5GrXrp1r9erVLpfL5Vq7dq3L6XS6cnNzzQ4RDfS73/3ONX36dJfL5XIlJia6du7cGeaI4M/bb7/t6tGjh+u0005znXHGGe7n6+uLL7/8suu8885z5efnu8rLy10333yz64orrghLHVDFV1t+/vnnrnvuucdVXFzscrlcrj//+c+u9u3bu8rKylwul8v10UcfuTp27BiWmOGdr7Z0ufyfV+mX1uOvLWs6evSoKy0tzX2d++qrr7oGDRpkVpiAYRhrRz9fY/Ly8nJXjx49XM8++6zL5XK5vvjiC1fr1q1dW7ZsCV+wMMy3337rSkhIcP9fxrg9um3bts2Vnp7ubt/S0lLXgQMHaPcoNmzYMNedd97pqqysdOXn57vOOecc17PPPkubRxHe+7Gfhr5HlJOT48rIyHDt2bPH5XK5XA8++KArMzPT/Aog7BwuFx9xjhbFxcVKTU3V3r17lZycLElaunSpZs2apS1btoQ5OgRr2rRpio2N1SOPPKIePXrohRde0HnnnRfusBCASZMm6bTTTtOtt97q8fxf/vIXvf3223r99dfdz11++eW68MILNWXKFLPDRJB27typ/v37a8eOHXI6nWrRooX27t2r1q1bhzs0+PDaa6+pefPmSkhI0M0336zt27dLqr8vXnDBBbrrrrs0cuRISVJeXp7S09N14MAB9/+vMJevtvQmOTlZH374obp3765NmzZp7Nix+uSTT0yMFv74a0t/51X6pfUE2i9nzZqlXbt2adGiRZKqvjH+wgsv6I033jAzXKBRGGvbU/WYfPjw4brrrrs82nry5Mlq0qSJHn/88TBGCCOMHj1aaWlpevfdd7V9+3bG7VHuyiuv1Pnnn6/s7GyP52n36JWcnKz3339fPXr0kCTdfffdKigo0Nlnn02bRwne+7Gfhr5H9Ktf/Up9+/Z19/Hy8nKlpqZqzZo1Ouecc8wKHxbArdSjyObNm9W5c2ePE3ffvn31+eefq6KiIoyRoSEOHTokp9PpXm7VqlX4gkHQvLXX+vXrNWDAAI/n+vbtW+eWLrCm2bNn6/e//727X8bExHj0UVjPlVdeqUsvvbTO8/76Ynl5uTZt2uSxPiUlRRkZGfrss89CHjO889WWtR07dkzHjh3j/08L89eWvs6r9EtrCqRfFhcXa/78+brnnns8nqdfItIw1ran6jE547jo9dZbbyk/P1+jR492P0d7R68TJ07ozTff1E033VRnHe0evUaPHq2nnnpKZWVl2rNnj9544w2NHj2aNo8ivPdjPw19j6h2TsTGxqpXr170extiYjyK5ObmKjU11eO5Nm3aqLy8XIWFhWGKCg2xceNGvfnmm/rVr34lSXI4HBoyZIhOPfVUXXXVVdqxY0eYI0R9srOz1bFjRw0dOlTvvPOOJN99lN+vsb5Dhw7p5Zdf1s033+x+zuFw6LTTTlPXrl01duxY7du3L4wRIhj++mJeXp4qKiqUkpLidT2sbfr06RoyZIjatWvnfm7Tpk3q1KmTzj77bM2cOVOlpaVhjBD++Dqv0i8j17PPPquBAweqc+fOHs//61//UseOHZWZman58+fzO82wPMba9lNzTM44Ljrl5+dr8uTJWrBggcfztHf02rFjh5o3b65///vfOvvss3Xqqafqd7/7nYqKimj3KPbggw9q5cqVat26tTp37qyhQ4dqyJAhtLkN8N4Par9HRL9HNSbGo0h5eXmdN5WqP73ucDjCERIa4KWXXtLll1+u559/3v0m4ieffKI9e/boiy++0Hnnnafhw4eruLg4zJHClyeffFL79+/Xrl27dMcdd+iqq67S5s2bffZR+qf1vfDCCxo1apTatGnjfu7IkSPatWuXPvroIyUkJGjEiBG8sR8h/PXF8vJySaKvRpiSkhL9+te/1rp16/TCCy+4n8/MzFRJSYn7mwFr1qypc9tEWIev8yr9MnItXLhQkydP9njuyiuvVGFhob799ls999xz+vOf/6z58+eHKUIgMIy17aX2mJxxXPRxuVwaO3aspk6dqjPPPNNjHe0dvY4ePer+lujGjRv1ySef6NChQ5oyZQrtHqUqKip06aWXaurUqSosLNT333+vTz75RE888QRtbgO892Nfvt4jot+jGhPjUSQ5OVl5eXkezx06dEjx8fHc7jcCVFRUaOLEiZo5c6ZWrVqlyy+/3L0uJqaqqzZv3lzZ2dlKTEzUhg0bwhUq6lHdXk2aNNGll16qa6+9Vv/617989tG0tLRwhIkgPPvssxozZozHc9Xt7HQ69cQTT+irr77Szp07wxEeguSvL7Zu3Voul0tHjhzxuh7W880336h3795q2rSpPvzwQ/3kJz9xr6s5uOncubMeeeQRvfrqq+EIEwHwdV6lX0amTZs2KT8/X4MHD/Z4vma/7Nmzp+699176JSyPsbY9+BqTM46LPrNnz9bJkyc1adKkOuto7+iVkpKikydPavbs2YqPj1fLli113333admyZbR7lFqzZo3Kyso0depUxcbGKj09XY899pgeeeQR2twGeO/Hnvy9R0S/RzUmxqNIr1699NVXX3mc0HNyctS3b1/3G42wrqlTp2rnzp3atGmTzjnnHL/blpeXq1mzZiZFhsaqbq/MzEzl5OR4rMvJyVH//v3DFBkCsXXrVu3bt09Dhw71uU1lZaUqKyvplxHCX19MTEzUGWec4bE+NzdXBw4cqPfcDPMVFBRo2LBhuvXWW7Vw4UIlJCT43Z7/PyNHzfMq/TIyvfjii7riiivq/fQ9/RKRgLG2PfgakzOOiz5PPvmkPvjgA7Vu3VqtWrXSZZddpv/9739q1aoV7R3FOnXqpGbNmunEiRPu52JiYhQfH0+7R6mysjLFxsZ6PNe0aVOVlZXR5jbAez/2U997RLVzoqysTJs3b1a/fv3MDhVhxgguiqSlpemSSy7RH//4R5WXlysvL08PPvigpk6dGu7QUI8TJ05owYIFevbZZ5WYmOix7uDBg/r4448lVX2C/aGHHlJMTIx69+4djlARgFWrVqmyslKS9M477+i1117TlVdeqTFjxui9997TmjVrJEkrVqzQtm3blJWVFc5wUY+VK1dq0KBBHoOpb775Rjt27JAklZaWasqUKerdu7c6dOgQrjARhPr64vjx4zVz5kwVFBSorKxM2dnZGjduXL2TrjDfq6++qjPPPFPjxo3zun7Dhg06fPiwJGn//v266667dN1115kZIgJU33mVfhl5Vq5cqQsvvLDO8++//75KSkokSV9//bVmzZpFv4TlMdaOfv7G5CNGjNC+ffv04osvSqq6I8Ybb7yh3/72t+EIFQbIzc1VUVGRCgoKVFBQoDfffFOnn366CgoKGLdHsfj4eN1www267bbbVF5ertLSUs2YMUPXXXcd7R6lBg4cqP3792vJkiWSpOLiYk2fPl2jR4+mzW2A937sp773iMaPH69HH31U3333nSoqKjRr1iwNHTrU/XO2sI/Y+jdBJPnb3/6msWPHKj09XYmJibr99tv1y1/+MtxhoR47d+5UZWVlnU8lnnHGGfrrX/+qG264Qfn5+YqPj1fv3r21atUqxcfHhyla1Ofxxx/X9ddfr4SEBHXs2FGvv/66unfvLqnq9+omTpyow4cPq0uXLlq+fHmdN15gLRs2bFCvXr08njt8+LCuvfZaHT9+XHFxcbrwwgv1z3/+M0wRIljt27f32xenTJmi77//Xl27dlVsbKxGjhyp2bNnhzlqePO///1P69evV0ZGhsfz06dP17hx4/Tpp59q1KhRio2NVfPmzfXrX/9ad955Z3iChV/1nVfpl5GloKBAX331VZ3/P6WqW1pmZWUpLi5OSUlJmjZtmm666aYwRAkEh7F2dPM3Jl+1apWWL1+ucePGadq0aUpLS9M//vEPtW/fPkzRIpTqGysgss2ZM0cTJkxQu3bt1LJlS1155ZWaNWuWmjVrRrtHIafTqVWrVmnatGnKzs5WTEyMRo4cqQcffFAJCQm0eZTjvR/7qe89olGjRunrr79Wnz59VFlZqSFDhmjRokXhCRZh5XDV/rV5AAAAAAAAAAAAAACiCLdSBwAAAAAAAAAAAABENSbGAQAAAAAAAAAAAABRjYlxAAAAAAAAAAAAAEBUY2IcAAAAAAAAAAAAABDVmBgHAAAAAAAAAAAAAEQ1JsYBAAAAAAAAAAAAAFGNiXEAAKLYH//4Rz377LN1nl+7dq0GDhwY1GstXLhQN954Y9Ax3H333brvvvuC2ufdd9/VkCFDgi4LAAAAAAAzMN4GACDyMDEOAECU2b17t77++mt9/fXX2rt3r/bs2eNe/v777+vdf8iQIVq7dm3Q5WZkZGj37t0BbXvrrbcqJSXF48/hcGjHjh1BlwsAAAAAgBkYbwMAENliwx0AAAAw1s0336y8vDz38rZt2/Tmm29KkjIzM/XMM8+EKzS3xx9/XI8//rh7effu3crMzNRpp50WxqgAAAAAAPCN8TYAAJGNiXEAAKLMypUrJVXdvu2jjz5Ss2bNNHjwYJ177rkqLy9XcXGxjh8/7nP/o0ePqqioKOhyG7qfJC1YsEDXXnutmjRp0qD9AQAAAAAINcbbAABENibGAQCIQjfeeKO++eYbXXXVVSotLdWYMWN0ww03qGPHjrrnnnt0/Phxde7c2eu+33zzTdC3WCsoKNDhw4e1Y8cOnX322UHt+9///lfPPvusPv300zpx3H777TrzzDP129/+NqjXBAAAAAAgFBhvAwAQuZgYBwAgynz99dd67733tHPnTjVt2lRS1cC9c+fOOnz4sK699lqtXbtWd999d519161bp6ZNm+qll17S7bffHnCZb7zxhlJSUrRkyRKNHj064P0+/PBDXXXVVXrxxReVlpbmsS4hIUFnnnmmOnToEPDrAQAAAAAQKoy3AQCIbDHhDgAAABirRYsWOnHihMdt1g4ePKj4+HiVlJTo66+/1vfff+913+rfInO5XFqxYkVA5VVWVurJJ5/UkiVL9NFHH+mzzz6rd5+TJ0/qySef1KhRo7Ro0SL97Gc/q7NNenq6fvvb3+riiy8OKA4AAAAAAEKJ8TYAAJGNb4wDABBl0tLSdO+996p3794aOnSoysrK9MEHH+hvf/ub1q1bpz/96U8qLCyU0+n02O+FF15QXl6exowZo+7du2vkyJH673//q3bt2vkt78EHH9SZZ56p4cOH6//+7/909dVXa8OGDWrZsqXX7Xfv3q0hQ4aoc+fOysnJ0emnn25Y3QEAAAAACBXG2wAARDYmxgEAiEK33HKLrrnmGn3++edq2rSpnn76affAeeTIkXVu7bZ8+XLdd999Wrt2rRwOh3r16qVZs2bppz/9qf71r3/5/B2zv/zlL3rllVf04YcfSpJGjBihzZs3a9CgQXrjjTfUsWPHOvtkZGRo+fLl6tGjhyorK0NQewAAAAAAQoPxNgAAkYtbqQMAEKXWrl2rkydPauDAgXU+TR4fH6/09HRJUmFhoe6//369/vrrHr8vduONN2r69On6+OOPvb7+rl27tHDhQr311lsen4a/7777dMUVV2j79u0+Y+vZs6fWrVunwYMHe13ftm1bXXLJJQHXFQAAAAAAszDeBgAgMvGNcQAAotSGDRuUlpbm9ffE+vXrp1dffVWS5HQ69dFHH3l9jbFjx/p8/c6dO2vjxo1e191zzz0NiPhH3bt3V/fu3Rv1GgAAAAAAhALjbQAAIhPfGAcAAAAAAAAAAAAARDW+MQ4AQBS7//77NXfuXJ/rt2zZ4r7FWzj897//VatWrXyu//LLL9W2bVvzAgIAAAAAIACMtwEAiDwOl8vlCncQAADA+g4fPqzi4mJ17NgxqP32798vSUpLSwtFWAAAAAAARDTG2wAAmIOJcQAAAAAAAAAAAABAVOM3xgEAAAAAAAAAAAAAUY2JcQAAAAAAAAAAAABAVGNiHAAAAAAAAAAAAAAQ1ZgYBwAAAAAAAAAAAABENSbGAQAAAAAAAAAAAABRjYlxAAAAAAAAAAAAAEBUY2IcAAAAAAAAAAAAABDVmBgHAAAAAAAAAAAAAEQ1JsYBAAAAAAAAAAAAAFGNiXEAAAAAAAAAAAAAQFRjYhwAAAAAAAAAAAAAENWYGAcAAAAAAAAAAAAARDUmxgEAAAAAAAAAAAAAUY2JcQAAAAAAAAAAAABAVGNiHAAAk0yZMkXnn39+uMMAAAAAACCqMN4GAACBYGIcAACTtGvXTqeddlrQ++Xm5mrhwoUhiMg6MjIy5HA4PP6GDBnisU1ZWZn+8Ic/qG3btmrevLkGDhyozZs3e2zz1ltvaeDAgWrdurVat26tX/ziF/r88889ttm2bZtGjRqltLQ0JSYm6vzzz9eyZctCXUUAAAAAQIgw3vbNzPF2bb/5zW/kcDhUUFBgcK0AAGgYh8vlcoU7CAAA4Nu8efM0b9487d69O9yhhExGRoauv/56jR071v1cfHy80tLS3Mu/+c1v9J///EdPPfWU0tLS9NBDD2nVqlX64osvlJ6eLkl64IEHlJGRoXPPPVeFhYWaNWuWPvnkE3311VdKSkqSJL322mvatWuXhg4dqiZNmuiFF17QE088oQ8++ED9+/c3t+IAAAAAgLBhvF3FqPF2TTt27FD37t1VUVGhI0eOqFWrViGvKwAA9YkNdwAAAMAclZWV7k+HW9EZZ5yhjIwMr+u2bdum5557Tps3b9Z5550nSXr++ed1+umna8GCBbr//vslSXfffbfHfs8995zS09O1efNmDR06VJJ05ZVXemxz7rnn6q233tLKlSuZGAcAAAAABI3x9tA6rztp0iRdfPHFWrFihbGVAQCgEbiVOgAAJpk6darH7cruu+8+nXvuufr44491wQUXKCEhQT179tS7777r3iYjI0O33nqr9uzZU2eQXVRUpIkTJ+onP/mJEhIS9POf/1zffPONe/3atWvlcDj0ySefqH///mratKm++uorvzFW7/P111/rqquuUsuWLZWRkaFHH320zrZbt27ViBEj1KpVK8XHx+v888/XG2+84V5fUlKijIwMPfHEEwEdn9TUVJ/rli1bpm7durkH6ZLUrFkz/fKXv9Tq1at97ldRUVHva1dvV982AAAAAABrYrztn9nj7cWLFys3N1e33nprQPEBAGAWJsYBAAijvLw8TZgwQdOnT9eHH36o008/XaNGjVJ+fr4k6cMPP9Q999yjdu3aadeuXdq1a5ckqby8XJdeeqnWrVunv//971q3bp1iY2P1i1/8wj04rXbbbbdp2rRp2rx5s/sWaPX59a9/rQsvvFA5OTm66aabdPvtt2vVqlXu9R9//LEGDBigpKQkLV++XB988IGGDBmiK664Qq+99pokKTY2Vh06dNApp5wSUJmjR49WUlKSevTooUceecSjHp9//rl69uxZZ5/u3bvr66+/rvP8yZMn9cknn+jGG2/U2LFj1b179zrbVFZWau/evZo6daoSExN1ww03BBQnAAAAAMD6GG//yMzx9u7du3XrrbfqmWeeUWwsN6wFAFgL/zMBABBG+/bt04oVK3T22WdLkhYuXKj09HS9/fbbuu6669S+fXslJycrNjbW47ZnS5Ys0ccff6xt27apU6dOkqR//OMf6tChg15//XWNHj3ave2ll16qrKysoOK65ppr9Lvf/U6S1LNnT7355pt69dVXdfHFF0uS7rjjDv30pz/V3//+d/c+vXv3VkFBgbKzs3XllVcqLi5OH3zwQUDl/f3vf1fz5s1VWlqqtWvX6v7779c333yjZ555RpJ06NAhnXbaaXX2S05OVmFhocdzaWlpOnjwoFwul8aNG6d58+bV2e+qq67S0qVLVVFRoYEDB+r1119XixYtAooVAAAAAGB9jLermDneLi8v17XXXqtJkybpggsu0Nq1awM9LAAAmIJvjAMAEEbt27d3D9KlqoFnhw4dtHfvXr/7vf322xo+fLh7kC5JLVu21LnnnqtPPvnEY9uf//znQcf1i1/8wmP5nHPOccd04sQJrVu3TmPHjq2z35gxY/S///1Pubm5QZU3YMAA9erVS/3791d2drbmz5+vhQsXat++fZKqBtcxMXUvW7z9htsHH3ygjz76SC+//LJ27NihXr166eDBgx7bPP744/r444/19ttvq2vXrjrvvPP0/vvvBxUzAAAAAMC6GG9XMXO8PW3aNDVr1kz33ntvUDECAGAWJsYBAAij5OTkOs+1aNFCpaWlfvc7dOiQVqxYofj4eI+/Dz74wD24rdaQ386uHVfNmPLz81VRUaEOHTrU2a/61nFHjhwJusyaRo4cqcrKSn366aeSpKSkpDqfVJekgoKCOreOO/3005WZmamrrrpKq1evVmxsrB5++GGPbdq1a6ezzz5bl1xyif72t7/p6quv1pQpUxoVMwAAAADAOhhvexeq8fZf//pXvfLKK1qyZImaNGnSqBgBAAgVbqUOAEAEatWqlUaMGFFnwleSnE6nx7K3T343htPplMPh0Pfff19n3f79+yVJP/nJTxpVRllZmSQpLi5OktS1a1etWbOmznbbtm1Tjx49fL5O06ZN1bdvX23fvt1veQMHDtTixYsbETEAAAAAIBow3q4S7Hj7oYce0oEDB9SuXbs627Zu3Vq//vWv9dxzzzUqdgAAGotvjAMAYHFNmzat84n2gQMH6tNPP1Xnzp115plnevxVf4o8VFq0aKF+/fpp0aJFddYtWbJEvXr1avRA/aWXXlLz5s3Vq1cvSdLFF1+szZs36+uvv3Zvc/LkSb3++usaOXKkJMnlctV5nYqKCm3evFldu3Z1P1dZWVlnu40bN3psAwAAAACIfoy3jRtvv/XWW9qyZYvH31//+ldJ0vvvv6/777+/UXEDAGAEJsYBALC4rl27av/+/frnP/+p//73v5Kkm266SeXl5brsssv03nvv6csvv9SyZcs0YsQIr7dAM9ojjzyi1atX67rrrtN//vMfbdq0SXfeeacWL16sxx9/XFLVp9CHDx+ul156ye9rvf3225oyZYo++OADffLJJ3r44Yf1hz/8Qffcc4/70/hDhw7VwIEDNXr0aL3//vv69NNPdcMNN6hZs2bu317bs2ePhg0bpqVLl+rLL7/U2rVrdeWVV2rfvn267bbb3OX97Gc/08KFC7V161Zt2rRJ2dnZeuaZZ/TQQw+F6GgBAAAAAKyI8bZx4+3u3bvr3HPP9fjr0qWLJKlnz57q2LFjqA4ZAAAB41bqAABY3PDhwzV27FjddNNNSk5O1p49e5SUlKR169bp9ttv1xVXXCGXy6UuXbpo7NixatmyZchjGjhwoNauXau7775bP/vZz+RwONSvXz+tWbNG/fv3l1T1CfOvvvpKBw4c8PtaHTt21MaNG/Xcc8/pxIkT6tatm/785z/rxhtv9Nhu6dKlmjJlikaMGCGXy6WLL75Y7733nuLj4yVV3U7utNNO09SpU3Xw4EG1a9dOw4cP19atW9W2bVv36/zsZz/T3Llz9e2338rpdOr8889XTk6Ozj//fGMPEgAAAADA0hhvVzFqvA0AgNU5XN7ugwIAAAAAAAAAAAAAQJTgVuoAANjIz372M8XHx3v9e+GFF8IdHgAAAAAAEYnxNgAA1sc3xgEAsJFvv/1Wx44d87ouPT3d/RtjAAAAAAAgcIy3AQCwPibGAQAAAAAAAAAAAABRjVupAwAAAAAAAAAAAACiGhPjAAAAAADYxPfff68RI0aoXbt2OvXUUzVr1iz3ui1btqhfv37q1KmTunfvrtWrV3vsO2/ePHXp0kXt2rXTqFGjlJ+f716Xn5+vrKwsdezYUZ06ddKjjz5qWp0AAAAAAAgEE+MAAAAAANjEDTfcoO7du+u7777Tpk2b9Nprr+m5557T0aNHNWLECD3wwAPas2ePFixYoKysLO3fv1+S9Morr2jx4sXauHGjvv32W6WlpWn8+PHu173++uvVo0cP7dmzR+vXr9f8+fO1fPnycFUTAAAAAIA6+I3xIFVWVmrfvn1q2bKlHA5HuMMBAAAAAFiAy+XS0aNH1bZtW8XEWPcz6MnJyXr//ffVo0cPSdLdd9+tgoICnX322Xr77bf1+uuvu7e9/PLLdeGFF2rKlCm64IILdNddd2nkyJGSpLy8PKWnp+vAgQPKy8vTwIEDtW/fPsXGxkqSHnvsMX3wwQcer+cPY20AAAAAQG1Gj7VjDYjJVvbt26cOHTqEOwwAAAAAgAXt3btX7du3D3cYPo0ePVpPPfWUnnzySeXm5uqNN97Q/Pnz9fzzz2vAgAEe2/bt21dbt25VeXm5Nm3a5LE+JSVFGRkZ+uyzz7R792716dPHPSleve/8+fN9xlFaWqrS0lL38vfff6/u3bsbWFMAAAAAQLQwaqzNxHiQWrZsKamqAZKSksIcDQAAAADACoqKitShQwf3mNGqHnzwQfXu3VutW7fW8ePHNWnSJA0ZMkSzZ8/WsGHDPLZt06aNNmzYoLy8PFVUVCglJaXO+vz8fOXm5io1NdXrOl8efvhhzZw5s87zjLUBAAAAANWMHmszMR6k6lu6JSUlMVgHAAAAAHiw8m3AKyoqdOmll2rq1KmaNGmSDh06pGuuuUZPPPGEysvLVfuX1ioqKuRwOFReXi6p6hZ2NetXc72vfX3Jzs7WtGnT3MvVb3Yw1gYAAAAA1GbUWJuJ8UhXUSF98EHV45/+tOpff8tNmpgbH6yjZq5ccIGUk1P1OJC8acxysGXZJUfD2Xf9lV27vYxuj2Dy0Kw6R3PZAAAANaxZs0ZlZWWaOnWqJCk9PV2PPfaYLr/8cg0YMEB5eXke2x86dEhpaWlq3bq1XC6Xjhw5ouTk5Drrc3NztXHjRq/7+hIXF6e4uDjjKtcYta/XvF2PGbUNYDVG5raZfcnsfmu1mDhvmctqbWL3vLViTJFaNwCwIYer9se64VdRUZGcTqcKCwut8Sn2khKpRYuqx8XFVf/6W05MNDc+WEfNXDlwQKq+1WEgedOY5WDLskuOhrPv+iu7dnsZ3R7B5KFZdY7msgEAgGksN1b04q233tK9996rzZs3u5/79NNPdeGFF+r222/XRx99pH/+85/udT//+c919dVX68Ybb1S3bt30pz/9SZdddpkkKTc3V6effroOHjyozz77TJdffrlyc3MVExMjSZozZ462bdum5557LqDYwnr8al+vebseM2obwGqMzG0z+5LZ/dZqMXHeMpfV2sTueWvFmCK1bgAQAYweK8YYEBMAAAAAALC4gQMHav/+/VqyZIkkqbi4WNOnT9fo0aM1ZswYvffee1qzZo0kacWKFdq2bZuysrIkSePHj9fMmTNVUFCgsrIyZWdna9y4cUpISFCfPn2Unp6uOXPmqLKyUjt37tTTTz+tW265JWx1BQAAAACgtrBOjLtcLi1evFj9+/d3P3fy5Endf//96tmzpzp06KCf/vSn2rp1q8d+S5YsUbdu3dS+fXsNHTpUu3btcq87fvy4xo8fr06dOql9+/a68847PX7rbMuWLerXr586deqk7t27a/Xq1SGvJwAAAAAA4eZ0OrVq1So9++yzysjI0Nlnn60uXbro0UcfVfv27fXSSy9p4sSJatOmjR544AEtX75ciT98u2jKlCkaPHiwunbtqoyMDDVv3lyzZ8+WVPVbb0uXLtWqVauUmpqqSy65RHPnzlVmZmY4qwsAAAAAgIew/cb4ypUrdccdd+j48eOKjf0xjB07dqi8vFz//e9/lZiYqGeeeUYjRozQzp071bRpU61fv15//OMftW7dOnXs2FEPPfSQsrKytGnTJknSbbfdpsrKSn3zzTcqKSnR8OHD9dRTT+mWW27R0aNHNWLECD333HMaPny41q1bp5EjR2r79u1+f/sMAAAAAIBo0KNHD73zzjte11188cXavn2713UxMTGaO3eu5s6d63X9qaeeqrVr1xoVJgAAAAAAhgvbN8ZLSko0Z84cLVy40OP5s846S/fff7/7U+m/+93vVFJSov/973+SpPnz52vq1Knq2LGjJOnOO+/Url279Mknn6i4uFjPP/+8HnnkEcXGxsrpdCo7O1uLFi2SVPVN8969e2v48OGSpMGDB2vQoEF6+eWXzao2AAAAAAAAAAAAAMBkYfvG+JVXXilJ9X6i/NixYzp27JicTqckaf369Zo2bZp7fWxsrHr16qWtW7eqoKBAnTt3VnJysnt937599fnnn6uiokLr16/XgAEDPF6/b9++dW7VXlNpaalKS0vdy0VFRYFWEQAAAAAAAAAAAABgAWH9jfFATJ8+XUOGDFG7du0kSbm5uUpNTfXYpk2bNsrPz/e5rry8XIWFhX739eXhhx+W0+l0/3Xo0MGgmgEAAAAAAAAAAAAAzBC2b4zXp6SkRBMnTtRnn32mVatWuZ8vLy+Xy+Xy2LaiokIOh8PnOkl+1zscDp9xZGdne3xDvaioyFqT402bSo888uNjqf5l2FPNXElICD5vGrrckLLsIJx911/Z3torVGUHkhuhKNdKx9vOfQAAAMAqvF2vhWobwGqMzG0z+5LZ/dZqMXHeMpfV2sTueWvFmCK1bgBgQw5X7Zlik61du1Y333yztm/f7n7um2++0YgRI3TBBRfoySefVEJCgntdmzZttHLlSvXq1cv93IUXXqjf/va3cjqd+sMf/qBPP/3UvW7v3r3q2rWrSkpKdM0116hfv34eE92zZs3Sd999p2eeeSageIuKiuR0OlVYWKikpKTGVB0AAAAAECUYKzYOxw8AAAAAUJvRY0XL3Uq9oKBAw4YN06233qqFCxd6TIpLUmZmpnJyctzLZWVl2rx5s/r166devXrpq6++0pEjR9zrc3Jy1LdvX8XExNTZt3p9//79Q1spAAAAAAAAAAAAAEDYWO5W6q+++qrOPPNMjRs3zuv68ePHa9q0afrlL3+p9PR0zZo1S0OHDlXnzp0lSZdccon++Mc/av78+SooKNCDDz6o+++/X5I0ZswYzZ49W2vWrNGwYcO0YsUKbdu2TVlZWabVz3AVFdLHH1c97tVLFZUuffHmv3XkWJma9e6tPp2T1WTrFvd6NWkSvlgRXjVz5ZxzpE8+qXpcffeFGnlk6HKwZdklR2v1XUnmHRd/ZdduL6PbI5g8NKvO0Vw2AAAA6lf7es3L9VjFyXLPsXaXn6hJjCPo1wEsJ5C8DTS3jXotq21jxZjMrr/dWa1N7J63VowpUusGADZkuVup33nnnfrzn/+s5ORkj+2mT5/uniz/05/+pMcff1yVlZUaMmSIFixYoNatW0uS8vLyNHbsWOXk5CgxMVG33367Jk2a5H6dVatWacqUKTp8+LC6dOmiZ555Rj179gw4Xsvd3q2kRGrRQpK0esPXeujtbfr3fSMkSd1u/afSnHHuZRUXS4mJ4YoU4VYjV3TggJSaWvW4uLjq3+p1Ri8HW5ZdcrRme5h9XPyVXbu9jG6PYPLQrDpHc9kAAMA0lhsrRpiwHr/a12u1rsdWfp6rOa9t9hhrt/pJK80Y0V2X9EgP+HUASwokbwPNbaNey2rbWDEms+tvd1ZrE7vnrRVjitS6AUAEMHqsGPZvjA8ZMsTj98UfeeQRPfLII373ueOOO3THHXd4XZeSkqI33njD574XX3yxR3nRZMpLW1X7Uw4HCkvDEgsAAAAAAJFu5ee5mvDix4ov8xxb7y88oQkvfqwF1/XynBwHAAAAAFiW5X5jHA3n7av/NZ+rqAzrzQEAAAAAAIgYFZUuzVz+pd+x9szlXzLWBgAAAIAIwcS4jWzafTjcIQAAAAAAEBE27jqs3MITPte7JOUWntDGXYy1AQAAACASMDFuI4eKua06AAAAAACBOHjU96R4Q7YDAAAAAIQXE+M28pMWceEOAQAAAACAiNCmZbyh2wEAAAAAwouJ8SjiqGf9+RnJpsQBAAAAAECk69M5WenOeJ9jbYekdGe8+nRmrA0AAAAAkSA23AGgkZo2lWbM0NcHj6q8SRNJ0rwB10qSyps0keOH5cvOTleXuGZhDBRh90OuSJISEn583LRp1b+hWm5IWXZQsz3MPi7+yvbWXqEqO5DcCEW5Vjredu4DAAAAVuHtek1SkxiHZozorgkvfqyKJk3qjLUlacaI7moS4/D7OoClBZK3gea2Ua9ltW2sGJPZ9bc7q7WJ3fPWijFFat0AwIYcLpfLFe4gIklRUZGcTqcKCwuVlJQU7nA8rPw8VzOXf6ncwh9/3yzdGa8ZI7rrkh7pYYwMAAAAAKKblceKkcDKx4+xNgAAAACEh9FjRb4xHkUu6ZGui7qnaeOuwzp49ITatKy6pZv70+sAAAAAACAojLUBAAAAIDowMR7pKiulbduqHnfrpiaS+p/YLzWV1LmbJJf0xZfu9YrhZ+Vtq2aunHGG9NVXVY+7dav6t0YeGbocbFl2ydFafVeSecfFX9m128vo9ggmD82qczSXDQAAgPrVvl7zcj3WRC7Psba3SfEAXgewnEDyNtDcNuq1rLaNFWMyu/52Z7U2sXveWjGmSK0bANgQt1IPkuVu71ZSIrVoUfW4uLjqX3/LiYnmxgfrqJkrBw5IqalVjwPJm8YsB1uWXXI0nH3XX9m128vo9ggmD82qczSXDQAATGO5sWKECevxq3295u16zKhtAKsxMrfN7Etm91urxcR5y1xWaxO7560VY4rUugFABDB6rMjHhAAAAAAAAAAAAAAAUY2JcQAAAAAAAAAAAABAVGNiHAAAAAAAAAAAAAAQ1ZgYBwAAAAAAAAAAAABENSbGAQAAAAAAAAAAAABRjYlxAAAAAAAAAAAAAEBUiw13AGikpk2l22//8bFU/zLsqWauJCQEnzcNXW5IWXYQzr7rr2xv7RWqsgPJjVCUa6Xjbec+AAAAYBXertdCtQ1gNUbmtpl9yex+a7WYOG+Zy2ptYve8tWJMkVo3ALAhh8vlcoU7iEhSVFQkp9OpwsJCJSUlhTscAAAAAIAFMFZsHI4fAAAAAKA2o8eK3EodAAAAAAAAAAAAABDVuJV6pKuslL79tupxx45V//pbjuGzELZVM1fat5e++67qcSB505jlYMuyS46Gs+/6K7t2exndHsHkoVl1juayAQAAUL/a12verseM2gawGiNz28y+ZHa/tVpMnLfMZbU2sXveWjGmSK0bANgQt1IPkuVu71ZSIrVoUfW4uLjqX3/LiYnmxgfrqJkrBw5IqalVjwPJm8YsB1uWXXI0nH3XX9m128vo9ggmD82qczSXDQAATGO5sWKECevxq3295u16zKhtAKsxMrfN7Etm91urxcR5y1xWaxO7560VY4rUugFABOBW6gAAAAAAAAAAAAAABIGJcQAAAAAAAAAAAABAVGNiHAAAAAAAAAAAAAAQ1ZgYBwAAAAAAAAAAAABENSbGAQAAAAAAAAAAAABRjYlxAAAAAAAAAAAAAEBUiw13AGik2Fhp4sQfH0v1L8OeauZKfHzwedPQ5YaUZQfh7Lv+yvbWXqEqO5DcCEW5Vjredu4DAAAAVuHtei1U2wBWY2Rum9mXzO63VouJ85a5rNYmds9bK8YUqXUDABtyuFwuV7iDiCRFRUVyOp0qLCxUUlJSuMMBAAAAAFgAY8XG4fgBAAAAAGozeqzIrdQBAAAAAAAAAAAAAFGNifFI53JJhw5V/blc9S/DvmrmQmVlcHnTmOVgy7KLcPbdYNrLaMHkRqjKtdLxtnMfAAAApnv77beVkZHh8ZeamqqWLVtKkrZs2aJ+/fqpU6dO6t69u1avXu2x/7x589SlSxe1a9dOo0aNUn5+vntdfn6+srKy1LFjR3Xq1EmPPvqoqXVrlECux4zaBrAaI3PbzL5kdr+1Wkyct8xltTaxe95aMaZIrRsA2BC3Ug+S5W7vVlIitWhR9bi4uOpff8uJiebGB+uomSsHDkipqVWPA8mbxiwHW5ZdcjScfddf2bXby+j2CCYPzapzNJcNAABMY7mxYoBuvvlmpaSk6K677lK3bt303HPPafjw4Vq3bp1Gjhyp7du3Ky0tTa+88opmz56td999V06nU5MmTdLBgwf12muvSZIuvfRS9e3bV/fee69yc3N1wQUXaP78+RoxYkRAcYT1+NW+XvN2PWbUNoDVGJnbZvYls/ut1WLivGUuq7WJ3fPWijFFat0AIAIYPVaMNSAmAAAAAAAQYXbu3KnXX39dO3bs0JIlS9S7d28NHz5ckjR48GANGjRIL7/8sqZMmaJ58+ZpxowZSk5OliTNmjVL6enpOnz4sPLy8rRp0yYtW7ZMDodDbdu21eTJk7Vo0aKAJ8YBAAAAAAg1bqUOAAAAAIANzZ49W7///e/ldDq1fv16DRgwwGN93759tXXrVpWXl2vTpk0e61NSUpSRkaHPPvtM69evV58+fRQbG1tnX19KS0tVVFTk8QcAAAAAQCgxMQ4AAAAAgM0cOnRIL7/8sm6++WZJUm5urlKrf+bmB23atFF+fr7y8vJUUVGhlJQUr+v97evLww8/LKfT6f7r0KGDQTUDAAAAAMA7JsYBAAAAALCZF154QaNGjVKbNm0kSeXl5XK5XB7bVFRUyOFwqLy8XJL8rve1zpfs7GwVFha6//bu3WtEtQAAAAAA8ImJcQAAAAAAbObZZ5/VmDFj3MvJycnKy8vz2ObQoUNKS0tT69at5XK5dOTIEa/r/e3rS1xcnJKSkjz+AAAAAAAIJSbGAQAAAACwka1bt2rfvn0aOnSo+7nMzEzl5OR4bJeTk6P+/fsrMTFRZ5xxhsf63NxcHThwQOecc44yMzO1YcMGVVZW1tkXAAAAAACriA13AGik2Fjp17/+8bFU/zLsqWauxMcHnzcNXW5IWXYQzr7rr2xv7RWqsgPJjVCUa6Xjbec+AAAAwmblypUaNGiQYmtce4wZM0azZ8/WmjVrNGzYMK1YsULbtm1TVlaWJGn8+PGaOXOmBg4cqISEBGVnZ2vcuHFKSEhQnz59lJ6erjlz5uiuu+7S7t279fTTT2vp0qXhqmJwvF2vhWobwGqMzG0z+5LZ/dZqMXHeMpfV2sTueWvFmCK1bgBgQw5X7R8Cg19FRUVyOp0qLCzkVm8AAAAAAEmRNVYcNWqUevXqpXvuucfj+VWrVmnKlCk6fPiwunTpomeeeUY9e/aUJFVWVurOO+/U4sWLFRsbq5EjR2revHmKi4uTJO3cuVO/+c1v9MUXX6h169Z68MEH3ZPqgYik4wcAAAAAMIfRY0UmxoPEYB0AAAAAUBtjxcbh+AEAAAAAajN6rMg9NCKdyyUdO1b1OCGh6l9/yw6HufHBOmrmSvPm0vHjVY8DyZvGLAdbll1yNJx911/ZtdvL6PYIJg/NqnM0lw0AAID61b5e83Y9ZtQ2gNUYmdtm9iWz+63VYuK8ZS6rtYnd89aKMUVq3QDAhpgYj3THjkktWlQ9Li6u+tffcmKiufHBOmrmyoEDUmpq1eNA8qYxy8GWZZccDWff9Vd27fYyuj2CyUOz6hzNZQMAAKB+ta/XvF2PGbUNYDVG5raZfcnsfmu1mDhvmctqbWL3vLViTJFaNwCwoZhwBwAAAAAAAAAAAAAAQCgxMQ4AAAAAAAAAAAAAiGpMjAMAAAAAAAAAAAAAohoT4wAAAAAAAAAAAACAqMbEOAAAAAAAAAAAAAAgqjExDgAAAAAAAAAAAACIarHhDgCN1KSJNHr0j4+l+pdhTzVzpVmz4POmocsNKcsOwtl3/ZXtrb1CVXYguRGKcq10vO3cBwAAAKzC2/VaqLYBrMbI3DazL5ndb60WE+ctcwVwnCocMSq45HKdKK/Q3j0F6n1mgprEOIJ+HfKWutG/ASC0HC6XyxXuICJJUVGRnE6nCgsLlZSUFO5wAAAAAAAWwFixcTh+AIBItfLzXM1c/qVyC0+4n0t3xmvGiO66pEd6GCMDACDyGT1W5FbqAAAAAAAAAAAEaeXnuZrw4scek+KStL/whCa8+LFWfp4bpsgAAIA3TIwDAAAAAAAAABCEikqXZi7/Ut5ux1r93MzlX6qikhu2AgBgFUyMR7qSEsnhqPorKal/GfZVMxcOHgwubxqzHGxZdhHOvhtMexktmNwIVblWOt527gMAAABWEcj1mFHbAFZjZG6b2ZfM7rdWi4nzlrl8HKeNuw67vynevOyEds+5TLvnXKbmZVXPuSTlFp7Qxl2H/b5OIGUFvY3Z5VG3yKwbANgQE+MAAAAAAAAAAATh4NET9W8UxHYAACD0wjox7nK5tHjxYvXv39/j+S1btqhfv37q1KmTunfvrtWrV3usnzdvnrp06aJ27dpp1KhRys/Pd6/Lz89XVlaWOnbsqE6dOunRRx/12Pfdd9/VOeeco44dO+r888/Xxx9/HLoKAgAAAAAAAACiTpuW8YZuBwAAQi9sE+MrV67U2Wefrfvvv19HjhxxP3/06FGNGDFCDzzwgPbs2aMFCxYoKytL+/fvlyS98sorWrx4sTZu3Khvv/1WaWlpGj9+vHv/66+/Xj169NCePXu0fv16zZ8/X8uXL5ck7d69W9ddd51eeOEFffvtt5o2bZouv/xynTjBp/YAAAAAAAAAAIHp0zlZ6c54OXysd0hKd8arT+dkM8MCAAB+hG1ivKSkRHPmzNHChQs9nl+yZIl69+6t4cOHS5IGDx6sQYMG6eWXX5ZU9W3xGTNmKDk5WU2aNNGsWbO0bNkyHT58WDt27NCmTZs0ffp0ORwOtW3bVpMnT9aiRYskSX/5y1907bXX6uyzz5Yk/epXv1JycrJWrVplYs0BAAAAAAAAAJGsSYxDM0Z0l6Q6k+PVyzNGdFeTGF9T5wAAwGxhmxi/8sordemll9Z5fv369RowYIDHc3379tXWrVtVXl6uTZs2eaxPSUlRRkaGPvvsM61fv159+vRRbGxsnX3re21fSktLVVRU5PEHAAAAAAAAALC3S3qka8F1vZTqjPN4Ps0ZrwXX9dIlPdLDFBkAAPAmrL8x7k1ubq5SU1M9nmvTpo3y8/OVl5eniooKpaSkeF3vb9/6XtuXhx9+WE6n0/3XoUOHxlQPAAAAAAAAABAlLumRrnenDXEvP3dTb3141zAmxQEAsKDY+jcxV3l5uVwul8dzFRUVcjgcKi8vlyS5XC45HA6v633tW99r+5Kdna1p06a5l4uKiqw1Od6kiVT9zfsmTar+rW8Z9lQzV5o1Cz5vGrrckLLsIJx911/Z3torVGUHkhuhKNdKx9vOfQAAAMAqvF2vhWobwGqMzG0z+5LZ/dZqMXHeMlcAx6lJ01j3Nn1PbyN5u306eUvdrFY3ALAhh6v2TLHJ1q5dq5tvvlnbt2+XJF111VXq16+fx2T0rFmz9N133+mxxx5Ty5YtlZeXp+TkZPf60047TS+++KK2bNmilStXatmyZe51H3zwgX7729/qq6++Up8+ffSHP/xBV1xxhXv92LFj1aVLF2VnZwcUb1FRkZxOpwoLC5WUlNTY6gMAAAAAogBjxcbh+AEAAAAAajN6rGi5W6lnZmYqJyfH47mcnBz1799fiYmJOuOMMzzW5+bm6sCBAzrnnHOUmZmpDRs2qLKyss6+9b02AAAAAAAAAAAAACA6WW5ifMyYMXrvvfe0Zs0aSdKKFSu0bds2ZWVlSZLGjx+vmTNnqqCgQGVlZcrOzta4ceOUkJCgPn36KD09XXPmzFFlZaV27typp59+Wrfccoukqm+HP//88/rss8/kcrn017/+Vc2bN9fgwYPDVl8AAAAAAAAAAAAAQGhZbmK8ffv2eumllzRx4kS1adNGDzzwgJYvX67ExERJ0pQpUzR48GB17dpVGRkZat68uWbPni1JcjgcWrp0qVatWqXU1FRdcsklmjt3rjIzMyVJ559/vh577DFddtllSktL02uvvaZ//etffn9j3PJKSqTExKq/kpL6l2FfNXPh4MHg8qYxy8GWZRfh7LvBtJfRgsmNUJVrpeNt5z4AAABgFYFcjxm1DWA1Rua2mX3J7H5rtZg4b5nLam1i97y1YkyRWjcAsKHYcAcwZMgQ9++LV7v44ovrPFctJiZGc+fO1dy5c72uP/XUU7V27Vqf5V1//fW6/vrrGxyvJR07Ftwy7KtmLgSbN41ZJke9C+dxCaa9Qlm2VeoczWUDAACgfoFcjxm1DWA1Rua2mX3J7H5rtZg4b5nLam1i97w1u7xorhsA2IzlvjEOAAAAAAAAAAAAAICRmBgHAAAAAAAAAAAAAEQ1JsYBAAAAAAAAAAAAAFGNiXEAAAAAAAAAAAAAQFRjYhwAAAAAAAAAAAAAENViwx0AGikmRho8+MfHUv3LsKeauRIbG3zeNHS5IWXZQTj7rr+yvbVXqMoOJDdCUa6Vjred+wAAAIBVeLteC9U2gNUYmdtm9iWz+63VYuK8ZS6rtYnd89aKMUVq3QDAhhwul8sV7iAiSVFRkZxOpwoLC5WUlBTucAAAAAAAFsBYsXE4fgAAAACA2oweK/JRIQAAAAAAAAAAAABAVGNiHAAAAAAAAAAAAAAQ1ZgYj3QlJdJPflL1V1JS/zLsq2YuHDwYXN40ZjnYsuwinH03mPYyWjC5EapyrXS87dwHAAAArCKQ6zGjtgGsxsjcNrMvmd1vrRYT5y1zWa1N7J63VowpUusGADYUG+4AYIC8vOCWYV81cyHYvGnMMjnqXTiPSzDtFcqyrVLnaC4bAAAA9QvkesyobQCrMTK3zexLZvdbq8XEectcVmsTu+et2eVFc90AwGb4xjgAAAAAAAAAAAAAIKoxMQ4AAAAAAAAAAAAAiGpMjAMAAAAAAAAAAAAAohoT4wAAAAAA2MjGjRs1aNAgderUSW3bttXSpUslSVu2bFG/fv3UqVMnde/eXatXr/bYb968eerSpYvatWunUaNGKT8/370uPz9fWVlZ6tixozp16qRHH33U1DoBAAAAAFAfJsYBAAAAALCJ7du365e//KXuvfde7dmzR7t379bAgQN19OhRjRgxQg888ID27NmjBQsWKCsrS/v375ckvfLKK1q8eLE2btyob7/9VmlpaRo/frz7da+//nr16NFDe/bs0fr16zV//nwtX748XNUEAAAAAKCO2HAHgEaKiZHOP//Hx1L9y7CnmrkSGxt83jR0uSFl2UE4+66/sr21V6jKDiQ3QlGulY63nfsAAAAIi+nTp+uWW27R8OHDJUnNmjVTmzZt9Je//EW9e/d2Pz948GANGjRIL7/8sqZMmaJ58+ZpxowZSk5OliTNmjVL6enpOnz4sPLy8rRp0yYtW7ZMDodDbdu21eTJk7Vo0SKNGDEibHUNmLfrtVBtA1iNkbltZl8yu99aLSbOW+ayWpvYPW+tGFOk1g0AbMjhcrlc4Q4ikhQVFcnpdKqwsFBJSUnhDgcAAAAAYAGRMFY8ceKEnE6n9uzZo7S0NI91N910k8466yzdfvvt7ucefPBBff311/rrX/+qhIQE7du3TykpKe71p59+uhYuXKjdu3fr1Vdf1Ztvvule95///EfXXXeddu3a5TWW0tJSlZaWupeLiorUoUMHSx8/AAAAAIC5jB5r81EhAAAAAABsYMeOHWrevLn+/e9/6+yzz9app56q3/3udyoqKlJubq5SU1M9tm/Tpo3y8/OVl5eniooKj0nxmuv97evLww8/LKfT6f7r0KGDcRUFAAAAAMALJsYBAAAAALCBo0ePqry8XJs2bdLGjRv1ySef6NChQ5oyZYrKy8tV+4ZyFRUVcjgcKi8vlyS/632t8yU7O1uFhYXuv7179xpUSwAAAAAAvGNiPNIdOyZlZFT9HTtW/zLsq2Yu5OUFlzeNWQ62LLsIZ98Npr2MFkxuhKpcKx1vO/cBAABgupSUFJ08eVKzZ89WfHy8WrZsqfvuu0/Lli1TcnKy8vLyPLY/dOiQ0tLS1Lp1a7lcLh05csTren/7+hIXF6ekpCSPv7AJ5HrMqG0AqzEyt83sS2b3W6vFxHnLXFZrE7vnrRVjitS6AYANxYY7ADSSyyXt2fPjY6n+ZdhTzVyprAw+bxq63JCy7CCcfddf2d7aK1RlB5IboSjXSsfbzn0AAACYrlOnTmrWrJlOnDihpk2bSpJiYmIUHx+vzMxM5eTkaNq0ae7tc3JydPXVVysxMVFnnHGGcnJydNlll0mScnNzdeDAAZ1zzjmKiYnRzJkzVVlZqZiYGPe+/fv3N7+SDeHtei1U2wBWY2Rum9mXzO63VouJ85a5rNYmds9bK8YUqXUDABviG+MAAAAAANhAfHy8brjhBt12220qLy9XaWmpZsyYoeuuu05jxozRe++9pzVr1kiSVqxYoW3btikrK0uSNH78eM2cOVMFBQUqKytTdna2xo0bp4SEBPXp00fp6emaM2eOKisrtXPnTj399NO65ZZbwlldAAAAAAA8MDEOAAAAAIBNzJkzR8ePH1e7du101llnqUuXLpo1a5bat2+vl156SRMnTlSbNm30wAMPaPny5UpMTJQkTZkyRYMHD1bXrl2VkZGh5s2ba/bs2ZIkh8OhpUuXatWqVUpNTdUll1yiuXPnKjMzM5xVBQAAAADAA7dSBwAAAADAJlq0aKEXXnjB67qLL75Y27dv97ouJiZGc+fO1dy5c72uP/XUU7V27VqjwgQAAAAAwHB8YxwAAAAAAAAAAAAAENWYGAcAAAAAAAAAAAAARDVupR7pHA6pe/cfH0v1L8OeauZKTEzwedPQ5YaUZQfh7Lv+yvbWXqEqO5DcCEW5Vjredu4DAAAAVuHtei1U2wBWY2Rum9mXzO63VouJ85a5rNYmds9bK8YUqXUDABtyuFwuV7iDiCRFRUVyOp0qLCxUUlJSuMMBAAAAAFgAY8XG4fgBAAAAAGozeqzIrdQBAAAAAAAAAAAAAFGNiXEAAAAAAAAAAAAAQFRjYjzSHTsmnXVW1d+xY/Uvw75q5kJeXnB505jlYMuyi3D23WDay2jB5EaoyrXS8bZzHwAAALCKQK7HjNoGsBojc9vMvmR2v7VaTJy3zGW1NrF73loxpkitGwDYUGy4A0AjuVzSl1/++Fiqfxn2VDNXKiuDz5uGLjekLDsIZ9/1V7a39gpV2YHkRijKtdLxtnMfAAAAsApv12uh2gawGiNz28y+ZHa/tVpMnLfMZbU2sXveWjGmSK0bANgQ3xgHAAAAAAAAAAAAAEQ1JsYBAAAAAAAAAAAAAFGNiXEAAAAAAAAAAAAAQFRjYhwAAAAAAAAAAAAAENWYGAcAAAAAAAAAAAAARLXYcAeARnI4pE6dfnws1b8Me6qZKzExwedNQ5cbUpYdhLPv+ivbW3uFquxAciMU5VrpeNu5DwAAAFiFt+u1UG0DWI2RuW1mXzK731otJs5b5rJam9g9b60YU6TWDQBsyOFyuVzhDiKSFBUVyel0qrCwUElJSeEOBwAAAABgAYwVG4fjBwAAAACozeixIrdSBwAAAAAAAAAAAABENSbGAQAAAAAAAAAAAABRjYnxSHf8uNS7d9Xf8eP1L8O+aubC4cPB5U1jloMtyy7C2XeDaS+jBZMboSrXSsfbzn0AAADAKgK5HjNqG8BqjMxtM/uS2f3WajFx3jKX1drE7nlrxZgitW4AYEP8xniQLPe7ZyUlUosWVY+Li6v+9becmGhufLCOmrly4ICUmlr1OJC8acxysGXZJUfD2Xf9lV27vYxuj2Dy0Kw6R3PZAADANJYbK0aYsB6/2tdr3q7HjNoGsBojc9vMvmR2v7VaTJy3zGW1NrF73loxpkitGwBEAH5jHAAAAAAAAAAAAACAIDAxDgAAAAAAAAAAAACIakyMAwAAAAAAAAAAAACiGhPjAAAAAAAAAAAAAICoxsQ4AAAAAAAAAAAAACCqxYY7ABggJSW4ZdhXzVwINm8as0yOehfO4xJMe4WybKvUOZrLBgAAQP0CuR4zahvAaozMbTP7ktn91moxcd4yl9XaxO55a3Z50Vw3ALAZh8vlcoU7iEhSVFQkp9OpwsJCJSUlhTscAAAAAIAFMFZsHI4fAAAAAKA2o8eK3EodAAAAAAAAAAAAABDVmBgHAAAAAAAAAAAAAEQ1JsYj3fHj0pAhVX/Hj9e/DPuqmQuHDweXN41ZDrYsuwhn3w2mvYwWTG6EqlwrHW879wEAAACrCOR6zKhtAKsxMrfN7Etm91urxcR5y1xWaxO7560VY4rUugGADVn2N8a///573Xzzzfr4448VFxenm266Sffcc48kacuWLZowYYJyc3OVmJioJ554QhdddJF733nz5umpp57S8ePH1adPHy1cuFCnnHKKJCk/P18333yzNmzYIIfDocmTJ+u2224LOC7L/e5ZSYnUokXV4+Liqn/9LScmmhsfrKNmrhw4IKWmVj0OJG8asxxsWXbJ0XD2XX9l124vo9sjmDw0q87RXDYAADCN5caKESasx6/29Zq36zGjtgGsxsjcNrMvmd1vrRYT5y1zWa1N7J63VowpUusGABHANr8xfsMNN6h79+767rvvtGnTJr322mt67rnndPToUY0YMUIPPPCA9uzZowULFigrK0v79++XJL3yyitavHixNm7cqG+//VZpaWkaP368+3Wvv/569ejRQ3v27NH69es1f/58LV++PFzVBAAAAAAAAAAAAACEmGUnxrds2aLrr79eDodDycnJuuyyy7Rp0yYtWbJEvXv31vDhwyVJgwcP1qBBg/Tyyy9Lqvq2+IwZM5ScnKwmTZpo1qxZWrZsmQ4fPqwdO3Zo06ZNmj59uhwOh9q2bavJkydr0aJF4awqAAAAAAAAAAAAACCELDsxPnr0aD311FMqKyvTnj179MYbb2j06NFav369BgwY4LFt3759tXXrVpWXl2vTpk0e61NSUpSRkaHPPvtM69evV58+fRQbG1tnX19KS0tVVFTk8QcAAAAAAAAAAAAAiByWnRh/8MEHtXLlSrVu3VqdO3fW0KFDNWTIEOXm5iq1+jdpf9CmTRvl5+crLy9PFRUVSklJ8bre376+PPzww3I6ne6/Dh06GFdJAAAAAAAAAAAAAEDIWXJivKKiQpdeeqmmTp2qwsJCff/99/rkk0/0xBNPqLy8XC6Xq872DodD5eXlkuR3va91vmRnZ6uwsND9t3fvXoNqCQAAAAAAAAAAAAAwQ2z9m5hvzZo1Kisr09SpUyVJ6enpeuyxx3T55ZdrwIABysvL89j+0KFDSktLU+vWreVyuXTkyBElJyfXWZ+bm6uNGzd63deXuLg4xcXFGVe5UEhICG4Z9lUzF4LNm8Ysk6PehfO4BNNeoSzbKnWO5rIBAABQv0Cux4zaBrAaI3PbzL5kdr+1Wkyct8xltTaxe96aXV401w0AbMaSE+NlZWUevwMuSU2bNlVZWZkyMzOVk5OjadOmudfl5OTo6quvVmJios444wzl5OTosssukyTl5ubqwIEDOueccxQTE6OZM2eqsrJSMTEx7n379+9vXuWMlpgolZR4PlffMuypdq4EmzeNWSZH6wpn362v7FC2R7B5GKpy7VI2AAAA6uftei1U2wBWY2Rum9mXzO63VouJ85a5rNYmds9bK8YUqXUDABuy5K3UBw4cqP3792vJkiWSpOLiYk2fPl2jR4/WmDFj9N5772nNmjWSpBUrVmjbtm3KysqSJI0fP14zZ85UQUGBysrKlJ2drXHjxikhIUF9+vRRenq65syZo8rKSu3cuVNPP/20brnllrDVFQAAAAAAAAAAAAAQWpacGHc6nVq1apWeffZZZWRk6Oyzz1aXLl306KOPqn379nrppZc0ceJEtWnTRg888ICWL1+uxMRESdKUKVM0ePBgde3aVRkZGWrevLlmz54tSXI4HFq6dKlWrVql1NRUXXLJJZo7d64yMzPDWV0AAAAAAAAAAAAAQAhZcmJcknr06KF33nlHu3fv1s6dO/X4448r4YffxLj44ou1fft2HTx4UDk5OerZs6d7v5iYGM2dO1cHDx7Uvn37tGDBAo/fCD/11FO1du1aHTp0SDt27HB/0zxinTgh/eIXVX8nTtS/DPuqmQsFBcHlTWOWgy3LLsLZd4NpL6MFkxuhKtdKx9vOfQAAAITFpEmT5HQ6lZGR4f7bs2ePJGnLli3q16+fOnXqpO7du2v16tUe+86bN09dunRRu3btNGrUKOXn57vX5efnKysrSx07dlSnTp306KOPmlqvRgnkesyobQCrMTK3zexLZvdbq8XEectcVmsTu+etFWOK1LoBgA05XC6XK9xBRJKioiI5nU4VFhYqKSkp3OFU/U5IixZVj4uLq/71t/zDN+thQzVz5cABKTW16nEgedOY5WDLskuOhrPv+iu7dnsZ3R7B5KFZdY7msgEAgGksN1b0YdKkSTrllFM0c+ZMj+ePHj2qbt266bnnntPw4cO1bt06jRw5Utu3b1daWppeeeUVzZ49W++++66cTqcmTZqkgwcP6rXXXpMkXXrpperbt6/uvfde5ebm6oILLtD8+fM1YsSIgOIK6/Grfb3m7XrMqG0AqzEyt83sS2b3W6vFxHnLXFZrE7vnrRVjitS6AUAEMHqsaNlvjAMAAAAAAOO1atWqznNLlixR7969NXz4cEnS4MGDNWjQIL388suSqr4tPmPGDCUnJ6tJkyaaNWuWli1bpsOHD2vHjh3atGmTpk+fLofDobZt22ry5MlatGiRmdUCAAAAAMAvJsYBAAAAALARbxPj69ev14ABAzye69u3r7Zu3ary8nJt2rTJY31KSooyMjL02Wefaf369erTp49iY2Pr7OtLaWmpioqKPP4AAAAAAAglJsYBAAAAALCR7OxsdezYUUOHDtU777wjScrNzVVq9c/c/KBNmzbKz89XXl6eKioqlJKS4nW9v319efjhh+V0Ot1/HTp0MKh2AAAAAAB4x8Q4AAAAAAA28eSTT2r//v3atWuX7rjjDl111VXavHmzysvL5XK5PLatqKiQw+FQeXm5JPld72udL9nZ2SosLHT/7d2716AaAgAAAADgHRPjAAAAAADYRExM1dsATZo00aWXXqprr71W//rXv5ScnKy8vDyPbQ8dOqS0tDS1bt1aLpdLR44c8bre376+xMXFKSkpyeMPAAAAAIBQYmIcAAAAAACbKi8vV7NmzZSZmamcnByPdTk5Oerfv78SExN1xhlneKzPzc3VgQMHdM455ygzM1MbNmxQZWVlnX0BAAAAALAKh6v2/c7gV1FRkZxOpwoLC/lEOwAAAABAUuSMFVetWqWLLrpIMTExeuedd3TNNdfoww8/VFJSknr27KnXXntNw4YN04oVKzRx4kR98cUXSkxM1OOPP65//OMfWr16tRISEjR+/Hi1bt1ajz/+uFwul8477zxdffXVuuuuu7R7924NHTpUS5cuVWZmZkBxRcrxAwAAAACYx+ixYqwBMQEAAAAAgAjw+OOP6/rrr1dCQoI6duyo119/Xd27d5ckvfTSS5o4caIOHz6sLl26aPny5UpMTJQkTZkyRd9//726du2q2NhYjRw5UrNnz5YkORwOLV26VL/5zW/02GOPqXXr1po7d27Ak+IAAAAAAJiBb4wHiU+xAwAAAABqY6zYOBw/AAAAAEBtRo8V+Y3xSHfihJSVVfV34kT9y7CvmrlQUBBc3jRmOdiy7CKcfTeY9jJaMLkRqnKtdLzt3AcAAACsIpDrMaO2AazGyNw2sy+Z3W+tFhPnLXNZrU3snrdWjClS6wYANsQ3xoNkuU+xl5RILVpUPS4urvrX3/IPt8GDDdXMlQMHpNTUqseB5E1jloMtyy45Gs6+66/s2u1ldHsEk4dm1TmaywYAAKax3FgxwoT1+NW+XvN2PWbUNoDVGJnbZvYls/ut1WLivGUuq7WJ3fPWijFFat0AIALwjXEAAAAAAAAAAAAAAILAxDgAAAAAAAAAAAAAIKoxMQ4AAAAAAAAAAAAAiGpMjAMAAAAAAAAAAAAAohoT4wAAAAAAAAAAAACAqMbEOAAAAAAAAAAAAAAgqjlcLpcr3EFEkqKiIjmdThUWFiopKSnc4Ugul3TsWNXjhISqf/0tOxzmxgfrqJkrzZtLx49XPQ4kbxqzHGxZdsnRcPZdf2XXbi+j2yOYPDSrztFcNgAAMI3lxooRJqzHr/b1mrfrMaO2AazGyNw2sy+Z3W+tFhPnLXNZrU3snrdWjClS6wYAEcDosSIT40HizQ4AAAAAQG2MFRuH4wcAAAAAqM3osSK3UgcAAAAAAAAAAAAARDUmxiNdaal0441Vf6Wl9S/DvmrmQlFRcHnTmOVgy7KLcPbdYNrLaMHkRqjKtdLxtnMfAAAAsIpArseM2gawGiNz28y+ZHa/tVpMnLfMZbU2sXveWjGmSK0bANgQt1IPkuVu71ZSIrVoUfW4uLjqX3/LiYnmxgfrqJkrBw5IqalVjwPJm8YsB1uWXXI0nH3XX9m128vo9ggmD82qczSXDQAATGO5sWKECevxq3295u16zKhtAKsxMrfN7Etm91urxcR5y1xWaxO7560VY4rUugFABOBW6gAAAAAAAAAAAAAABIGJcQAAAAAAAAAAAABAVGNiHAAAAAAAAAAAAAAQ1ZgYBwAAAAAAAAAAAABENSbGAQAAAAAAAAAAAABRjYlxAAAAAAAAAAAAAEBUiw13AGikhATp4MEfH0v1L8OeaubKKacEnzcNXW5IWXYQzr7rr2xv7RWqsgPJjVCUa6Xjbec+AAAAYBXertdCtQ1gNUbmtpl9yex+a7WYOG+Zy2ptYve8tWJMkVo3ALAhh8vlcoU7iEhSVFQkp9OpwsJCJSUlhTscAAAAAIAFMFZsHI4fAAAAAKA2o8eK3EodAAAAAAAAAAAAABDVmBiPdKWl0u9/X/VXWlr/MuyrZi4UFQWXN41ZDrYsuwhn3w2mvYwWTG6EqlwrHW879wEAAACrCOR6zKhtAKsxMrfN7Etm91urxcR5y1xWaxO7560VY4rUugGADXEr9SBZ7vZuJSVSixZVj4uLq/71t5yYaG58sI6auXLggJSaWvU4kLxpzHKwZdklR8PZd/2VXbu9jG6PYPLQrDpHc9kAAMA0lhsrRpiwHr/a12verseM2gawGiNz28y+ZHa/tVpMnLfMZbU2sXveWjGmSK0bAEQAbqUOAAAAAAAAAAAAAEAQmBgHAAAAAAAAAAAAAEQ1JsYBAAAAAAAAAAAAAFGNiXEAAAAAAAAAAAAAQFRjYhwAAAAAAAAAAAAAENWYGAcAAAAAAAAAAAAARLXYcAeARmreXNq168fHUv3LsKeauZKcHHzeNHS5IWXZQTj7rr+yvbVXqMoOJDdCUa6Vjred+wAAAIBVeLteC9U2gNUYmdtm9iWz+63VYuK8ZS6rtYnd89aKMUVq3QDAhhwul8sV7iAiSVFRkZxOpwoLC5WUlBTucAAAAAAAFsBYsXE4fgAAAACA2oweK3IrdQAAAAAAAAAAAABAVGNiPNKVlUl33FH1V1ZW/zLsq2YuFBcHlzeNWQ62LLsIZ98Npr2MFkxuhKpcKx1vO/cBAAAAqwjkesyobQCrMTK3zexLZvdbq8XEectcVmsTu+etFWOK1LoBgA1xK/UgWe72biUlUosWVY+Li6v+9becmGhufLCOmrly4ICUmlr1OJC8acxysGXZJUfD2Xf9lV27vYxuj2Dy0Kw6R3PZAADANJYbK0aYsB6/2tdr3q7HjNoGsBojc9vMvmR2v7VaTJy3zGW1NrF73loxpkitGwBEAG6lDgAAAAAAAAAAAABAEJgYBwAAAAAAAAAAAABENSbGAQAAAAAAAAAAAABRjYlxAAAAAAAAAAAAAEBUY2IcAAAAAAAbmjBhgs4880z38pYtW9SvXz916tRJ3bt31+rVqz22nzdvnrp06aJ27dpp1KhRys/Pd6/Lz89XVlaWOnbsqE6dOunRRx81rR4AAAAAAASCiXEAAAAAAGxm7969Wrx4sXv56NGjGjFihB544AHt2bNHCxYsUFZWlvbv3y9JeuWVV7R48WJt3LhR3377rdLS0jR+/Hj3/tdff7169OihPXv2aP369Zo/f76WL19uer0AAAAAAPAlNtwBoJGaN5c+//zHx1L9y7CnmrmSnBx83jR0uSFl2UE4+66/sr21V6jKDiQ3QlGulY63nfsAAAAIq1tvvVU33XST3n33XUnSkiVL1Lt3bw0fPlySNHjwYA0aNEgvv/yypkyZonnz5mnGjBlKTk6WJM2aNUvp6ek6fPiw8vLytGnTJi1btkwOh0Nt27bV5MmTtWjRIo0YMSJsdQyYt+u1UG0DWI2RuW1mXzK731otJs5b5rJam9g9b60YU6TWDQBsyOFyuVzhDiKSFBUVyel0qrCwUElJSeEOBwAAAABgAZE0Vnzrrbc0d+5czZgxQzfffLO2b9+um266SWeddZZuv/1293YPPvigvv76a/31r39VQkKC9u3bp5SUFPf6008/XQsXLtTu3bv16quv6s0333Sv+89//qPrrrtOu3bt8hpDaWmpSktL3ctFRUXq0KFDRBw/AAAAAIA5jB5rcyt1AAAAAABsIj8/X5MnT9aCBQs8ns/NzVVqaqrHc23atFF+fr7y8vJUUVHhMSlec72/fX15+OGH5XQ63X8dOnRoZM0AAAAAAPDP0Fup9+3bVxs2bDDs9TZu3Kjbb79de/bs0cmTJ/XUU0/piiuu0JYtWzRhwgTl5uYqMTFRTzzxhC666CL3fvPmzdNTTz2l48ePq0+fPlq4cKFOOeUUSVVvAtx8883asGGDHA6HJk+erNtuu82wmE1XViY99FDV4z/+sepff8vNmpkbH6yjZq7cfrs0d27V40DypjHLwZZllxwNZ9/1V3bt9jK6PYLJQ7PqHM1lAwAAWwh0LO5yuTR27FhNnTpVZ555pvv3wyWpvLxctW8oV1FRIYfDofLycvf+DofD63pf+/qSnZ2tadOmuZervzEeFrWv17xdjxm1DWA1Rua2mX3J7H5rtZg4b5nLam1i97y1YkyRWjcAsKFG3Ur95MmTatq0qXs5PT1dubm5hgS2fft2DRs2TIsXL9bw4cNVVlamgoICNW/eXN26ddNzzz2n4cOHa926dRo5cqS2b9+utLQ0vfLKK5o9e7beffddOZ1OTZo0SQcPHtRrr70mSbr00kvVt29f3XvvvcrNzdUFF1yg+fPnB/y7Z5a7PV5JidSiRdXj4uKqf/0tJyaaGx+so2auHDggVX+jI5C8acxysGXZJUfD2Xf9lV27vYxuj2Dy0Kw6R3PZAADANGaOFRs6Fn/44Yf14Ycf6s0335TD4dDatWvdt1K/6qqr1K9fP4/J6lmzZum7777TY489ppYtWyovL8/9G+OSdNppp+nFF1/Uli1btHLlSi1btsy97oMPPtBvf/tbffXVVwHVKaxj7drXa96ux4zaBrAaI3PbzL5kdr+1Wkyct8xltTaxe95aMaZIrRsARICw3Up98ODBdZ5r166dx7K/T4MHa/r06brllls0fPhwSVKzZs3Upk0bLVmyRL1793Y/P3jwYA0aNEgvv/yypKpvi8+YMUPJyclq0qSJZs2apWXLlunw4cPasWOHNm3apOnTp8vhcKht27aaPHmyFi1aZFjcAAAAAAAYxcix+JNPPqkPPvhArVu3VqtWrXTZZZfpf//7n1q1aqXMzEzl5OR4bJ+Tk6P+/fsrMTFRZ5xxhsf63NxcHThwQOecc44yMzO1YcMGVVZW1tkXAAAAAACrCHhifNu2bXWea8SXzf06ceKE3nzzTd1000111q1fv14DBgzweK5v377aunWrysvLtWnTJo/1KSkpysjI0Geffab169erT58+io2NrbOvL6WlpSoqKvL4AwAAAADADEaOxXNzc1VUVKSCggIVFBTozTff1Omnn66CggKNGTNG7733ntasWSNJWrFihbZt26asrCxJ0vjx4zVz5kwVFBSorKxM2dnZGjdunBISEtSnTx+lp6drzpw5qqys1M6dO/X000/rlltuaXjFAQAAAAAwWMAT494Y+Q3xmnbs2KHmzZvr3//+t84++2ydeuqp+t3vfqeioiLl5uYqtfrWuz9o06aN8vPzlZeXp4qKCqWkpHhd729fXx5++GE5nU73X9h+8wwAAAAAAIVmLN6+fXu99NJLmjhxotq0aaMHHnhAy5cvV+IPt92cMmWKBg8erK5duyojI0PNmzfX7Nmz3fEsXbpUq1atUmpqqi655BLNnTtXmZmZhscJAAAAAEBDxda/iW8ul0tLly51Py4tLTUkqKNHj7q//b1x40adPHlSv/71rzVlyhSVl5fX+XR8RUWFHA6HysvL3bHUfKOg5npf+/qSnZ3t8RtrRUVFTI4DAAAAAMLGqLH4kCFDtH37dvfyxRdf7LFcU0xMjObOnau5c+d6XX/qqadq7dq1DYoDAAAAAAAzNGpiXJKeffZZ9+Pjx4839uUkVd3+/OTJk5o9e7aaNm2q+Ph43XfffRo6dKguvPBC5eXleWx/6NAhpaWlqXXr1nK5XDpy5IiSk5PrrM/NzdXGjRu97utLXFyc4uLiDKkXAAAAAABGCMVYHAAAAACAaNaoiXGHw6Hly5e7l9PT0xsdkCR16tRJzZo104kTJ9S0aVNJVZ9Oj4+PV2ZmpnJycjy+xZ2Tk6Orr75aiYmJOuOMM5STk6PLLrtMUtVvqB04cEDnnHOOYmJiNHPmTFVWViomJsa9b//+/Q2JGwAAAACAUAvVWBwAAAAAgGjW6G+M12TU75zFx8frhhtu0G233aann35aFRUVmjFjhq677jqNGTNGs2fP1po1azRs2DCtWLFC27ZtU1ZWliRp/PjxmjlzpgYOHKiEhARlZ2dr3LhxSkhIUJ8+fZSenq45c+borrvu0u7du/X000+7b0EXkeLjpepvwcfHV/1b3zLsqWautGoVfN40dLkhZdlBOPuuv7K9tVeoyg4kN0JRrpWOt537AAAAMEwofnPcVrxdr4VqG8BqjMxtM/uS2f3WajFx3jKX1drE7nlrxZgitW4AYEMOV+0f3fahadOm6tmzp3vZ5XLpiy++UFlZmfu5tm3bat++fYYEVlxcrAkTJuidd95Ry5YtdeWVV2rWrFlq1qyZVq1apSlTpujw4cPq0qWLnnnmGXdslZWVuvPOO7V48WLFxsZq5MiRmjdvnvt26Dt37tRvfvMbffHFF2rdurUefPBB96R6IIqKiuR0OlVYWKikpCRD6goAAAAAiGyhGiuaPRYPF8baAAAAAIDajB4rBjwxvnnzZq/PZ2Zmuh9Hw2C8PgzWAQAAAAC1hWqsaJexOGNtAAAAAEBtRo8VA76Ves1Bty8BzrHDSGVl0hNPVD2eMqXqX3/LzZqZGx+so2auTJggLVhQ9TiQvGnMcrBl2SVHw9l3/ZVdu72Mbo9g8tCsOkdz2QAAIOIxFjdB7es1b9djRm0DWI2RuW1mXzK731otJs5b5rJam9g9b60YU6TWDQBsKOBvjAdi/fr16t+/v1EvZ0mW+xR7SYnUokXV4+Liqn/9LScmmhsfrKNmrhw4IKWmVj0OJG8asxxsWXbJ0XD2XX9l124vo9sjmDw0q87RXDYAADBNOMeK0TAWD+tYu/b1mrfrMaO2AazGyNw2sy+Z3W+tFhPnLXNZrU3snrdWjClS6wYAEcDosWKMATG5VQ/E8/PzjXxZAAAAAADgA2NxAAAAAADqF9Ct1IcOHSqHw+F3m8svv1xTp06VJPXs2TPif98MAAAAAIBwYiwOAAAAAIBxApoYv/vuu+vdpn379u7H/L4ZYG8VlS41+eHxR7sOq3dYowEAAAAiE2NxAAAAAACME9DE+IUXXhjUi9b3iXYA0Wv1F/v10Nvb9O8fln/34mZ9HNaIAAAAgMjEWBwAAAAAAOMENDEuSe+//77X57t166af/OQnhgUEILJNeWmrfH1PZfUX+3XRWWmmxgMAAABEMsbiAAAAAAAYI+CJ8RkzZkiStm3bprZt28rpdGr37t168MEH9atf/SpkAQKILP5u3vjQ29s0rFuq+zbrAAAAAPxjLA4AAAAAgDECnhj/97+rbox87bXXasKECRo0aJDuueeekAWGAMXHSz+0jeLjq/6tbxn2VDNXWrUKPm/qWf7ixX9p1ltfqjS2qSTpmmsfkiQVxSW4H+8pqdTG3GPqT46Gt+/6K9tbboSq7EDyMBTlWul427kPAACAgDAWN4G367VQbQNYjZG5bWZfMrvfWi0mzlvmslqb2D1vrRhTpNYNAGzI4XK5/H3Bs47ag/Fu3brV+ZR627ZttW/fPkMDtYqioiI5nU4VFhYqKSkp3OEAlvHG1u815aWt9W73xDXnauS57UIfEAAAAGCiUI8Vo30szlgbAAAAAFCb0WPFgL8x7s/evXt1ww03yOFwyOVy6fDhw0a8LIAI0qZlYJ88DHQ7AAAAAP4xFgcAAAAAIHABT4y///77kqRDhw5p69atkqRvv/1W3bp1U0pKiu6+++6QBIh6nDwp/eUvVY/Hj6/6199y06bmxgfrqJkrN90kPfts1eNA8iaA5b5vL9GkL3fomTMulEvStZ+slCS92mO4sj5/Vw5Jawb9Un3at5T+7/98v5ZdcjScfddf2bVzw+j2CCYPzapzNJcNAAAiHmNxE9S+XvN2PWbUNoDVGJnbZvYls/ut1WLivGUuq7WJ3fPWijFFat0AwIYCvpX60KFDvT5/991368ILLzQ0KCuz3O3dSkqkFi2qHhcXV/3rbzkx0dz4YB01c+XAASk1tepxIHkTxHL3W/8pSfry8dGSpF6TXtTHT10nSVq94WtddFYaOSqFt+/6K7t2bhjdHsHkoVl1juayAQCAaUI1VrTLWDysY+3a12verseM2gawGiNz28y+ZHa/tVpMnLfMZbU2sXveWjGmSK0bAESAsN1K/d///nejCwMQ/Z645lw99PY2r+suOivN5GgAAACAyMZYHAAAAAAAY8SEOwAA0eWis9L07rQh7uVnrssMXzAAAAAAAAAAAACAmBgHEAJNYhzux707J4cxEgAAAAAAAAAAAICJcQAAAAAAAAAAAABAlGNiHAAAAAAAAAAAAAAQ1ZgYBwAAAAAAAAAAAABEtdhwB4BGiouT3nzzx8dS/cuwp5q5kpQUfN40dLkhZdlBOPuuv7K9tVeoyg4kN0JRrpWOt537AAAAgFV4u14L1TaA1RiZ22b2JbP7rdVi4rxlLqu1id3z1ooxRWrdAMCGHC6XyxXuICJJUVGRnE6nCgsLlZSUFO5wAAAAAAAWwFixcTh+AAAAAIDajB4rcit1AAAAAAAAAAAAAEBU41bqke7kSenvf696PGZM1b/+lps2NTc+WEfNXLnqKumVV6oeB5I3jVkOtiy75Gg4+66/smu3l9HtEUwemlXnaC4bAAAA9at9vebtesyobQCrMTK3zexLZvdbq8XEectcVmsTu+etFWOK1LoBgA1xK/UgWe72biUlUosWVY+Li6v+9becmGhufLCOmrly4ICUmlr1OJC8acxysGXZJUfD2Xf9lV27vYxuj2Dy0Kw6R3PZAADANJYbK0aYsB6/2tdr3q7HjNoGsBojc9vMvmR2v7VaTJy3zGW1NrF73loxpkitGwBEAG6lDgAAAAAAAAAAAABAEJgYBwAAAAAAAAAAAABENSbGAQAAAAAAAAAAAABRjYlxAAAAAAAAAAAAAEBUY2IcAAAAAAAAAAAAABDVmBgHAAAAAAAAAAAAAES12HAHgEaKi5NeeeXHx1L9y7CnmrmSEym47AABAABJREFUlBR83jR0uSFl2UE4+66/sr21V6jKDiQ3QlGulY63nfsAAACAVXi7XgvVNoDVGJnbZvYls/ut1WLivGUuq7WJ3fPWijFFat0AwIYcLpfLFe4gIklRUZGcTqcKCwuVlJQU7nAAAAAAABbAWLFxOH4AAAAAgNqMHityK3UAAAAAAAAAAAAAQFTjVuqRrrxcev31qsejRlX96285lia3rZq5MmKEtHx51eNA8qYxy8GWZZccDWff9Vd27fYyuj2CyUOz6hzNZQMAAKB+ta/XvF2PGbUNYDVG5raZfcnsfmu1mDhvmctqbWL3vLViTJFaNwCwIW6lHiTL3d6tpERq0aLqcXFx1b/+lhMTzY0P1lEzVw4ckFJTqx4HkjeNWQ62LLvkaDj7rr+ya7eX0e0RTB6aVedoLhsAAJjGcmNFHx555BEtXLhQJ06ckNPp1IMPPqjLL79ckrRlyxZNmDBBubm5SkxM1BNPPKGLLrrIve+8efP01FNP6fjx4+rTp48WLlyoU045RZKUn5+vm2++WRs2bJDD4dDkyZN12223BRxXWI9f7es1b9djRm0DWI2RuW1mXzK731otJs5b5rJam9g9b60YU6TWDQAiALdSBwAAAAAADdK3b1998cUX+vbbb/V///d/uvrqq5Wfn6+jR49qxIgReuCBB7Rnzx4tWLBAWVlZ2r9/vyTplVde0eLFi7Vx40Z9++23SktL0/jx492ve/3116tHjx7as2eP1q9fr/nz52t59d2BAAAAAACwACbGAQAAAACwicGDB6tp06aSpEGDBikhIUGHDh3SkiVL1Lt3bw0fPty93aBBg/Tyyy9Lqvq2+IwZM5ScnKwmTZpo1qxZWrZsmQ4fPqwdO3Zo06ZNmj59uhwOh9q2bavJkydr0aJFYasnAAAAAAC1MTEOAAAAAIDNnDhxQvPmzVPv3r115plnav369RowYIDHNn379tXWrVtVXl6uTZs2eaxPSUlRRkaGPvvsM61fv159+vRRbI3frqze15fS0lIVFRV5/AEAAAAAEEpMjAMAAAAAYBPffPONOnTooISEBL300kt6+umnJUm5ublKTU312LZNmzbKz89XXl6eKioqlJKS4nW9v319efjhh+V0Ot1/HTp0MKiGAAAAAAB4x8Q4AAAAAAA2cdppp2nv3r06duyYJk+erP79++t///ufysvL5XK5PLatqKiQw+FQeXm5JPld72udL9nZ2SosLHT/7d2716AaAgAAAADgHRPjAAAAAADYTHx8vH71q1/psssu0/PPP6/k5GTl5eV5bHPo0CGlpaWpdevWcrlcOnLkiNf1/vb1JS4uTklJSR5/AAAAAACEUmz9m8DSmjWTnn32x8dS/cuwp5q50qJF8HnT0OWGlGUH4ey7/sr21l6hKjuQ3AhFuVY63nbuAwAAwBLi4uLUvHlzZWZmKicnR9OmTXOvy8nJ0dVXX63ExESdccYZysnJ0WWXXSap6tbrBw4c0DnnnKOYmBjNnDlTlZWViomJce/bv3//sNQpaN6u10K1DWA1Rua2mX3J7H5rtZg4b5nLam1i97y1YkyRWjcAsCGHq/b9zuBXUVGRnE6nCgsL+UQ7AAAAAEBSZIwVv//+e73//vvKyspSbGys3n//fV199dVat26dEhIS1LNnT7322msaNmyYVqxYoYkTJ+qLL75QYmKiHn/8cf3jH//Q6tWrlZCQoPHjx6t169Z6/PHH5XK5dN555+nqq6/WXXfdpd27d2vo0KFaunSpMjMzA4otEo4fAAAAAMBcRo8V+cY4AAAAAAA2EBcXp7/97W+aMmWKWrZsqYyMDL3++uvq2rWrJOmll17SxIkTdfjwYXXp0kXLly9XYmKiJGnKlCn6/vvv1bVrV8XGxmrkyJGaPXu2JMnhcGjp0qX6zW9+o8cee0ytW7fW3LlzA54UBwAAAADADHxjPEiW+xR7ebm0alXV44svrvrX33Isn4WwrZq5cuGF0nvvVT0OJG8asxxsWXbJ0XD2XX9l124vo9sjmDw0q87RXDYAADCN5caKESasx6/29Zq36zGjtgGsxsjcNrMvmd1vrRYT5y1zWa1N7J63VowpUusGABHA6LEiE+NBstybHSUlVb/TK0nFxVX/+lv+4dP+sKGauXLggJSaWvU4kLxpzHKwZdklR8PZd/2VXbu9jG6PYPLQrDpHc9kAAMA0lhsrRpiwHr/a12verseM2gawGiNz28y+ZHa/tVpMnLfMZbU2sXveWjGmSK0bAEQAo8eKMQbEBAAAAAAAAAAAAACAZTExDgAAAAAAAAAAAACIakyMAwAAAAAAAAAAAACiGhPjAAAAAAAAAAAAAICoxsQ4AAAAAAAAAAAAACCqMTEOAAAAAAAAAAAAAIhqseEOAI3UrJn01FM/PpbqX4Y91cyVFi2Cz5uGLjekLDsIZ9/1V7a39gpV2YHkRijKtdLxtnMfAAAAsApv12uh2gawGiNz28y+ZHa/tVpMnLfMZbU2sXveWjGmSK0bANiQw+VyucIdRCQpKiqS0+lUYWGhkpKSwh0OAAAAAMACGCs2DscPAAAAAFCb0WNFy99KfcKECTrzzDPdy1u2bFG/fv3UqVMnde/eXatXr/bYft68eerSpYvatWunUaNGKT8/370uPz9fWVlZ6tixozp16qRHH33UtHoA+H/27j0+iur+//h7k0BCAlkIkSRcgyAo4qUgBIQqKFRqjdQKtuLli1Ko+FOgoPWLtkVEq1ireKn0onjjW9CvQhEVqIpQ/BKJ3KwIiFxFCJcksOGWQLLz+yNmySab7G4yOzu7+3o+HnlkZ+bMns+ZOWd2zp6dGQAAAAAAAAAAACA8bH0r9b179+r1119Xhw4dJEnHjh1Tbm6uXn31VQ0ZMkQrV67U8OHDtXXrVmVmZuqtt97S66+/rvz8fDmdTt1zzz0aN26c3nnnHUnSbbfdppycHL311lsqKCjQ5Zdfrm7duik3NzecxWycigpp1arK1z/8YeX/+qbj462ND/ZRva5cfrm0enXl60DqTWOmg80rVupoONtufXnX3F9m749g6qFVZY7mvAEAAOBfzfM1X+djZqUB7MbMum1lW7K63dotJo5b1rLbPon1emvHmCK1bAAQg2x9K/URI0YoMzNTH330kbZu3aq//e1vWrJkiRYuXOhJc/311+vqq6/WxIkTdfnll+uBBx7Q8OHDJUmFhYXKysrSwYMHVVhYqIEDB2r//v1KSKj8PcDTTz+tVatWeb2fP7a7vduJE5XP6ZWk48cr/9c3nZJibXywj+p15eBBKSOj8nUg9aYx08HmFSt1NJxtt768a+4vs/dHMPXQqjJHc94AAMAytusrRpiwbr+a52u+zsfMSgPYjZl128q2ZHW7tVtMHLesZbd9Euv11o4xRWrZACACxMyt1N9//30VFRVpxIgRnnl5eXkaMGCAV7qcnBxt3LhR5eXlWrt2rdfy9PR0ZWdn68svv1ReXp769u3rGRSvvm59ysrKVFJS4vUHAAAAAAAAAAAAAIgcthwYLyoq0oQJEzR79myv+QUFBcqourrwe23atFFRUZEKCwtVUVGh9PR0n8vrW7c+jz/+uJxOp+ev6rbuAAAAAAAAAAAAAIDIYLuBccMwNGbMGE2aNEnnn3++17Ly8nLVvPN7RUWFHA6HysvLPevXtbyuZfWZOnWqXC6X52/v3r0NLRoAAAAAAAAAAAAAIAxsNzD+xBNP6MyZM7rnnntqLUtLS1NhYaHXvMOHDyszM1OtWrWSYRg6cuSIz+X1rVufxMREpaamev0BAAAAAAAAAAAAACKH7QbGn3vuOa1atUqtWrVSy5Ytdd111+mbb75Ry5Yt1bt3b61evdor/erVq9W/f3+lpKSoe/fuXssLCgp08OBBXXLJJerdu7fWrFkjt9tda10AAAAAAAAAAAAAQPSy3cB4QUGBSkpKdPToUR09elTvvfeezjvvPB09elS33HKLPv74Yy1fvlyS9MEHH2jLli0aOXKkJGncuHGaPn26jh49qtOnT2vq1KkaO3askpOT1bdvX2VlZWnmzJlyu93auXOnXnzxRd17773hLC4AAAAAAAAAAAAAIMQSwh1AMNq3b6/58+fr7rvvVnFxsbp27arFixcrJSVFkjRx4kTt27dP3bp1U0JCgoYPH64nnnhCkuRwOLRgwQLdeeedevrpp9WqVSs99dRT6t27dziL1HhNmkhPPnn2teR/GrGpel1JTg6+3jR0uiF5xYJwtt368va1v0KVdyB1IxT52ml7x3IbAAAAsAtf52uhSgPYjZl128q2ZHW7tVtMHLesZbd9Euv11o4xRWrZACAGOQzDMMIdRCQpKSmR0+mUy+XieeMAAAAAAEn0FRuL7QcAAAAAqMnsvqLtbqUOAAAAAAAAAAAAAICZIupW6vChokJav77yda9elf/rm46PtzY+2Ef1unLJJdIXX1S+DqTeNGY62LxipY6Gs+3Wl3fN/WX2/gimHlpV5mjOGwAAAP7VPF/zdT5mVhrAbsys21a2Javbrd1i4rhlLbvtk1ivt3aMKVLLBgAxiFupB8l2t3c7cUJq3rzy9fHjlf/rm/7+eeyIQdXrysGDUkZG5etA6k1jpoPNK1bqaDjbbn1519xfZu+PYOqhVWWO5rwBAIBlbNdXjDBh3X41z9d8nY+ZlQawGzPrtpVtyep2a7eYOG5Zy277JNbrrR1jitSyAUAE4FbqAAAAAAAAAAAAAAAEgYFxAAAAAAAAAAAAAEBUY2AcAAAAAAAAAAAAABDVGBgHAAAAAAAAAAAAAEQ1BsYBAAAAAAAAAAAAAFGNgXEAAAAAAAAAAAAAQFRLCHcAaKQmTaRp086+lvxPIzZVryvJycHXm4ZONySvWBDOtltf3r72V6jyDqRuhCJfO23vWG4DAAAAduHrfC1UaQC7MbNuW9mWrG63douJ45a17LZPYr3e2jGmSC0bAMQgh2EYRriDiCQlJSVyOp1yuVxKTU0NdzgAAAAAABugr9g4bD8AAAAAQE1m9xW5lToAAAAAAAAAAAAAIKpxK/VI53ZLW7ZUvr7ggsr/9U3H8VuImFW9rnTvLn39deXrQOpNY6aDzStW6mg42259edfcX2bvj2DqoVVljua8AQAA4F/N8zVf52NmpQHsxsy6bWVbsrrd2i0mjlvWsts+ifV6a8eYIrVsABCDuJV6kGx3e7cTJ6TmzStfHz9e+b++6ZQUa+ODfVSvKwcPShkZla8DqTeNmQ42r1ipo+Fsu/XlXXN/mb0/gqmHVpU5mvMGAACWsV1fMcKEdfvVPF/zdT5mVhrAbsys21a2Javbrd1i4rhlLbvtk1ivt3aMKVLLBgARgFupAwAAAAAAAAAAAAAQBAbGAQAAAAAAAAAAAABRjYFxAAAAAAAAAAAAAEBUY2AcAAAAAAAAAAAAABDVGBgHAAAAAAAAAAAAAEQ1BsYBAAAAAIgRy5cv14ABA9S1a1d16dJFzz//vGfZ7t27NXToUHXq1Eldu3bV3LlzvdadN2+eLrjgArVv316DBw/Wrl27PMtOnTqlcePGqVOnTmrfvr1+85vfyDAMy8oFAAAAAIA/CeEOAI3UpIl0331nX0v+pxGbqteV5OTg601DpxuSVywIZ9utL29f+ytUeQdSN0KRr522dyy3AQAAEBaLFi3SnDlz1L17d+3cuVNXXHGFzjvvPA0dOlS5ubmaMmWKRo8erc2bN2vgwIHq2bOnLr30UuXl5enBBx/UypUr1bFjR/3hD3/QyJEjtXbtWknSlClT5Ha7tWPHDp04cUJDhgzRCy+8oHvvvTfMJQ6Ar/O1UKUB7MbMum1lW7K63dotJo5b1rLbPon1emvHmCK1bAAQgxwGP+EOSklJiZxOp1wul1JTU8MdDgAAAADABiK1rzh58mQlJCRoyJAheuCBB7RhwwbPsgkTJig+Pl7PPPOMRo0apZycHE2cOFGSVF5eroyMDC1fvlxdunRRRkaG9u7dq7S0NEnSggULNGPGDK/3q0+kbj8AAAAAQOiY3VfkVuoAAAAAAMSow4cPy+l0Ki8vTwMGDPBalpOTo40bN0pSreUJCQnq1auXNm7cqHXr1qlz586eQfGqdTdt2qSKigqf+ZaVlamkpMTrDwAAAACAUOJW6pHO7Za+/bbydceOlf/rm47jtxAxq3pdad9e+u67yteB1JvGTAebV6zU0XC23fryrrm/zN4fwdRDq8oczXkDAADUIz8/X++9954eeeQRzZw5U+3atfNa3qZNGxUVFUmSCgoKlJGR4XN5YmKiz2Xl5eVyuVxeA+ZVHn/8cU2fPt3kEjVQzfM1X+djZqUB7MbMum1lW7K63dotJo5b1rLbPon1emvHmCK1bAAQgxgYj3SnTkmdO1e+Pn688n990ykp1sYH+6heVw4eDK7eNGY62LxipY6Gs+3Wl3fN/WX2/gimHlpV5mjOGwAAoA7z58/XpEmT9Nprr6lz584qLy9XzSetVVRUyOFwSFK9y+taJsmzfk1Tp07V5MmTPdMlJSXq0KFDo8vVIDXP13ydj5mVBrAbM+u2lW3J6nZrt5g4blnLbvsk1uutHWOK1LIBQAxiYBwAAAAAgBhRUVGhe++9V5988omWLVumSy65RJKUlpamwsJCr7SHDx9WZmam1/KOVXe8qbbc6XT6XDcpKUlOp9NnHImJiUpMTDSzaAAAAAAA1Iv7ZwAAAAAAECMmTZqknTt3au3atZ5BcUnq3bu3Vq9e7ZV29erV6t+/v8/lp0+f1rp169SvXz/16tVLX3/9tY4cOeK1bk5OjuK4bScAAAAAwCbooQIAAAAAEANKS0s1e/ZsvfLKK0qpcTvN3Nxc7d+/X3PnzpUkrV27VosWLdIvf/lLSdK4ceP0pz/9Sd99950qKio0Y8YMDR48WJ07d1ZmZqaGDRumBx98UOXl5SosLNRjjz2mSZMmWV1EAAAAAADqxK3UAQAAAACIATt37pTb7fZcBV6le/fuWrZsmRYvXqyxY8dq8uTJyszM1D/+8Q+1b99eknTDDTdo+/bt6tu3r9xutwYNGqQ5c+Z43uPll1/WmDFjlJWVpZSUFN1333366U9/amXxAAAAAACoFwPjAAAAAADEgB49esjtdte5vHfv3lq/fn2dy++//37df//9Ppelp6dr0aJFjY4RAAAAAIBQ4VbqAAAAAAAAAAAAAICoxhXjkS4hQbr77rOvJf/TiE3V60pSUvD1pqHTDckrFoSz7daXt6/9Faq8A6kbocjXTts7ltsAAACAXfg6XwtVGsBuzKzbVrYlq9ut3WLiuGUtu+2TWK+3dowpUssGADHIYRiGEe4gIklJSYmcTqdcLpdSU1PDHQ4AAAAAwAboKzYO2w8AAAAAUJPZfUVupQ4AAAAAAAAAAAAAiGrcQyPSGYZUWFj5Oj298n990w6HtfHBPqrXldatpaKiyteB1JvGTAebV6zU0XC23fryrrm/zN4fwdRDq8oczXkDAADAv5rna77Ox8xKA9iNmXXbyrZkdbu1W0wct6xlt30S6/XWjjFFatkAIAZxK/Ug2e72bidOSM2bV74+frzyf33TKSnWxgf7qF5XDh6UMjIqXwdSbxozHWxesVJHw9l268u75v4ye38EUw+tKnM05w0AACxju75ihAnr9qt5vubrfMysNIDdmFm3rWxLVrdbu8XEcctadtsnsV5v7RhTpJYNACIAt1IHAAAAAAAAAAAAACAIDIwDAAAAAAAAAAAAAKIaA+MAAAAAAAAAAAAAgKjGwDgAAAAAAAAAAAAAIKoxMA4AAAAAAAAAAAAAiGoMjAMAAAAAAAAAAAAAolpCuANAIyUkSP/1X2dfS/6nEZuq15WkpODrTUOnG5JXLAhn260vb1/7K1R5B1I3QpGvnbZ3LLcBAAAAu/B1vhaqNIDdmFm3rWxLVrdbu8XEcctadtsnsV5v7RhTpJYNAGKQwzAMI9xBRJKSkhI5nU65XC6lpqaGOxwAAAAAgA3QV2wcth8AAAAAoCaz+4rcSh0AAAAAAAAAAAAAENW4h0akMwzp5MnK18nJlf/rm3Y4rI0P9lG9rjRrJp06Vfk6kHrTmOlg84qVOhrOtltf3jX3l9n7I5h6aFWZozlvAAAA+FfzfM3X+ZhZaQC7MbNuW9mWrG63douJ45a17LZPYr3e2jGmSC0bAMQgBsYj3cmTUvPmla+PH6/8X990Soq18cE+qteVgweljIzK14HUm8ZMB5tXrNTRcLbd+vKuub/M3h/B1EOryhzNeQMAAMC/mudrvs7HzEoD2I2ZddvKtmR1u7VbTBy3rGW3fRLr9daOMUVq2QAgBnErdQAAAAAAAAAAAABAVGNgHAAAAAAAAAAAAAAQ1RgYBwAAAAAAAAAAAABENQbGAQAAAAAAAAAAAABRjYFxAAAAAAAAAAAAAEBUY2AcAAAAAAAAAAAAABDVEsIdABopPl4aMeLsa8n/NGJT9brStGnw9aah0w3JKxaEs+3Wl7ev/RWqvAOpG6HI107bO5bbAAAAgF34Ol8LVRrAbsys21a2Javbrd1i4rhlLbvtk1ivt3aMKVLLBgAxyGEYhhHuIHxZvny5fve73+ngwYMyDEOTJk3SvffeK0navXu3xo4dq23btqlJkyZ6+OGHdeutt3rWnTdvnh555BEdO3ZM5513nubMmaPOnTtLkk6dOqWJEydq2bJlqqio0KhRozRz5kw5HI6A4iopKZHT6ZTL5VJqaqr5BQcAAAAARBz6io3D9gMAAAAA1GR2X9G2t1JftGiR5syZo+3bt+vDDz/UzJkztXTpUlVUVCg3N1e33HKL9uzZo3fffVcTJkzQxo0bJUl5eXl68MEHtWzZMn333XcaOnSoRo4c6XnfKVOmyO12a8eOHfrqq6/0ySef6IUXXghTKQEAAAAAAAAAAAAAoWbbK8Zrmjx5shISEjRkyBA98MAD2rBhg2fZhAkTFB8fr2eeeUajRo1STk6OJk6cKEkqLy9XRkaGli9fri5duigjI0N79+5VWlqaJGnBggWaMWOG1/vVh1+xAwAAAABqoq/YOGw/AAAAAEBNMXPFeE2HDx+W0+lUXl6eBgwY4LUsJyfH64rx6ssTEhLUq1cvbdy4UevWrVPnzp09g+JV627atEkVFRU+8y0rK1NJSYnXn62cOCE5HJV/J074n0bsql4XDh0Krt40ZjrYvGJFONtuMPvLbMHUjVDla6ftHcttAAAAwC4COR8zKw1gN2bWbSvbktXt1m4xcdyylt32SazXWzvGFKllA4AYFBED4/n5+Xrvvfc0atQoFRQUKCMjw2t5mzZtVFRUJEn1Lq9rWXl5uVwul8+8H3/8cTmdTs9fhw4dTCwZAAAAAAAAAAAAACDUbD8wPn/+fF1//fV67bXX1LlzZ5WXl6vm3d8rKirkcDgkqd7ldS2T5Fm/pqlTp8rlcnn+9u7da1bRAAAAAAAAAFurcJ/9Lm3NziKvaQAAACCSJIQ7gLpUVFTo3nvv1SeffKJly5bpkksukSSlpaWpsLDQK+3hw4eVmZnptbxjx461ljudTp/rJiUlyel0+owjMTFRiYmJZhYNAAAAAAAAsL2lmwo08511+uT76dGvfK6W53yjabk9NKxnVlhjAwAAAIJl2yvGJ02apJ07d2rt2rWeQXFJ6t27t1avXu2VdvXq1erfv7/P5adPn9a6devUr18/9erVS19//bWOHDnitW5OTo7i4my7KQAAAAAAAABLLd1UoPFz1+uAq8xr/gFXqcbPXa+lmwrCFBkAAADQMLYcDS4tLdXs2bP1yiuvKCUlxWtZbm6u9u/fr7lz50qS1q5dq0WLFumXv/ylJGncuHH605/+pO+++04VFRWaMWOGBg8erM6dOyszM1PDhg3Tgw8+qPLychUWFuqxxx7TpEmTrC4iAAAAAAAAYEsVbkPTF2+Wr5umV82bvngzt1UHAABARLHlrdR37twpt9vtuQq8Svfu3bVs2TItXrxYY8eO1eTJk5WZmal//OMfat++vSTphhtu0Pbt29W3b1+53W4NGjRIc+bM8bzHyy+/rDFjxigrK0spKSm677779NOf/tTK4gEAAAAAAAC2lb+rWAWu0jqXG5IKXKXK31Ws/l1aWxcYAAAA0Ai2HBjv0aOH3G53nct79+6t9evX17n8/vvv1/333+9zWXp6uhYtWtToGG0jPl669tqzryX/04hN1etK06bB15uGTjckr1gQzrZbX96+9leo8g6kboQiXztt71huAwAAAHbh63wtVGkAu6mj3h46dnZQ3B0Xp+XnXuZ5XV31dJa2Javbrd1i4rhlLQu3d4UjTiWDhqis3K3de46qz/nJio9zBJ+XxXHTJiO0bAAQgxyGYXDPoyCUlJTI6XTK5XIpNTU13OEAAAAAAGyAvmLjsP0Ae8nbUaSb//6Z33TzxvbjinHAJEs3FWj64s1ed2vIciZpWm4PDeuZFcbIAAAIH7P7irZ8xjgAAKFU4TaUt6NIizbuU96OIp6LBwAAAADV9O2cpixnkhx1LHeocsCub+c0K8MCotbSTQUaP3d9rUcYHHCVavzc9Vq6qSBMkQEAEF1seSt1AABChV9gAwAAAED94uMcmpbbQ+PnrpdDlc8Ur1I1WD4tt0ftWzwDCFqF29D0xZvl6yf7hirb3PTFmzW0RyZtDgCARuKK8Uh34oSUklL5d+KE/2nErup14dCh4OpNY6aDzStWhLPtBrO/zBZM3QhBvuXJyZo8Z7WOHj6qzU/fqM1P36hmp0vlOnxUV/TqrPLkZGu3dyy3AQAAALsI5HzMrDSA3dRTb4f1zNLsW3spu5nh1X/KdCZp9q29av+w2Mq2ZHW7tVtMHLesFeLtnb+r2PPj/WanS73am1Q5OF7gKlX+ruLA87Ig7rClsWNMkVo2AIhBXDEeDU6eDG4asat6XQi23jRmmjrqWzi3SzD7K5R5W1zmBJ290iH5TJlnkVE1fabyl9rxIcg7qGkAAIAQMgxDb7zxhmbPnq28vDzP/A0bNmj8+PEqKChQSkqKnn32WQ0dOtSzfNasWXrhhRd06tQp9e3bVy+99JJat658tnBRUZHuuusurVmzRg6HQxMmTNCUKVMsL1uDBXI+ZlYawG7qqbfDemZpaKdBin+4sv/06h19dNmFHeq+atXKtmR1u7VbTH7SVLgNxX+fZs3OIl12YbLv/cZxKzAh3G+HjnnfPr369xV1povSehtwGqvzi+ayAUCM4YpxAACqWbu7ONwhAAAAhMzSpUt18cUX65FHHtGRI0c8848dO6bc3Fw9+uij2rNnj2bPnq2RI0fqwIEDkqS33npLr7/+uvLz8/Xtt98qMzNT48aN86x/2223qWfPntqzZ4/y8vL0/PPPa/HixZaXD4D5qg+m5pzbmls5R4Clmwo05OkVnunRr3yugTOX85xqm2rTIsnUdAAAoG4MjAMAUM3h475/mQ0AABANTpw4oZkzZ+qll17ymj9v3jz16dNHQ4YMkSRdeeWVuuKKK/Tmm29KqrxafNq0aUpLS1N8fLxmzJihd999V8XFxdq2bZvWrl2rhx56SA6HQ23bttWECRM0Z84cy8sHALFu6aYCjZ+7Xgdc3n3bA65SjZ+7nsFxG+rbOU1ZziTV9ZMTh6QsZ5L6dk6zMiwAAKISA+MAAFRzTvPEcIcAAAAQMjfeeKOuvfbaWvPz8vI0YMAAr3k5OTnauHGjysvLtXbtWq/l6enpys7O1pdffqm8vDz17dtXCQkJtdatS1lZmUpKSrz+AACNU+E2NH3xZs8jxKqrmjd98WZVuH2lQLjExzk0LbeHJNUaHK+anpbbI+Lv1lC93q3ZWUQ9BACEBQPjAICY4q8beVk2v8AGAACxp6CgQBkZGV7z2rRpo6KiIhUWFqqiokLp6ek+l9e3bl0ef/xxOZ1Oz1+HDh3MKwwAxKj8XcUqcJXWudyQVOAqVf4uHiFmN8N6Zmn2rb2U4fT+sX6mM0mzb+2lYT2zwhSZObi9PwDALhgYBwDEnLp+gS0p4n+BDQAA0BDl5eUyDO8rtyoqKuRwOFReXi5J9S6va1ldpk6dKpfL5fnbu3evSSUBgNh16Fjdg+INSQdrDeuZpY8mD/JMv3pHH336wFVRMSjO7f0BAHaR4D8JbC0uTrryyrOvJf/TiE3V60pCQvD1pqHTDckrFoSz7daXt6/9Faq8A6kbIch31qgf6A8fbNVnHXpKktwOh7KcSSq+rL/SUppau71juQ0AAABbSUtLU2Fhode8w4cPKzMzU61atZJhGDpy5IjS0tJqLS8oKFB+fr7PdeuSmJioxESbPMLG1/laqNIAdmNm3bayLVndbu0WUx1p2rRI8rx2Oxxe/d7qPOk4bgXGwn0bnxDvSZPT9RzJ14/3I6jeVr+9f806aajyQoXpizdraI/MygsVIqhsIUkTjvwAIMY4jJo/60a9SkpK5HQ65XK5lJqaGu5wAESJCreh/F3FOnSsVG1aJKlv5zSuXA4htjcAADBbpPUVV6xYobvuuktbt26VJM2cOVOff/653n77bU+aH//4x/r5z3+u0aNH64ILLtAf//hHXXfddZIqb71+3nnn6dChQ/ryyy91/fXXq6CgQHHff/E6c+ZMbdmyRa+++mpA8UTa9gMAO6pwGxo4c7kOuEp9Pmfcocpbc3/6wFX0gWGJvB1Fuvnvn/lNN29sP/Xv0tqCiAAAkcbsviI/FQKAMFu6qUADZy7XzX//TBPnb9TNf/+M5yyFWHycQ/27tNbwS9upf5fWfCEAAABi3i233KKPP/5Yy5cvlyR98MEH2rJli0aOHClJGjdunKZPn66jR4/q9OnTmjp1qsaOHavk5GT17dtXWVlZmjlzptxut3bu3KkXX3xR9957bziLBAAxJz7OoWm5PSTV/Qixabk96APDMrFye/8Kt6G8HUVatHGf8nYUqcLNtYgAYFfcSh2IQVwtax9Vz1mqebpc9Zyl2bf2ivhnSQEAAMD+2rdvr/nz5+vuu+9WcXGxunbtqsWLFyslJUWSNHHiRO3bt0/dunVTQkKChg8frieeeEKS5HA4tGDBAt155516+umn1apVKz311FPq3bt3OIsEADFpWM8szb61l6Yv3qwC19nBxkxnkqbl9uA7Bliq+u39zUhnR0s3FdRqb1m0NwCwLW6lHiTb3d7txAkpO7vy9e7dlf/rm/7+Sw3EoO/ryukKt4aP/6vmPjNGkjTwrjnKdCZq2bP/pabxcYHVo2Cmv/pKuvDCwNeNlTp64oSM7GwdPXlGl//qZUnSp3+5U1LlPqmajnM4lHrgO8W3aG5q3gHvL7P3R/W8/dUNM/MO57GS4zQAADHBdn3FCBPW7VfzfM3X+ZhZaQC7MbNuW9mWrG63dospgDQVx47L3SlbbsPQxn9v0GUXdqh9UQTHrcDYbN9GUr2tfnv/pNOlXt99nWqaVPv2/hFUNunsBS81y1batHKg3+uCFzuWDQAigNl9Ra4YjwaFhcFNI3YVFqqppIMlZWp9qsQz+6CrTE2PFNdKa9o0ddQnR2GhWlWbrr5Pqk+v2V2snItMHBiXgttfZgumboQq31jKGwAAAP4Fcj5mVhrAbsys21a2Javbrd1i8pMmPs6h+CNFkqScc1tLdd0pkONWYGy0bwNOY3V+PtJU3d5//Nz1csj7u686b+8fIWWrcBuavniz5y6Q1ctmqLJ80xdv1tAemWfLZ8eyAUCM4RnjQIyo79k2RoDpEB6Hj5eFOwQAAAAAAAAgaFW3989wJnrNz3QmRfQjBPN3FXvdPr0mQ1KBq1T5u4rrTAMAsB5XjAMxYu3uYuUEmu7c1iGPB4E7p3mi/0QAAAAAAACADQ3rmaWhnQZJD1dOv3pHH9+3948gh47VPSjekHQAAGswMA7EiECvOubqZOs55H3Vfk2XZadZFQoAAAAAAABguuqD4PXe3j9CtGmRZGo6AIA1uJU6ECMCveqYq5PDo2ZXoPp0JP96FgAAAAAAu6r+OLk1O4t4vByAgPXtnKYsZ1Kt7/SqOCRlOZPUtzMXvACAnTAwDsSIQK865upk6z37i0trPWep5jQAAAAAADDP0k0FGvL0Cs/06Fc+18CZy7V0U0H4ggIQMeLjHJqW20NS3Re8TMvtwQUvAGAz3Eo90sXFSZdddva15H8aMSk+IV6uCy/R7qKTqnDE6YvM8yRJbodDDklfZJ6n7NbJcibEV64QbL2qazohgTrqS7W2O/Sitrrqwiwdf+dSnakw9OqYnMofKLwXou1S33HD1/4KVd6B1I1Q5Gt1PeQ4DQAAYG++ztdClQawGzPrtpVtqZFplm4q0Pi569X0zGmv70cOuEo1fu56zb61l4b1zLJd3GFJA/vtkyhsk0GlsVFMw3pmafatvfTEgg1ex5JMZ5Km5fYI/jhiddkAIAY5DMPgHkFBKCkpkdPplMvlUmpqarjDAYK2dFOBpi/erAJXqWdelq+TNQAAAAABo6/YOGw/AFapcBsaOHO51/ci1TkkZTqT9OkDV3GlJ4CAVLgN5e8q1qFjpWrTovL26Rw/AMAcZvcVuWIciDHDemZpaI9MTtYAAAAAAEDMyd9VXOeguCQZkgpcpcrfVaz+XVpbFxiAiBUf5+B4AQARgoFxIAZxsgYAAAAAAGLRoWN1D4o3JB0AAAAiBw+XiHQnT0rZ2ZV/J0/6n0bsql4XCguDqzeNmQ42r1gRzrYbzP4yWzB1I1T52ml7x3IbAAAAsItAzsfMSgPYjZl128q21Ig0bVokeV4nnSnVp7Pv1Kez71TSGe+B8Orp7BB32NLAfvskytpk0GnsGFOklg0AYhBXjEc6w5D27Dn7WvI/jdhUva643cHXm4ZONySvWBDOtltf3r72V6jyDqRuhCJfO23vWG4DAAAAduHrfC1UaQC7MbNuW9mWGpGmb+c0ZTmTdMBVKochtS85JElyfJ+k6hnjfTun2SrusKWB/fZJlLXJoNPYMaZILRsAxCCuGAcAAAAAAAAQE+LjHJqW20NS5SB4dVXT03J7KD6u5lIAAABEOgbGAQAAAAAAAMSMYT2zNPvWXspwJnrNz3QmafatvTSsZ1aYIgMAAEAocSt1AAAAAAAAADFlWM8sDe00SHq4cvrVO/rosgs7cKU4AABAFGNgHAAAAAAAAEDMqT4InnNua4lBcQAAgKjGrdQBAAAAAAAAAAAAAFGNK8YjncMh9ehx9rXkfxqxqXpdiYsLvt40dLohecWCcLbd+vL2tb9ClXcgdSMU+dppe8dyGwAAALALX+droUoD2I2ZddvKtmR1u7VbTBy3rGW3fRLr9daOMUVq2QAgBjkMwzDCHUQkKSkpkdPplMvlUmpqarjDAQAAAADYAH3FxmH7AQAAAABqMruvyK3UAQAAAAAAAAAAAABRjYFxAAAAAAAAAAAAAEBUY2A80p08KV14YeXfyZP+pxG7qteFwsLg6k1jpoPNK1aEs+0Gs7/MFkzdCFW+dtresdwGAAAA7CKQ8zGz0gB2Y2bdtrItBZCm4vgJnTzvfJV06a41m/aqwu3jaZIRWjaOWxazW52M9Xprx5gitWwAEIMSwh0AGskwpM2bz76W/E8jNlWvK2538PWmodMNySsWhLPt1pe3r/0VqrwDqRuhyNdO2zuW2wAAAIBd+DpfC1UawG7MrNtWtiU/aZZuKtDMd9bpk+1fS5JGz8lXy3O2aVpuDw3rmRVcXhbGbcs0sF+djPV6a8eYIrVsABCDuGIcAAAAAAAAQFRYuqlA4+eu1wFXmdf8A65SjZ+7Xks3FYQpMsQq6iQAAPbBwDgAAAAAAACAiFfhNjR98Wb5ujayat70xZt938IaCAHqJAAA9sLAOABLVT/RX7OziBN/xBzaAAAAAACERv6uYhW4SutcbkgqcJUqf1exdUEhpoWiTvK9AgAADcfAOADLfPjVAQ15eoVnevQrn3tNA9GONgAAAAAAoXPoWN0DkA1JFw4MekYXs+vk0k0Ftb5XGDhzObdjBwAgQAyMA7DMxPkbaz1P6WCNaSCa0QYAAAAAIHTatEgyNZ3VGPSMPmbWSZ5VHhv4cQwAhFZCuANAIzkcUqdOZ19L/qcRm6rXlbi44OtNQ6fj4mR06qQDrlK5v1/0XWobSZLhqLxl1HepbRQf51AbQ4pvfEkjQzjbbn15+6oboco7kHoYinzDsL1pAwAAADbm61wxVGkAuzGzblvZlupI07dzmrKcSTrgKpXh8O57SZJDUqYzSX07p9mubFWDnolnyrzirhr0nH1rLw3rmWVZPKjGBnWy+rPKa76P8f37TF+8WUN7ZCo+zlHve5lVtrClsWNMJqVZuqlAT7yzXnO/37//9ernapX+jabl9jjb/s2MCQBikMMwDH5yFISSkhI5nU65XC6lpqaGOxwgIuTtKNLNf//Mb7p5Y/upf5fWFkQEWIs2AABA9KOv2DhsPwBmqRpglioHDKtUDQt5DTDbRIXb0MCZy+t8FnXV4OmnD1x1dtATEcOMOsn3Ct4q3IbydxXr0LFStWlR+cOCSG8bVfWk5mCNr3oSjeUHgLqY3VfkinEAIRcNz/gCGoM2AAAAAADWGNYzS7Nv7aXpizd7DTRnOpNqX3VpE/m7iuscFJcqB1MLXKXK31UcE4Oe0caMOsn3Cmct3VRQa1tm2bh9B6L6HQFqqnlHgA83H4i68gOAlRgYB1CL2b86jPRnfEU7fmUaerQBAAAAALDOsJ5ZGtojM2L6ugx6Rr/G1slwfq9gp++N6rqq2ucjByJIoD+OeWH5ds36aFvUlR8ArBQX7gDQSKdOSX36VP6dOuV/GrGrel0oLq6znvxr7U5d/egSJQ/sr+wfD9boF1fq6keXyNXzUk/6ihMndfziH+jIhZdqzVffqeLEybrrXXGx+v1imD6YO1lJZ8qUeKZMi177tRa99mslVpv+YO5k9c1sFu6tZJ1wtt169vevnv2Xvu54fuX+DsUxo1reFYVF9dejEOUbju1NGwAAALCxQM4FzUoD2I2ZddvKthRAmviyUvX/xTANH/tT9W+b7HsgzyZlqz6YWbPPWJ0nHccta9mgTlY9q9wh33XEocqrhj3PKjcp7qWbCmp9Tzhw5nIt3VQQkm1UX5rqV1XX3AZVA8XTF29WhduwLCaz0lT/0Ut9x4BX/m+XueUHgBjEFeORzu2W1q49+1ryP43YVL2ulJfXWU8m/WODDEmXHPhGkhRnGDp09JScX30hSfrwy/36w5It+uTLjZKk0S+vUaYzUZ/UVe/Ky+VYu1Y9vn8v1XhvR7Vp+bxhUJQKZ9utlnfN/Z1guNVj3zZpX+W+Htq3S8jyvu6ZT7TEXz0KQb7h2N60AQAAABvzda4YqjSA3ZhZt61sS1a32xDnVzXoecBVqjjD8OozSmefMe4Z9OS4ZS0b1Mn4OIem5fbQ+LnrFV+jjlQNr0/L7eE12F5RXqH4799rzfbDuuzCDrUH4+uJqerq7KTTpV75+bw62YJtVP2qal/tpNYjB2yw3wJNU/3HMb7KVuXoqTN1pmlQ+QEgBnHFOAAvdT3LpsrE+Rt1wOX9a8WDNabr8uwvLlWGM9FrXs1pWKu+Ydg/LNly9lemIXCwpGH1KJLRBgAAAABEq+r9xzU7i0Lan4xUdW2jqkFPSap5DXFdg56IPVXPKq/5PUKmM6nWLbSXbirQkKdXeKZHv/K57yu96+DvmddSjauTTVLfcSSaHzlQ/Y4AvjgktWzWJKD3isTyA4CVGBgHEBR/A+f1nRAPvTBTH00e5Jl+9Y4+XtOwlwOuMuXvKjb1PeurH4HWo0hGGwAAAAAQjRo7CBcN/P0wwN82CmbQE7FrWM+sWt8rfPrAVbUGxcfPXV/rwpaqK70DaZeBPvO66nsjM34Y46+NBPuc9Uj6sU4gP465Y0B2QO8ViufMA0A0YWAcgKnW7q5/ILX6r5tzzm1tq187V7gN5e0o0qKN+5S3w94nzFYx+1em/upHsOkCZafOkJ3bAAAAAAAEy4xBuOrs1H8LlL8BvUC3USCDnkB93ysEe6V3Xe0tmKuzzfhhTCBtJJCrqques27mj3WsOib5+3HMPVedF3D5AQB1Y2AciBHVT9o+N/kq4OoOH/c+gY2UDu3STQUaOHO5bv77Z5o4f6Nu/vtnMffrdl/M/pVpzfrR2HSB8NUZqj4tRU49BQAAAAA7Mft2y5F45bm/Ab0P/lMQ1Dbix9RojGCu9K6vvQX6fdDuwpON/mFMoMcRSQE9cuDDzQdM+7GO1QPs9f04hkcuAIA5EsIdABCICreh/F3FOnSsVG1aVP7yzQ4f8v7iqrm8d6dWWrfnSEDlaOx7V5/eXXhCCz/9Wiu+X/dXc9dpfY284k3aJkXHyrze77rnV2nJ969Hv/K5Mp2J+qSOvNfsLNIPLmhWZzn8TaenJEoOqfB4WVDb7KPNB/Ty/+2uVZaqE+aG3LLMzDpb4TaUv6MoJPXfobqfM94qpYl6d2rlP7YgynlO88Cepx1oOn+xVHWGkk7X/TzzD786oD8s2eKpl6Nf+Vwtz/lG03J71Lnfgyl3zTp+WXaaV3urtfzC5HrrbWOOG8EI9XG3+vunN0+UDKnwhO+2G6ns+tkVarFabgChwTEFAOwtmEG4/l1a19v/qRpgrtl/89U399ePMltd+fkb0HNI+t2iTSo6cbrO9665jRoTT7ACfZ9APo8jMU0w72VlfWuMQK/0/nDzAb3yf7vrbG9/HtVLWc4kHaijfTskZaQmal7+t/XW/+mLN2toj8x6t1cwx5Gqq6pnvrPOK02mM0nTcntoaI9MDZy5POCYzDom+bN0U4FmvrMuoO+eav44RtWm/ZW/+nsFUm/t2t4iLU048vPHyrwiOSYr2bFsdozJCjE5MH7q1ClNnDhRy5YtU0VFhUaNGqWZM2fK4YjQHZ6eHtx0hFm6qfKXtdVPkLJ8fNjbLS5fy+McUvUfA9ZVDjPeu+Z0s9OnVdQs1TNd9fqVZVv0/pcH9Ha1ZdWXBzv9xNKv9Wrebr2f2kqnzlToYEmZV9qDrsrpFkkJWvn9gGRV3qNf+VxliV/WWw5/09UFu81qCuYkvrqA62wAbfd0hVvXPL1Cu06dzduU+v/9e0uVZfRVN46cOKMr//hJnXk1pG1elp2mI8lOuQ3DK6/qecc5HLosO7jbPvmKJTM1SaXlFZ7OUPW8jO+nHQ6HJs7f6JmuUl8nJ5hyV3V8qtfxTGeilrVKU9P4OM+gfPXl1TtGweZl1rEy1MddX+9fnR2O8Y1l18+uUIvVcgMIDY4pkSei+9qB9JvNSgPYTSPqds1BuJp9vOrpfPWPqvo/Q3tkeg0w1+y/Ve+bf7j5QJ3vU+vzwYR2W1/czmZNvT6napbfkGoNite3jQKJqb54gil/oO8TyOdxJKYJ5r2srG+NTVPzSu+66ts/N+6vt73NeH+zfveTC/T//rGh1vdGVZ/qN/ftqGc++qbOvHz+6MNH3MEcR6TKweGhnQbpzLOt5TYMvXpHH112YQfFxzmUt6PIb5usisl16rQpxyTP94V17JPqA+yBfvdUXx2or/zV8/RXb+3a3iItTTjy88fKvCI5JivZsWx2jMkqDsMwYu5+sXfffbdOnz6tv/zlLzpx4oSGDBmi22+/Xffee6/fdUtKSuR0OuVyuZSa6vtDGuapOnGoWUmrPuYbciWvGfzFNe6Kzvrbv3fVeSVuzfTVy2HWe4dTfVchVy13JjeR6+SZkJbDzG02b2y/gH65bWadtaL++xugrCuvxsRWta7kXU8aWq66Ymkshyp/cfvpA1fV+rVwIOVuaFsOdHkwedmp3gWyv8J9jG8su352hVqslhtAaETiMYW+In1tIBbl7SjSzX//zG+6Xw/pplkfbavzuD5pSDc989G2Rr+P2Z8P/j6P7hiQrTk+7kDXEIF872DW52Og7xNIOkkRl8bMstntfKTCbWjgzOU64Cr12e92qPIOgcUnzvh9r3lj+8l16nSdAydl5W5NnL/R7/s8+4tLNfzSdnUuD/Q4EkgbWbRxX0Ax3TkgW6/83+5GH5P8xVS1P+r73q3md0+NZbd2y7HE3Pz8seOxzY4xWcmOfVs7xlQfs/uKMTcwfvz4cWVkZGjv3r1KS6u8InHBggWaMWOGNmzY4Hd9OuvWCceJgxlxSf6vRK6uejkk+S2zI4j3bix/A9yRIpj9URd/J/GSuXXWyvp/utytfo9/rOI6bu1WMy8zYjPrF2mBtMfGqurkBFNuqf62LPmvl/UtD/a4YZd6F8z+CtcxvrHs+tkVarFabgChEanHlFjvK9LXBmJTIINwGamJkhw6UFL3cd2Z3ERHT/ofqGvZrImOnvKdzuzPh0A+j9JSmtZ7m/QqaSlNdOSE74sDAo3brM/HQN9n5f2DdeUfP6k3XSD71qw0mc4kGYahAyVldaYJ9H3MKpsdz0ck/xck3Dkg2+cjBWuq+i6srlvtmjWgHchxJNBtHWhMaSlN6/0eLNBjkpWD/oEIpH1b2SbNbm9mHAPsWDazjjeBHt8DKZuVn6WRfLz1x459WzvG5I/ZfcU4E2KKKOvWrVPnzp09HXVJysnJ0aZNm1RRUVErfVlZmUpKSrz+YI1gni9jJX9xScENwlYvRyBltmpQvCq/aGDGNqt5KypfzKyzVtb/dXuO1NkZ8JWXGbEN65mlTx+4SvPG9tOzv7hU88b206cPXBX0L9ECaY+NVXWrrmDKbcZxwt9t/oM5btil3gWzv8J1jG8su352hVqslhtAaHBMiUz0tYHYFB/n0LTcHpLODrpVqZq+uW/HOr/sliqP64EMQEmqc1C86n3M/HwI5POo6MRppaU0qVX2Kg5V/gj80eE9PdM1l0vStNwefr98NuvzMdD3eSNvt990B0rK/O5bs9IUuErrHMgJ9n3MKptdz0eqnkOd6fT+LivTmaTZt/bSkB6ZAb1P1Xdh8XEO9e/SWsMvbaf+XVp76mrfzmnKcib5rf99O9f/uLxAjiOBtJFAY0pLaeL3e7BAj0n+vi8M9JnvgabzJ5D2bWWbNLu9mXEMsGPZzDreBHp8D6RsVn6WRvLx1h879m3tGJPVYm5gvKCgQBkZGV7z2rRpo/LycrlcrlrpH3/8cTmdTs9fhw4drAo1MKdOSYMGVf6dOuV/OoJYfeIQqFDld+hYaUjLknimTPP/8d+a/4//VurJEs/rxDNlXsvMng42L7sJ9CReCrLO+mmrhYePBLRdGlRn6smr5v7ylVej2ma1vOOPHlH/MTdq+KRb1L9tsuLLSoM+XgUaS7B1uLqqTk4w5a6etjF5B5uXv7RmpAkmnRnrWX2Mbyy7fnaFWqyWG0BocEyJTBHd1w6k32xWGsBuTKjbVYNwnZIdXn2bqkG47PQUT9r6+j8tm1UOMPtK4/h+eSDv4/l8aGTZ6uvXVXfD91eLJtVIU31A79qL29a7jbx+JF5HTIHG46/8gb7PnuKTvrdZFAi2bFbUN7PTDOuZpU8n9NcXn/xBaz96VG/edonngoTqg8d1tTev78LqyK/6gHZ99d8zoF1P3P6OI7UupGhETDdUu8K7McekQLZR9YHzQL578red/KUJtH1biWOJefz1f8zsH5n1XnaMyUp27NvaMSarJYQ7AKuVl5er5t3jq3697nDU/i3Z1KlTNXnyZM90SUmJvQbH3W5p5cqzryX/0xEikCt0g0lnllDlF+pyxBmG+u3dJElKMNye13Hft4dQTTckL7sI9lepQdVZP223TUpT5QSwXRpUb2rkXT0vX/urZl6NapvV8y4vb/TxKtBYqtf/OMOQQ2frXbxhyFDtelh125iqTk5Dy10zb/nIq6FtIJj9H0jaUB93G7Ke1cf4xrLrZ1eoxWq5AYQGx5TIFNF9bV/n5qFKA9iNSXV7WM8sDe3UQvHTKvs2r4++TJdd2MFzu+UqvvpHVe4YkK1ZH32jeB/9t6rlz3z0jd/38Xw+NLJs1T9n6stvSI9M9emcppnvrPNKk1njcWH1baNAYgo0Hn/lD/R9OqUlK1oFWzYr6pvpaSTFy5Azf7UkKT27VeUz23R28Hj83PV1tjev78Lqya9qQNtf/Q8k7oDbSCNjcjZr6rmVfGOOSYFso6ofIRxwlfrMq+Z3T4Fsp/rSBNq+rcSxxDz++j9m9o/Mei87xmQlO/Zt7RiT1WLuivG0tDQVFhZ6zTt8+LCSkpLkdDprpU9MTFRqaqrXH6xh1u14zOYvLqnyPNP/MGql6uUIpMw2eayDR7DhOOp4HUrB7I/q6vxVah3MrLOXZdefxsz6H2xedmqbgcTSKrmJMlKbes3PcCbWSudrunonJ5hyB3Kc8JVvdfXV22CPG4Huj1Dv20C3ixl5hYud2oeVYrXcAEKDY0pkoq8NoPrgVc65wd9u+Z6rztPsW3vV6q9V9c3vueo8Sz8fgvk8GtYzSx9NHuRZ9uodfXw+LqyubWR2PGa8z239s/2my0xNVGaqNWmynEnKTE005X3MKlskn49UDR7X1d6CedRdoPU/EI1pI4HGZNYxKZDymXmb+EAEUjYr26TZ7c2MY4Ady2bW8SbQuh1I2az8LI3m460d+7Z2jMlqMTcw3qtXL3399dc6cuSIZ97q1auVk5OjuLiY2xy2ZvWJg1lxOSSN/WFnn8trqlmOQMo89oedPfmYwdd71Ry8rm+5v+mMVO+TR38DkmZq6P64c0B2g555bWadrZ4m1PU/2Lzs1DYDieXxn12kj6cM9sx/9Y4+Xp2jZ39xaUCdnGDKHUja+qbrq7cNySuYehfKfVvf+5udV7jYqX1YKVbLDSA0OKZEJvraAOoSzHG9vsEsqz8fgs3PrAE9s+Jp7Ps0TYjzm+7h6y/Uw9dbk2Zabg89fP2FpryPWWWL9PMROw5om6mumMw6JgXKzB8h+BNI2axsk2a3NzOOAXYsm1nHm0DrdiBls/KzNJqPt3bs29oxJqvFXO80MzNTw4YN04MPPqjy8nIVFhbqscce06RJk8IdGnyoOnHIdHrftiEUJw5mxjX12h4+l9c8lvgqh1nvXTuvsydff721t+e1r0HB6tONXf7evT/0vA5kQNJfOfxNV9eQ/fGXW3vp97kXqn+Xhp3Eh6LOWnHiXKVNamB52altBhJLfR20oRdmBtzJCabcdXV8/LUff/W2IceNhnTYQrVv63r/UOQVLnZqH1aK1XIDCA2OKZGHvjaA+gQzMFRf/83KAaZw5GdVPIG+TyCfx5GYJtiy2WX/h4IdB7StYNYxKZj8zPoRQiB5+SubndtbJKWxumyBsDKvQNkxJivZsWx2jMlKDqPmQ8BiQGFhocaMGaPVq1crJSVF9913n+65556A1i0pKZHT6ZTL5bLHrd5OnJCaN698ffx45f/6plNSrI3PJBVuQ/m7inXoWKnatKi8jYMdTtT8xVVzee9OrbRuz5GAytHY966VV5tExae2qFz54EEpI6Py9fHjqnAbnmVr/rNHl2WnnU3b2OU18pLkVSdrrvuDC9rXW476ptNTEiWHVHi8zPT9ESy/dTaItltRckz5h8rMi7OevCsKDig+K1PS9/uyrmc5BVrO+vL2UzeCPV7VG4vJx8pgyl1x7Hhw7afGNg8qLxOPlaE+7lZ///TmiZIhFZ7w3XYjlV0/u0ItVssNIDQi6Zhiu75iGERsX7vmuaKvc0Gz0gB2Y2bdDiBdrf6Rrz6nhe8TaNkszc9u21GBfR5HYpqA38tm+9/MNhmRaUx8L9vtW4vLZsv2FoFpwpGfP1bmFckxWcmOZbNjTL6Y3VeMyYHxxrDdlx0xMjAOEwQzIGnmdLB5xUodDWfbrS/vmvvL7P0RwoHxgPO10/aO5TYAAECUsV1fMcIwMA6EiQ0Hc2yXxo4xcdyylt32SazXWzvGFKllA4AIYHZfMcGEmBBuycnBTSN2Va8LwdabxkxTR30L53YJZn+FMm+7lDma8wYAAIB/gZyPmZUGsBsz67aVbcnqdmu3mDhuWctu+yTW663V+UVz2QAgxnDFeJC4CgAAAAAAUBN9xcZh+wEAAAAAajK7rxhnQkwAAAAAAAAAAAAAANgWA+MAAAAAAAAAAAAAgKjGwHikKy2VfvKTyr/SUv/TiF3V68LRo8HVm8ZMB5tXrAhn2w1mf5ktmLoRqnzttL1juQ0AAADYRSDnY2alAezGzLptZVuyut3aLSaOW9ay2z6J9Xprx5gitWwAEIN4xniQbPfcsxMnpObNK18fP175v77plBRr44N9VK8rBw9KGRmVrwOpN42ZDjavWKmj4Wy79eVdc3+ZvT+CqYdWlTma8wYAAJaxXV8xwoR1+9U8X/N1PmZWGsBuzKzbVrYlq9ut3WLiuGUtu+2TWK+3dowpUssGABGAZ4wDAAAAAAAAAAAAABAEBsYBAAAAAAAAAAAAAFGNgXEAAAAAAAAAAAAAQFRjYBwAAAAAAAAAAAAAENUYGAcAAAAAAAAAAAAARLWEcAcQaQzDkCSVlJSEOZLvnThx9nXNmHxNV1SEPibYU/W6cuzY2deB1JvGTAebV6zU0XC23fryrrm/zN4fwdRDq8oczXkDAADLVPURq/qMCE5Y+9o1z9d8nY+ZlQawGzPrtpVtyep2a7eYOG5Zy277JNbrrR1jitSyAUAEMLuv7TDotQflu+++U4cOHcIdBgAAAADAhvbu3av27duHO4yIQ18bAAAAAFAXs/raDIwHye12a//+/WrRooUcDke4w/GppKREHTp00N69e5WamhrucABLUf8R62gDiHW0AcQ62kD4GIahY8eOqW3btoqL46llwaKvDYQPdRvRirqNaEb9RrSibqMms/va3Eo9SHFxcRHz6//U1FQOHIhZ1H/EOtoAYh1tALGONhAeTqcz3CFELPraQPhRtxGtqNuIZtRvRCvqNqozs6/Nz9gBAAAAAAAAAAAAAFGNgXEAAAAAAAAAAAAAQFRjYDwKJSYmatq0aUpMTAx3KIDlqP+IdbQBxDraAGIdbQAIHdoXohV1G9GKuo1oRv1GtKJuI9QchmEY4Q4CAAAAAAAAAAAAAIBQ4YpxAAAAAAAAAAAAAEBUY2AcAAAAAAAAAAAAABDVGBgHAAAAAAAAAAAAAEQ1BsYBAAAAAAAAAAAAAFGNgfEoc+rUKY0bN06dOnVS+/bt9Zvf/EaGYYQ7LCAk7rnnHjmdTmVnZ3v+9uzZI0nasGGD+vXrp06dOqlHjx768MMPwxwtYA7DMPT666+rf//+XvP91flZs2apa9euateunW644QYVFRVZGTZgmrraQPPmzdWuXTvP58HIkSO9ltMGEA2WL1+uAQMGqGvXrurSpYuef/55z7Ldu3dr6NCh6tSpk7p27aq5c+d6rTtv3jxdcMEFat++vQYPHqxdu3ZZHT4Q0ehrI1o05rMEiBTjx4/X+eef75nmOyJEg/z8fF1xxRXq1KmT2rZtqwULFkiifiOy7du3T7m5uWrXrp3OPfdczZgxw7OMuo2QMRBVxo8fb4wZM8Y4c+aMcfToUeOyyy4znnvuuXCHBYTE//t//8/4/e9/X2t+SUmJ0a5dO+PDDz80DMMwVqxYYTidTqOgoMDqEAFTLVmyxOjZs6fRpUsXo3v37p75/ur8m2++afzgBz8wioqKjPLycuOuu+4yfvazn4WlDEBj1NUGDMMwUlJSjJ07d/pcjzaAaDFhwgRj69athmEYxo4dO4x27doZS5YsMcrLy42ePXsar7zyimEYhvHVV18ZrVq1MjZs2GAYhmGsXr3ayM7ONvbs2WMYhmE89thjRu/evcNRBCBi0ddGtGjoZwkQKb799lsjOTnZ01/gOyJEgy1bthhZWVmeelxWVmYcPHiQ+o2Id9VVVxm/+c1vDLfbbRQVFRmXXHKJ8corr1C3EVIOw+AnztHi+PHjysjI0N69e5WWliZJWrBggWbMmKENGzaEOTrAfPfcc4+6dOmiX//6117z//a3v2nJkiVauHChZ97111+vq6++WhMnTrQ6TMA077zzjpo1a6bk5GTddddd2rp1qyT/df7yyy/XAw88oOHDh0uSCgsLlZWVpYMHD3o+L4BIUFcbkCqvGN+7d69atWpVaz3aAKLV5MmTlZCQoCFDhuiBBx7wOuefMGGC4uPj9cwzz2jUqFHKycnxnAeVl5crIyNDy5cv1yWXXBKu8IGIQV8b0SzQzxIgUowYMUKZmZn66KOPtHXrVr4jQlS48cYbddlll2nq1Kle86nfiHRpaWn697//rZ49e0qSfvvb3+ro0aO6+OKLqdsIGW6lHkXWrVunzp07e33Bm5OTo02bNqmioiKMkQGh07Jly1rz8vLyNGDAAK95OTk52rhxozVBASFy44036tprr601v746X15errVr13otT09PV3Z2tr788suQxwyYqa42IElxcXFyOp215tMGEM0OHz4sp9Pp99yn5vKEhAT16tWLcyMgQPS1Ec0C/SwBIsH777+voqIijRgxwjOPuo1IV1paqvfee0933HFHrWXUb0S6ESNG6IUXXtDp06e1Z88eLVq0SCNGjKBuI6QYGI8iBQUFysjI8JrXpk0blZeXy+VyhSkqILSmTp2qjh07avDgwfrXv/4lqe62wPNkEa3qq/OFhYWqqKhQenq6z+VAtHA4HOrSpYu6deumMWPGaP/+/ZJEG0DUys/P13vvvadRo0b5Pffh3AhoHPraiFbBfJYAdldUVKQJEyZo9uzZXvOp24h027ZtU7NmzfTJJ5/o4osv1rnnnqtf/epXKikpoX4j4j322GNaunSpWrVqpc6dO2vw4MEaNGgQdRshxcB4FCkvL1fNO+NX/Xrd4XCEIyQgpJ577jkdOHBAu3bt0v3336+bbrpJ69atq7Mt0A4Qreqr8+Xl5ZJEm0DUO3LkiHbt2qXPP/9cycnJys3NlWEYtAFEpfnz5+v666/Xa6+9ps6dO/s99+HcCGgc+tqIRsF+lgB2ZhiGxowZo0mTJun888/3WkbdRqQ7duyY505o+fn5+uKLL3T48GFNnDiR+o2IVlFRoWuvvVaTJk2Sy+XSvn379MUXX+jZZ5+lbiOkEsIdAMyTlpamwsJCr3mHDx9WUlKSz1uLApEuLq7ytz3x8fG69tprdfPNN+uf//xnnW0hMzMzHGECIVdfnW/VqpUMw9CRI0e8bv9Jm0C0qfpMcDqdevbZZ5WamqqdO3cqMzOTNoCoUVFRoXvvvVeffPKJli1b5nk+uL9zn6rlHTt29LkcQP3oayOaNPSzBLCzJ554QmfOnNE999xTaxl1G5EuPT1dZ86c0RNPPKEmTZooKSlJDz/8sAYPHqyrr76a+o2ItXz5cp0+fVqTJk2SJGVlZenpp5/W9ddfrwEDBlC3ETJcMR5FevXqpa+//lpHjhzxzFu9erVycnI8XxYD0ay8vFxNmzZV7969tXr1aq9lq1evVv/+/cMUGRBa9dX5lJQUde/e3Wt5QUGBDh486PkSDIg2brdbbrdbTZs2pQ0gqkyaNEk7d+7U2rVrveqvv3OfmstPnz6tdevWqV+/ftYEDkQ4+tqIJg39LAHs7LnnntOqVavUqlUrtWzZUtddd52++eYbtWzZkrqNiNepUyc1bdpUpaWlnnlxcXFKSkqifiOinT59WgkJ3tfuNmnSRKdPn6ZuI6TowUWRzMxMDRs2TA8++KDKy8tVWFioxx57zPOLGyDaLFu2TG63W5L0r3/9S++8845uvPFG3XLLLfr444+1fPlySdIHH3ygLVu2aOTIkeEMFwgZf3V+3Lhxmj59uo4eParTp09r6tSpGjt2rJKTk8MZNmCaHTt2aNu2bZKksrIyTZw4UX369FGHDh0k0QYQHUpLSzV79my98sorSklJ8VqWm5ur/fv3a+7cuZKktWvXatGiRfrlL38pqbIN/OlPf9J3332niooKzZgxQ4MHD1bnzp0tLwcQiehrI1o05rMEsLOCggKVlJTo6NGjOnr0qN577z2dd955Onr0KN8RIeIlJSXp9ttv15QpU1ReXq6ysjJNmzZNt956K/UbEW3gwIE6cOCA5s2bJ0k6fvy4HnroIY0YMYK6jZDiVupR5uWXX9aYMWOUlZWllJQU3XffffrpT38a7rCAkHjmmWd02223KTk5WR07dtTChQvVo0cPSZXPS7v77rtVXFysrl27avHixbU6/kC0aN++fb11fuLEidq3b5+6deumhIQEDR8+XE888USYowbMU1xcrJtvvlmnTp1SYmKirr76ar399tue5bQBRIOdO3fK7XbX+oV89+7dtWzZMi1evFhjx47V5MmTlZmZqX/84x9q3769JOmGG27Q9u3b1bdvX7ndbg0aNEhz5swJRzGAiEVfG9GgMZ8lQKTy118GIsHMmTM1fvx4tWvXTi1atNCNN96oGTNmqGnTptRvRCyn06lly5Zp8uTJmjp1quLi4jR8+HA99thjSk5Opm4jZBxGzSfYAwAAAAAAAAAAAAAQRbiVOgAAAAAAAAAAAAAgqjEwDgAAAAAAAAAAAACIagyMAwAAAAAAAAAAAACiGgPjAAAAAAAAAAAAAICoxsA4AAAAAAAAAAAAACCqMTAOAAAAAAAAAAAAAIhqDIwDABDFHnzwQb3yyiu15q9YsUIDBw4M6r1eeukljR49OugYfvvb3+rhhx8Oap2PPvpIgwYNCjovAAAAAACsQH8bAIDIw8A4AABRZvfu3dq+fbu2b9+uvXv3as+ePZ7pffv2+V1/0KBBWrFiRdD5Zmdna/fu3QGl/fWvf6309HSvP4fDoW3btgWdLwAAAAAAVqC/DQBAZEsIdwAAAMBcd911lwoLCz3TW7Zs0XvvvSdJ6t27t/7617+GKzSPZ555Rs8884xnevfu3erdu7e6dOkSxqgAAAAAAKgb/W0AACIbA+MAAESZpUuXSqq8fdvnn3+upk2b6sorr9Sll16q8vJyHT9+XKdOnapz/WPHjqmkpCTofBu6niTNnj1bN998s+Lj4xu0PgAAAAAAoUZ/GwCAyMbAOAAAUWj06NHasWOHbrrpJpWVlemWW27R7bffro4dO+p3v/udTp06pc6dO/tcd8eOHUHfYu3o0aMqLi7Wtm3bdPHFFwe17meffaZXXnlF//nPf2rFcd999+n888/XL3/5y6DeEwAAAACAUKC/DQBA5GJgHACAKLN9+3Z9/PHH2rlzp5o0aSKpsuPeuXNnFRcX6+abb9aKFSv029/+tta6K1euVJMmTTR//nzdd999Aee5aNEipaena968eRoxYkTA63366ae66aabNHfuXGVmZnotS05O1vnnn68OHToE/H4AAAAAAIQK/W0AACJbXLgDAAAA5mrevLlKS0u9brN26NAhJSUl6cSJE9q+fbv27dvnc92qZ5EZhqEPPvggoPzcbreee+45zZs3T59//rm+/PJLv+ucOXNGzz33nG644QbNmTNHP/rRj2qlycrK0i9/+Utdc801AcUBAAAAAEAo0d8GACCyccU4AABRJjMzU7///e/Vp08fDR48WKdPn9aqVav08ssva+XKlfrjH/8ol8slp9Pptd4bb7yhwsJC3XLLLerRo4eGDx+uzz77TO3atas3v8cee0znn3++hgwZoj//+c/6+c9/rjVr1qhFixY+0+/evVuDBg1S586dtXr1ap133nmmlR0AAAAAgFChvw0AQGRjYBwAgCh077336he/+IU2bdqkJk2a6MUXX/R0nIcPH17r1m6LFy/Www8/rBUrVsjhcKhXr16aMWOGfvjDH+qf//xnnc8x+9vf/qa33npLn376qSQpNzdX69at0xVXXKFFixapY8eOtdbJzs7W4sWL1bNnT7nd7hCUHgAAAACA0KC/DQBA5OJW6gAARKkVK1bozJkzGjhwYK1fkyclJSkrK0uS5HK59Mgjj2jhwoVezxcbPXq0HnroIa1fv97n++/atUsvvfSS3n//fa9fwz/88MP62c9+pq1bt9YZ20UXXaSVK1fqyiuv9Lm8bdu2GjZsWMBlBQAAAADAKvS3AQCITFwxDgBAlFqzZo0yMzN9Pk+sX79++t///V9JktPp1Oeff+7zPcaMGVPn+3fu3Fn5+fk+l/3ud79rQMRn9ejRQz169GjUewAAAAAAEAr0twEAiExcMQ4AAAAAAAAAAAAAiGpcMQ4AQBR75JFH9NRTT9W5fMOGDZ5bvIXDZ599ppYtW9a5fPPmzWrbtq11AQEAAAAAEAD62wAARB6HYRhGuIMAAAD2V1xcrOPHj6tjx45BrXfgwAFJUmZmZijCAgAAAAAgotHfBgDAGgyMAwAAAAAAAAAAAACiGs8YBwAAAAAAAAAAAABENQbGAQAAAAAAAAAAAABRjYFxAAAAAAAAAAAAAEBUY2AcAAAAAAAAAAAAABDVGBgHAAAAAAAAAAAAAEQ1BsYBAAAAAAAAAAAAAFGNgXEAAAAAAAAAAAAAQFRjYBwAAAAAAAAAAAAAENUYGAcAAAAAAAAAAAAARDUGxgEAAAAAAAAAAAAAUY2BcQAAAAAAAAAAAABAVGNgHAAAAAAAAAAAAAAQ1RgYBwAAAAAAAAAAAABENQbGAQAAAAAAAAAAAABRjYFxAAAAAAAAAAAAAEBUY2AcAAALTZw4UZdddlm4wwAAAAAAIGrQ1wYAAIFgYBwAAAu1a9dOXbp0CXq9goICvfTSSyGIyD6ys7PlcDi8/gYNGuSV5vTp0/rv//5vtW3bVs2aNdPAgQO1bt06rzTvv/++Bg4cqFatWqlVq1b6yU9+ok2bNnmlWbFiRa28HA6HXn311RCXEgAAAABgNvradbOyr13ltddeU69evdSsWTO1atVK9913X6iKBwBAUByGYRjhDgIAANRv1qxZmjVrlnbv3h3uUEImOztbt912m8aMGeOZl5SUpMzMTM/0nXfeqf/7v//TCy+8oMzMTP3hD3/QsmXL9NVXXykrK0uS9Oijjyo7O1uXXnqpXC6XZsyYoS+++EJff/21UlNTJVUOjA8ePFgbN26U0+n0vH96erqaN29uUYkBAAAAAOFEX7uSWX1tSZo2bZpeeuklPfbYY+rXr59OnDihw4cPa9iwYdYVGgCAOiSEOwAAAGAdt9vt+YW4HXXv3l3Z2dk+l23ZskWvvvqq1q1bpx/84AeSKn+Fft5552n27Nl65JFHJEm//e1vvdZ79dVXlZWVpXXr1mnw4MGe+U2aNNHFF19s220BAAAAAIgM9LUr+9obN27Uk08+qS+++ELdunULXYEAAGggbqUOAICFJk2a5HXLsocffliXXnqp1q9fr8svv1zJycm66KKL9NFHH3nSZGdn69e//rX27NlTq6NdUlKiu+++W+ecc46Sk5P14x//WDt27PAsr7pl+BdffKH+/furSZMm+vrrr+uNsWqd7du366abblKLFi2UnZ2tP/3pT7XSbty4Ubm5uWrZsqWSkpJ02WWXadGiRZ7lJ06cUHZ2tp599tmAtk9GRkady959911dcMEFno66JDVt2lQ//elP9eGHH9a5XkVFhc/3Puecc2z7pQUAAAAAIHD0tetnVV/7ueee06hRoxgUBwDYFgPjAACEWWFhocaPH6+HHnpIn376qc477zzdcMMNKioqkiR9+umn+t3vfqd27dpp165d2rVrlySpvLxc1157rVauXKn/+Z//0cqVK5WQkKCf/OQnng5qlSlTpmjy5Mlat26d5zZo/vzXf/2Xrr76aq1evVp33HGH7rvvPi1btsyzfP369RowYIBSU1O1ePFirVq1SoMGDdLPfvYzvfPOO5KkhIQEdejQQa1btw4ozxEjRig1NVU9e/bUk08+6VWOTZs26aKLLqq1To8ePbR9+/Za88+cOaMvvvhCo0eP1pgxY9SjRw+v5QcPHpTT6VTr1q31ox/9SKtWrQooRgAAAACA/dHXPsuqvva//vUv/fCHP9S9996rrKwstWnTRqNHj1ZxcXFAcQIAEGrcSh0AgDDbv3+/PvjgA1188cWSpJdeeklZWVlasmSJbr31VrVv315paWlKSEjwuvXZvHnztH79em3ZskWdOnWSJP3jH/9Qhw4dtHDhQo0YMcKT9tprr9XIkSODiusXv/iFfvWrX0mSLrroIr333nv63//9X11zzTWSpPvvv18//OEP9T//8z+edfr06aOjR49q6tSpuvHGG5WYmBjwgPP//M//qFmzZiorK9OKFSv0yCOPaMeOHfrrX/8qSTp8+LC6dOlSa720tDS5XC6veZmZmTp06JAMw9DYsWM1a9Ysr+UXX3yxli9frpYtW6qgoEB//etfddVVV2n58uX64Q9/GPA2AgAAAADYE33tSlb1tY8dO6Z9+/bpueee06BBg/TPf/5T3333ne677z794he/0L/+9a+gthMAAKHAFeMAAIRZ+/btPR11qbLz2aFDB+3du7fe9ZYsWaIhQ4Z4OuqS1KJFC1166aX64osvvNL++Mc/Djqun/zkJ17Tl1xyiSem0tJSrVy5UmPGjKm13i233KJvvvlGBQUFQeU3YMAA9erVS/3799fUqVP1/PPP66WXXtL+/fslVf5qPy6u9qmLr+e4rVq1Sp9//rnefPNNbdu2Tb169dKhQ4c8y9PS0nTFFVfo4osv1jXXXKMFCxZowIABeuyxx4KKGQAAAABgT/S1K1nV1y4pKZEkXXrppXr66aeVk5OjG2+8UfPnz9eHH36ozz//PKi4AQAIBQbGAQAIs7S0tFrzmjdvrrKysnrXO3z4sD744AMlJSV5/a1atcrTwa1S3/PEAo2rekxFRUWqqKhQhw4daq1Xdfu4I0eOBJ1ndcOHD5fb7dZ//vMfSVJqamqtX6tL0tGjR2vdPu68885T7969ddNNN+nDDz9UQkKCHn/88Xrzu/7667Vx48ZGxQwAAAAAsAf62r6Fqq/dpEkTSZVX0VeXk5OjFi1aaNOmTY2KGwAAM3ArdQAAIlTLli2Vm5vrc8DX6XR6Tfv69XdjOJ1OORwO7du3r9ayAwcOSJLOOeecRuVx+vRpSVJiYqIkqVu3blq+fHmtdFu2bFHPnj3rfJ8mTZooJydHW7du9ZtfVV4AAAAAgNhEX7tSsH3tc845R82bN9fRo0drpa155TkAAOHCFeMAAESAJk2a1PpV+8CBA/Wf//xHnTt31vnnn+/1V/VL8lBp3ry5+vXrpzlz5tRaNm/ePPXq1avRnfX58+erWbNm6tWrlyTpmmuu0bp167R9+3ZPmjNnzmjhwoUaPny4JMkwjFrvU1FRoXXr1qlbt2515uV2u/X2229r4MCBjYoZAAAAABA56Gub19d2OBwaMmSI5s2b55Vu1apVOnbsmAYMGNCouAEAMAMD4wAARIBu3brpwIEDevvtt/XZZ59Jku644w6Vl5fruuuu08cff6zNmzfr3XffVW5urs/boJntySef1Icffqhbb71V//d//6e1a9fqN7/5jV5//XU988wzkip/iT5kyBDNnz+/3vdasmSJJk6cqFWrVumLL77Q448/rv/+7//W7373O88v8gcPHqyBAwdqxIgR+ve//63//Oc/uv3229W0aVPP89f27Nmjq666SgsWLNDmzZu1YsUK3Xjjjdq/f7+mTJniye/Xv/61/vrXv+o///mPVqxYoeuvv17ffPONfv/734doawEAAAAA7Ia+trl97d/+9rf69NNP9atf/Urr16/XokWLNGrUKI0ePbreH6sDAGAVbqUOAEAEGDJkiMaMGaM77rhDaWlp2rNnj1JTU7Vy5Urdd999+tnPfibDMNS1a1eNGTNGLVq0CHlMAwcO1IoVK/Tb3/5WP/rRj+RwONSvXz8tX75c/fv3l1T5K/Ovv/5aBw8erPe9OnbsqPz8fL366qsqLS3VBRdcoL/85S8aPXq0V7oFCxZo4sSJys3NlWEYuuaaa/Txxx8rKSlJUuWt27p06aJJkybp0KFDateunYYMGaKNGzeqbdu2nvfp0qWLZs6cqf3796tZs2a68sorlZeXp+7du5u7kQAAAAAAtkVfu5JZfe3evXvr/fff19SpU9W/f3+1bt1ad9xxh6ZPn27uRgIAoIEchq/7oAAAAAAAAAAAAAAAECW4lToAADHmRz/6kZKSknz+vfHGG+EODwAAAACAiENfGwAA++OKcQAAYsy3336rkydP+lyWlZXlec4YAAAAAAAIDH1tAADsj4FxAAAAAABi0Pjx4/XJJ59o69atkqQNGzZo/PjxKigoUEpKip599lkNHTrUk37WrFl64YUXdOrUKfXt21cvvfSSWrduLUkqKirSXXfdpTVr1sjhcGjChAmaMmVKWMoFAAAAAIAv3EodAAAAAIAYs3fvXr3++uue6WPHjik3N1ePPvqo9uzZo9mzZ2vkyJE6cOCAJOmtt97S66+/rvz8fH377bfKzMzUuHHjPOvfdttt6tmzp/bs2aO8vDw9//zzWrx4seXlAgAAAACgLlwxDgAAAABAjBkxYoQyMzP10UcfaevWrfrb3/6mJUuWaOHChZ40119/va6++mpNnDhRl19+uR544AENHz5cklRYWKisrCwdPHhQhYWFGjhwoPbv36+EhARJ0tNPP61Vq1Z5vR8AAAAAAOGUEO4AIo3b7db+/fvVokULORyOcIcDAAAAALABwzB07NgxtW3bVnFx9r452/vvv6+ioiLdc889+uijjyRJeXl5GjBggFe6nJwcbdy4UeXl5Vq7dq3X8vT0dGVnZ+vLL7/U7t271bdvX8+geNW6zz//fJ0xlJWVqayszDPtdrtVXFys1q1b09cGAAAAAEgyv6/NwHiQ9u/frw4dOoQ7DAAAAACADe3du1ft27cPdxh1Kioq0oQJE/T+++97bpMuSQUFBbrqqqu80rZp00Zr1qxRYWGhKioqlJ6eXmt5UVGRCgoKlJGR4XNZXR5//HFNnz7dhBIBAAAAAKKdWX1tBsaD1KJFC0mVOyA1NTW8wZw5I73ySuXrO+6QmjSpPU+qnQaRx99+rTkdSF2wah07xRLIOg1pI2a1xWjb/hxvAABADCkpKVGHDh08fUY7MgxDY8aM0aRJk3T++ed7DYyXl5er5pPWKioq5HA4VF5e7lm/+tXc1ZfXtW5dpk6dqsmTJ3umXS6XOnbsaF1fO9hz11CnB+CtIW3Iju2amIgpXOmJiZjCmd6uMQGISGb3tXnGeJBKSkrkdDrlcrnCPzAOAAAAALCFSOgrPv744/r000/13nvvyeFwaMWKFbrrrru0detW3XTTTerXr5/XYPWMGTP03Xff6emnn1aLFi1UWFiotLQ0z/IuXbpo7ty52rBhg5YuXap3333Xs2zVqlX65S9/qa+//jqg2CJh+wEAAAAArGV2X9HeDz4DAAAAAACmeO6557Rq1Sq1atVKLVu21HXXXadvvvlGLVu2VO/evbV69Wqv9KtXr1b//v2VkpKi7t27ey0vKCjQwYMHdckll6h3795as2aN3G53rXUBAAAAALALbqUeySoqpFWrKl//8IdSfHzteVLtNIg8/vZrzelA6oJV69gplkDWaUgbMastRtv253gDAABgKwUFBV7T1a8Y/+677/TEE09o+fLluuqqq/TBBx9oy5YtGjlypCRp3Lhxmj59ugYOHKjk5GRNnTpVY8eOVXJysvr27ausrCzNnDlTDzzwgHbv3q0XX3xRCxYsCEcxAxPsuWuo0wPw1pA2ZMd2TUzEFK70xERM4Uxv15gAQNxKPWi2ur3biRNS8+aVr48fl1JSas+TaqdB5PG3X2tOB1IXrFrHTrEEsk5D2ohZbTHatj/HGwAAEENs1VcMUPWBcUlatmyZJk6cqOLiYnXt2lV//etfddFFF0mS3G63fvOb3+j1119XQkKChg8frlmzZikxMVGStHPnTt1555366quv1KpVKz322GOeQfVAWL79gj13DXV6AN4a0obs2K6JiZjClZ6YiCmc6e0aE4CIZHZfkSvGAQAAAACIQYMGDfIMikvSNddc4zVdXVxcnJ566ik99dRTPpefe+65WrFiRSjCBAAAAADAFDxjHAAAAAAAAAAAAAAQ1RgYBwAAAAAAAAAAAABENQbGAQAAAAAAAAAAAABRjYFxAAAAAAAAAAAAAEBUY2AcAAAAAAAAAAAAABDVEsIdABqhSRPpySfPvq5rXs1pRJ5A9mtD6oJV69gplkDWCZZZbTEatz8AAABgR8Geu4Y6PQBvDWlDdmzXxERM4UpPTMQUzvR2jQkAJDkMwzDCHUQkKSkpkdPplMvlUmpqarjDAQAAAADYAH3FxmH7AQAAAABqMruvyBXjUabCbSh/V7EOHStVmxZJ6ts5TfFxjnCHBQAAAAAAAACW4/tSAABQhYHxSFZRIa1fX/m6Vy8t3XJIMxZ9qdbbvpIkbcrooixnkv7YpUKXd0mXevWS4uPDGDAarMa+llT/dHy8fdaxUyyBrNOQNuLrPQLZLv7ex4wyR9q2BAAAAKwQ5LlrxZlyffXeJzpy8rSa9umjvl3PqX9QhXNjoHEa0oaCXSfU6YnJFjEt3VRQ6/vSjFYpmpbbQ8N6ZoUlJkvSExMxhTO9XWMCAHEr9aDZ6vZuJ05IzZtLkj5cs13jFmxV0ulSbXlmhCTpgl+/LYekzd9P6/hxKSUlTMGiUartax0/Xvm/vumUFPusY6dYAlmnIW3E13sEsl38vY8ZZY60bQkAABChbNVXjECWb78gzl2XbirQzHfW6ZOHcyVV9rVbntOy/kEVzo2BxmlIGwp2nVCnJ6awx7R0U4HGz11f6/vS0qZJkqTZt/Yy7zhut/TEREzhTG/XmABEJLP7inEmxAQb+MOSLfL1C4fq8yrc/AYCAAAAAIBAVQ2qHHCVec0/4CrV+LnrtXRTQZgiAwDUp8JtaPrizfV+Xzp98Wa+LwUAIMYwMB4lanbSfVm7u9iCSAAAAAAAiHwMqgBA5MrfVawCV2mdyw1JBa5S5e/i+1IAAGIJA+Mx5PBx/4PnAAAAAACAQRUAiGSHjtV9/G5IOgAAEB0YGI8h5zRPDHcIAAAAAABEBAZVACBytWmRZGo6AAAQHRgYjxKZzkQ5/KS5LDvNklgAAAAAAIh0DKoAQOTq2zlNWc6kOr8vdUjKciapb2e+LwUAIJYwMB4lHvzxBZJU62Sv+nR8nL+hcwAAAAAAIDGoAgCRLD7OoWm5PSTV/X3ptNwefF8KAECMSQh3AGiEJk2kadMkSUMv7aDZycl6bOEXmjXgZklSeXy8MlOTtH38ZHVt06IyPSJTtX3t2Y/+pu20jp1iCWSdYPl6j0BiCeR9In37AwAAAHYUwLlr1aDK+LnrVREf79XX9juowrkx0DgNaUPBrhPq9MQU9piG9czS7Ft71f6+1Jmkabk9NKxnluUxWZaemIgpnOntGhMASHIYhmGEO4hIUlJSIqfTKZfLpdTU1HCHU0uF21D+rmIdOlaqNi0qf7nOLx8BAAAAILTs3le0Oztvv6WbCjR98WYVuM4+SzwrkEEVAIAt8H0pAACRy+y+IleMR5n4OIf6d2kd7jAAAAAAAIgKw3pmaWiPTAZVACBC8X0pAACowsB4JHO7pS1bKl9fcIEUF1d7nlQ7DSKPv/1aczqQumDVOnaKJZB1GtJGzGqL0bb9Od4AAADAroI8d42Xof6lB6QmkjpfIPkbFOfcGGichrShYNcJdXpiIqZwpicmYgpnervGBADiVupBs9Xt3U6ckJo3r3x9/LiUklJ7nlQ7DSKPv/1aczqQumDVOnaKJZB1GtJGzGqL0bb9Od4AAIAYYqu+YgSyfPsFe+4a6vQAvDWkDdmxXRMTMYUrPTERUzjT2zUmABHJ7L4iP6MBAAAAAAAAAAAAAEQ1BsYBAAAAAAAAAAAAAFGNgXEAAAAAAAAAAAAAQFRjYBwAAAAAAAAAAAAAENUYGAcAAAAAAAAAAAAARDUGxgEAAAAAAAAAAAAAUS0h3AGgEZo0ke677+zruubVnEbkCWS/NqQuWLWOnWIJZJ1gmdUWo3H7AwAAAHYU7LlrqNMD8NaQNmTHdk1MxBSu9MRETOFMb9eYAECSwzAMI9xBRJKSkhI5nU65XC6lpqaGOxwAAAAAgA3QV2wcth8AAAAAoCaz+4rcSh0AAAAAAAAAAAAAENW4lXokc7ulb7+tfN2xoxQXV3ueVDsNIo+//VpzOpC6YNU6doolkHUa0kbMaovRtv053gAAAMCugj13DXV6AN4a0obs2K6JiZjClZ6YiCmc6e0aEwCIW6kHzVa3dztxQmrevPL18eNSSkrteVLtNIg8/vZrzelA6oJV69gplkDWaUgbMastRtv253gDAABiiK36ihHI8u0X7LlrqNMD8NaQNmTHdk1MxBSu9MRETOFMb9eYAEQkbqUOAAAAAAAAAAAAAEAQGBgHAAAAAAAAAAAAAEQ1BsYBAAAAAAAAAAAAAFGNgXEAAAAAAAAAAAAAQFRjYBwAAAAAAAAAAAAAENVsOTC+ZMkSZWdne/1lZGSoRYsWkqQNGzaoX79+6tSpk3r06KEPP/zQa/1Zs2apa9euateunW644QYVFRV5lhUVFWnkyJHq2LGjOnXqpD/96U+Wlg0AAAAAAAAAAAAAYK2EcAfgy49//GPt3r3ba95dd92l9PR0HTt2TLm5uXr11Vc1ZMgQrVy5UsOHD9fWrVuVmZmpt956S6+//rry8/PldDp1zz33aNy4cXrnnXckSbfddptycnL01ltvqaCgQJdffrm6deum3NzcMJS0kRISpLvvPvu6rnk1pxF5AtmvDakLVq1jp1gCWSdYZrXFaNz+AAAAgB0Fe+4a6vQAvDWkDdmxXRMTMYUrPTERUzjT2zUmAJDkMAzDCHcQ/uzcuVP9+/fXtm3b9Oabb2rJkiVauHChZ/n111+vq6++WhMnTtTll1+uBx54QMOHD5ckFRYWKisrSwcPHlRhYaEGDhyo/fv3K+H7g+XTTz+tVatWeb1ffUpKSuR0OuVyuZSammp+YQEAAAAAESdS+opPPvmkXnrpJZWWlsrpdOqxxx7T9ddfL0lq3ry5nE6nmjRpIknq06eP/vd//9ez7qxZs/TCCy/o1KlT6tu3r1566SW1bt1aUuXd2e666y6tWbNGDodDEyZM0JQpUwKOK1K2HwAAAADAOmb3FW15K/WannjiCf2///f/5HQ6lZeXpwEDBngtz8nJ0caNG1VeXq61a9d6LU9PT1d2dra+/PJL5eXlqW/fvp5B8err1qWsrEwlJSVefwAAAAAARKKcnBx99dVX+vbbb/XnP/9ZP//5z70eP/bpp59q9+7d2r17t9egePW7s3377bfKzMzUuHHjPMtvu+029ezZU3v27FFeXp6ef/55LV682NKyAQAAAABQH9vfY+Lw4cN688039c0330iSCgoKdNVVV3mladOmjdasWaPCwkJVVFQoPT291vKioiIVFBQoIyPD57K6PP7445o+fbpJpTGZYUiFhZWv09Mlh6P2PKl2GkQef/u15nQgdcGqdewUSyDrNKSNmNUWo237c7wBAACwnSuvvNLz+oorrlBycrIOHz7sufK7ZcuWPtebNWuWpk2bprS0NEnSjBkzlJWVpeLiYhUWFmrt2rV699135XA41LZtW02YMEFz5syx72PLgj13DXV6AN4a0obs2K6JiZjClZ6YiCmc6e0aEwAoAgbG33jjDd1www1q06aNJKm8vFw17/5eUVEhh8Oh8vJySZJhGHJUOxBWX17XunWZOnWqJk+e7JkuKSlRhw4dGl0uU5w8KX2/XXT8uJSSUnueVDsNIo+//VpzOpC6YNU6doolkHUa0kbMaovRtv053gAAANhWaWmp/vKXv6hPnz46//zzJUlxcXFyOp210vq7O9vu3bt93p3t+eefrzP/srIylZWVeaYtvztbsOeuoU4PwFtD2pAd2zUxEVO40hMTMYUzvV1jAgBFwK3UX3nlFd1yyy2e6bS0NBVW/RLoe4cPH1ZmZqZatWolwzB05MgRn8vrW7cuiYmJSk1N9foDAAAAACAS7dixQx06dFBycrLmz5+vF1980bPM4XCoS5cu6tatm8aMGaP9+/dLUsjuzuZ0Oj1/tvkBOgAAAAAgatl6YHzjxo3av3+/Bg8e7JnXu3dvrV692ivd6tWr1b9/f6WkpKh79+5eywsKCnTw4EFdcskl6t27t9asWSO3211rXQAAAAAAol2XLl20d+9enTx5UhMmTFD//v09jy47cuSIdu3apc8//1zJycnKzc2VYRhed2errrF3Z3O5XJ6/vXv3mlxSAAAAAAC82XpgfOnSpbriiiu8bsd2yy236OOPP9by5cslSR988IG2bNmikSNHSpLGjRun6dOn6+jRozp9+rSmTp2qsWPHKjk5WX379lVWVpZmzpwpt9utnTt36sUXX9S9994blvIBAAAAABAOSUlJGjVqlK677jq99tprkipvpS5JTqdTzz77rL7++mvt3LmTu7MBAAAAAKKCrQfG16xZo169ennNa9++vebPn6+7775bbdq00aOPPqrFixcr5ftnSEycOFFXXnmlunXrpuzsbDVr1kxPPPGEpMrbwi1YsEDLli1TRkaGhg0bpqeeekq9e/e2vGwAAAAAAIRbYmKimjVrVmu+2+2W2+1W06ZNuTsbAAAAACAqJPhPEj4LFy70Of+aa67R1q1bfS6Li4vTU089paeeesrn8nPPPVcrVqwwK0QAAAAAACLCvn379O9//1sjR45UQkKC/v3vf2vhwoVauXKlduzYoYqKCnXr1k1lZWWaPHmy+vTp43n2d9Xd2QYOHKjk5OQ67872wAMPaPfu3XrxxRe1YMGCMJcYAAAAAICzbH3FOAAAAAAAMEdiYqJefvlltW3bVl26dNH06dO1cOFCdevWTcXFxbr22mvVrl07XXDBBTp9+rTefvttz7rcnQ0AAAAAEOlsfcU4/EhIkP7rv86+rmtezWlEnkD2a0PqglXr2CmWQNYJllltMRq3PwAAAGwjPT1dH330kc9lffr00fbt2+tcN+ruzhbsuWuo0wPw1pA2ZMd2TUzEFK70xERM4Uxv15gAQJLDMAwj3EFEkpKSEjmdTrlcLqWmpoY7HAAAAACADdBXbBy2HwAAAACgJrP7itxKHQAAAAAAAAAAAAAQ1bjHRCQzDOnkycrXycmSw1F7nlQ7DSKPv/1aczqQumDVOnaKJZB1GtJGzGqL0bb9Od4AAADAroI9dw11egDeGtKG7NiuiYmYwpWemIgpnOntGhMAiIHxyHbypNS8eeXr48ellJTa86TaaRB5/O3XmtOB1AWr1rFTLIGs05A2YlZbjLbtz/EGAAAAdhXsuWuo0wPw1pA2ZMd2TUzEFK70xERM4Uxv15gAQNxKHQAAAAAAAAAAAAAQ5RgYBwAAAAAAAAAAAABENQbGAQAAAAAAAAAAAABRjYFxAAAAAAAAAAAAAEBUY2AcAAAAAAAAAAAAABDVGBgHAAAAAAAAAAAAAES1hHAHgEaIj5dGjDj7uq55NacReQLZrw2pC1atY6dYAlknWGa1xWjc/gAAAIAdBXvuGur0ALw1pA3ZsV0TEzGFKz0xEVM409s1JgCQ5DAMwwh3EJGkpKRETqdTLpdLqamp4Q4HAAAAAGAD9BUbh+0HAAAAAKjJ7L4it1IHAAAAAAAAAAAAAEQ1BsYBAAAAAAAAAAAAAFGNgfFIduKE5HBU/p044XuerzSIPP72a0PqglXr2CmWQNYxY/8Eul2s2M+Rti0BAAAAKwR77hrq9AC8NaQN2bFdExMxhSs9MRFTONPbNSYAEAPjAAAAAAAAAAAAAIAox8A4AAAAAAAAAAAAACCqMTAOAAAAAAAAAAAAAIhqDIwDAAAAAAAAAAAAAKIaA+MAAAAAAAAAAAAAgKjGwDgAAAAAAAAAAAAAIKolhDsANEJ8vHTttWdf1zWv5jQiTyD7tSF1wap17BRLIOsEy6y2GI3bHwAAALCjYM9dQ50egLeGtCE7tmtiIqZwpScmYgpnervGBACSHIZhGOEOIpKUlJTI6XTK5XIpNTU13OEAAAAAAGyAvmLjsP0AAAAAADWZ3VfkVuoAAAAAAAAAAAAAgKjGwDgAAAAAAAAAAAAAIKoxMB7JTpyQUlIq/06c8D3PVxpEHn/7tSF1wap17BRLIOuYsX8C3S5W7OdI25YAAACAFYI9dw11egDeGtKG7NiuiYmYwpWemIgpnOntGhMASEoIdwBopJMn/c/zlQaRx99+bUhdsGodO8USyDoNYVZbjLbtDwAAANhVsOeuoU4PwFtD2pAd2zUx2SOPaIgpGspgRR7EZI/0VuTBuRaABuCKcQAAAAAAAAAAAABAVGNgHAAAAAAAAAAAAAAQ1RgYBwAAAAAAAAAAAABENQbGAQAAAAAAAAAAAABRjYFxAAAAAAAAAAAAAEBUSwh3AGiEuDjpyivPvq5rXs1pRJ5A9mtD6oJV69gplkDWCZZZbTEatz8AAABgR8Geu4Y6PQBvDWlDdmzXxERM4UpPTMQUzvR2jQkAJDkMwzDCHUQkKSkpkdPplMvlUmpqarjDAQAAAADYAH3FxmH7AQAAAABqMruvyE9pAAAAAAAAAAAAAABRjYFxAAAAAAAAAAAAAEBUY2A8kp04IZ1zTuXfiRO+5/lKg8jjb782pC5YtY6dYglkHTP2T6DbxYr9HGnbEgAAALBCsOeuoU4PwFtD2pAd2zUxEVO40hMTMYUzvV1jAgBJCeEOoD75+fm67777tGfPHp05c0YvvPCCfvazn2nDhg0aP368CgoKlJKSomeffVZDhw71rDdr1iy98MILOnXqlPr27auXXnpJrVu3liQVFRXprrvu0po1a+RwODRhwgRNmTIlXEVsvMJC//N8pUHk8bdfG1IXrFrHTrEEsk5DmNUWo237AwAAAHYV7LlrqNMD8NaQNmTHdk1M9sgjGmKKhjJYkQcx2SO9FXlwrgWgAWx7xfjWrVv105/+VL///e+1Z88e7d69WwMHDtSxY8eUm5urRx99VHv27NHs2bM1cuRIHThwQJL01ltv6fXXX1d+fr6+/fZbZWZmaty4cZ73ve2229SzZ0/t2bNHeXl5ev7557V48eJwFRMAAAAAAAAAAAAAEGK2HRh/6KGHdO+992rIkCGSpKZNm6pNmzaaN2+e+vTp45l/5ZVX6oorrtCbb74pqfJq8WnTpiktLU3x8fGaMWOG3n33XRUXF2vbtm1au3atHnroITkcDrVt21YTJkzQnDlzwlZOAAAAAACs8uSTT6pbt27q2LGjLrroIr377rueZRs2bFC/fv3UqVMn9ejRQx9++KHXurNmzVLXrl3Vrl073XDDDSoqKvIsKyoq0siRI9WxY0d16tRJf/rTnywrEwAAAAAAgbDlwHhpaanee+893XHHHbWW5eXlacCAAV7zcnJytHHjRpWXl2vt2rVey9PT05Wdna0vv/xSeXl56tu3rxISEmqtW5eysjKVlJR4/QEAAAAAEIlycnL01Vdf6dtvv9Wf//xn/fznP1dRURF3ZwMAAAAARD1bDoxv27ZNzZo10yeffKKLL75Y5557rn71q1+ppKREBQUFysjI8Erfpk0bFRUVqbCwUBUVFUpPT/e5vL516/L444/L6XR6/jp06GBeQQEAAAAAsNCVV16pJk2aSJKuuOIKJScn6/Dhw9ydDQAAAAAQ9Ww5MH7s2DHP1d/5+fn64osvdPjwYU2cOFHl5eUyDMMrfUVFhRwOh8rLyyWp3uV1LavL1KlT5XK5PH979+41qZQAAAAAAIRHaWmpZs2apT59+uj888/n7mwAAAAAgKiX4D+J9dLT03XmzBk98cQTatKkiZKSkvTwww9r8ODBuvrqq1VYWOiV/vDhw8rMzFSrVq1kGIaOHDmitLS0WssLCgqUn5/vc926JCYmKjEx0dwCmiUuTrrssrOv65pXcxqRJ5D92pC6YNU6doolkHWCZVZbjMbtDwAAAFvZsWOHBg0apH379qlv3776xz/+IUkqKCjQVVdd5ZW2TZs2WrNmTcjuzjZ9+nSTStUAwZ67hjo9AG8NaUN2bNfEREzhSk9MxBTO9HaNCQAkOYyal1DbQGlpqc455xzt379fLVq0kCRt2rRJ11xzjSZMmKDPP/9cb7/9tif9j3/8Y/385z/X6NGjdcEFF+iPf/yjrrvuOkmVnfvzzjtPhw4d0pdffqnrr79eBQUFivv+YDlz5kxt2bJFr776akCxlZSUyOl0yuVyKTU11dyCAwAAAAAiUqT1FUtLS7VgwQL9+te/1qeffqrx48fr9ttv1+233+5J85e//EVLlizRn//8Z3Xq1Enl5eVed1zr16+fHnjgAX311VfauXOn163Tt27dqpycHLlcLp/5l5WVqayszDNdUlKiDh06RMz2AwAAAACEntl9bVv+lCYpKUm33367pkyZovLycpWVlWnatGm69dZbdcstt+jjjz/W8uXLJUkffPCBtmzZopEjR0qSxo0bp+nTp+vo0aM6ffq0pk6dqrFjxyo5OVl9+/ZVVlaWZs6cKbfbrZ07d+rFF1/UvffeG87iAgAAAABgqaSkJI0aNUrXXXedXnvtNaWlpQV0dzZfy+tbty6JiYlKTU31+gMAAAAAIJRsOTAuVV7JferUKbVr104XXnihunbtqhkzZqh9+/aaP3++7r77brVp00aPPvqoFi9erJSUFEnSxIkTdeWVV6pbt27Kzs5Ws2bN9MQTT0iSHA6HFixYoGXLlikjI0PDhg3TU089pd69e4ezqAAAAAAAhEViYqKaNWum3r17a/Xq1V7LVq9erf79+yslJUXdu3f3Wl5QUKCDBw/qkksuUe/evbVmzRq53e5a6wIAAAAAYBe2HRhv3ry53njjDR08eFDbt2/XzJkz1bRpU0nSNddco61bt+rQoUNavXq1LrroIs96cXFxeuqpp3To0CHt379fs2fP9npG+LnnnqsVK1bo8OHD2rZtm+dK84h08qSUnV35d/Kk73m+0iDy+NuvDakLVq1jp1gCWceM/RPodvH3PpG+/QEAAGAr+/bt07x581ReXi5J+ve//62FCxdq5MiRsXd3tmDPXUOdHoC3hrQhO7ZrYiKmcKUnJmIKZ3q7xgQAkhLCHQAawTCkPXvOvq5rXs1pRJ5A9mtD6oJV69gplkDWCZZZbTEatz8AAABsIzExUS+//LImTpyoFi1aKDs7WwsXLlS3bt0kyXN3tuLiYnXt2rXW3dn27dunbt26KSEhQcOHD691d7Y777xTTz/9tFq1amX/u7MFe+4a6vQAvDWkDdmxXRMTMYUrPTERUzjT2zUmABAD4wAAAAAAxIT09HR99NFHdS6vujubL1V3Z3vqqad8Lq+6OxsAAAAAAHZl21upAwAAAAAAAAAAAABgBgbGAQAAAAAAAAAAAABRjYFxAAAAAAAAAAAAAEBUY2AcAAAAAAAAAAAAABDVEsIdABrB4ZB69Dj7uq55NacReQLZrw2pC1atY6dYAlknWGa1xWjc/gAAAIAdBXvuGur0ALw1pA3ZsV0TEzGFKz0xEVM409s1JgCQ5DAMwwh3EJGkpKRETqdTLpdLqamp4Q4HAAAAAGAD9BUbh+0HAAAAAKjJ7L4it1IHAAAAAAAAAAAAAEQ1BsYBAAAAAAAAAAAAAFGNgfFIdvKkdOGFlX8nT/qe5ysNIo+//dqQumDVOnaKJZB1zNg/gW4XK/ZzpG1LAAAAwArBnruGOj0Abw1pQ3Zs18RETOFKT0zEFM70do0JACQlhDsANIJhSJs3n31d17ya04g8gezXhtQFq9axUyyBrBMss9piNG5/AAAAwI6CPXcNdXoA3hrShuzYromJmMKVnpiIKZzp7RoTAIgrxgEAAAAAAAAAAAAAUY6BcQAAAAAAAAAAAABAVGNgHAAAAAAAAAAAAAAQ1RgYBwAAAAAAAAAAAABENQbGAQAAAAAAAAAAAABRLSHcAaARHA6pU6ezr+uaV3MakSeQ/dqQumDVOnaKJZB1gmVWW4zG7Q8AAADYUbDnrqFOD8BbQ9qQHds1MRFTuNITEzGFM71dYwIASQ7DMIxwBxFJSkpK5HQ65XK5lJqaGu5wAAAAAAA2QF+xcdh+AAAAAICazO4rcit1AAAAAAAAAAAAAEBUY2AcAAAAAAAAAAAAABDVGBiPZKdOSX36VP6dOuV7nq80iDz+9mtD6oJV69gplkDWMWP/BLpdrNjPkbYtAQAAACsEe+4a6vQAvDWkDdmxXRMTMYUrPTERUzjT2zUmABDPGA+arZ57duKE1Lx55evjx6WUlNrzpNppEHn87dea04HUBavWsVMsgazTkDZiVluMtu3P8QYAAMQQW/UVI5Dl2y/Yc9dQpwfgrSFtyI7tmpiIKVzpiYmYwpnerjEBiEg8YxwAAAAAAAAAAAAAgCAwMA4AAAAAAAAAAAAAiGoMjAMAAAAAAAAAAAAAohoD4wAAAAAAAAAAAACAqMbAOAAAAAAAAAAAAAAgqiWEOwA0Unq6/3m+0iDy+NuvDakLVq1jp1gCWachzGqL0bb9AQAAALsK9tw11OkBeGtIG7JjuyYme+QRDTFFQxmsyIOY7JHeijw41wLQAA7DMIxwBxFJSkpK5HQ65XK5lJqaGu5wAAAAAAA2QF+xcdh+AAAAAICazO4rcit1AAAAAAAAAAAAAEBUY2AcAAAAAAAAAAAAABDVGBiPZKdOSYMGVf6dOuV7nq80iDz+9mtD6oJV69gplkDWMWP/BLpd/L1PpG9/AAAAwK6CPXcNdXoA3hrShuzYromJmMKVnpiIKZzp7RoTAIhnjAfNVs89O3FCat688vXx41JKSu15Uu00iDz+9mvN6UDqglXr2CmWQNZpSBsxqy1G2/bneAMAAGKIrfqKEcjy7RfsuWuo0wPw1pA2ZMd2TUzEFK70xERM4Uxv15gARCSeMQ4AAAAAAAAAAAAAQBAYGAcAAAAAAAAAAAAARDUGxgEAAAAAAAAAAAAAUY2BcQAAAAAAAAAAAABAVGNgHAAAAAAAAAAAAAAQ1RLCHQAaKTnZ/zxfaRB5/O3XhtQFq9axUyyBrNMQZrXFaNv+AAAAgF0Fe+4a6vQAvDWkDdmxXROTPfKIhpiioQxW5EFM9khvRR6cawFoAIdhGEa4g6jpnnvu0RtvvKFWrVp55q1cuVKdOnXShg0bNH78eBUUFCglJUXPPvushg4d6kk3a9YsvfDCCzp16pT69u2rl156Sa1bt5YkFRUV6a677tKaNWvkcDg0YcIETZkyJajYSkpK5HQ65XK5lJqaak6BAQAAAAARjb5i47D9AAAAAAA1md1XtO2t1CdNmqTdu3d7/jp16qRjx44pNzdXjz76qPbs2aPZs2dr5MiROnDggCTprbfe0uuvv678/Hx9++23yszM1Lhx4zzvedttt6lnz57as2eP8vLy9Pzzz2vx4sXhKiIAAAAAAAAAAAAAwAK2HRhv2bJlrXnz5s1Tnz59NGTIEEnSlVdeqSuuuEJvvvmmpMqrxadNm6a0tDTFx8drxowZevfdd1VcXKxt27Zp7dq1euihh+RwONS2bVtNmDBBc+bMsbJYAAAAAACEzfLlyzVgwAB17dpVXbp00fPPP+9Z1rNnT2VkZCg7O1vZ2dnq37+/17rz5s3TBRdcoPbt22vw4MHatWuXZ9mpU6c0btw4derUSe3bt9dvfvMb2fAGdQAAAACAGBZRA+N5eXkaMGCA17ycnBxt3LhR5eXlWrt2rdfy9PR0ZWdn68svv1ReXp769u2rhISEWuvWp6ysTCUlJV5/tlFaKv3kJ5V/paW+5/lKg8jjb782pC5YtY6dYglkHTP2T6DbxYr9HGnbEgAAACG1aNEizZkzR9u3b9eHH36omTNnaunSpZ7l8+fP99y5LS8vzzM/Ly9PDz74oJYtW6bvvvtOQ4cO1ciRIz3Lp0yZIrfbrR07duirr77SJ598ohdeeMHSsgUl2HPXUKcH4K0hbciO7ZqYiClc6YmJmMKZ3q4xAYBs/Izxt99+W02bNlWXLl00depU/ehHP9KwYcN0yy236LbbbvOk/fvf/67Fixfrb3/7m9q1a6eKigqv9xowYICmTJmibdu26ZtvvtHLL7/sWfbNN9+od+/e9Q52P/zww5o+fXqt+bZ47tmJE1Lz5pWvjx+XUlJqz5Nqp0Hk8bdfa04HUhesWsdOsQSyTkPaiFltMdq2P8cbAAAQQyL1GdmTJ09WQkKCnnzySfXs2VNvvPGGfvCDH9RKN2rUKOXk5GjixImSpPLycmVkZGj58uXq0qWLMjIytHfvXqWlpUmSFixYoBkzZmjDhg0BxWH59gv23DXU6QF4a0gbsmO7JiZiCld6YiKmcKa3a0wAIlJMPGP8ueee04EDB7Rr1y7df//9uummm7Ru3TqVl5fXuhVbRUWFHA6HysvLJane5XUtq8/UqVPlcrk8f3v37jWhhAAAAAAAhN/hw4fldDo9077u3ibVvoNbQkKCevXqpY0bN2rdunXq3LmzZ1BcqrxD26ZNm2r9eL2Kre/OBgAAAACISrYcGI+LqwwrPj5e1157rW6++Wb985//VFpamgoLC73SHj58WJmZmWrVqpUMw9CRI0d8Lq9v3fokJiYqNTXV6w8AAAAAgEiXn5+v9957T6NGjZIkORwODRo0SOeee65uuukmbdu2zZO2oKBAGRkZXuu3adNGRUVFdS4rLy+Xy+Xymffjjz8up9Pp+evQoYPJpQMAAAAAwJstB8ZrKi8vV9OmTdW7d2+tXr3aa9nq1avVv39/paSkqHv37l7LCwr+P3t3Hh9Fff9x/L1JIEsCWYgICVcSQY6A1YJclSooVGqNeGG1YotSqFAVxKt4FJBaxXqgtGJ/IgilglZRxCpIRawU5BSVS5FLlCAQYENCEkgyvz9CluyV7G72mN19PR+PPB47M9/vzmfmO9/NfOc78518/fDDDzr//PPVo0cPrVmzRpWVlW55AQAAAACIJwsWLNBVV12lOXPmKCcnR5L0+eefa+/evdqyZYt+/OMfa+DAgSo6/RqdukZw87RMktdR2hidDQAAAAAQbqbsGF+6dKmjA/uDDz7Qm2++qeuuu04333yzPvzwQy1fvlyS9N5772nbtm0aOnSoJGnUqFGaPHmyjh07ppMnT2rChAkaOXKkUlJS1KtXL2VmZmrq1KmqrKzUrl279MILL+jOO++M2HYCAAAAABBOFRUVGjNmjCZPnqylS5fqqquuciyrHr2tUaNGmjBhglJTU7VmzRpJqnUUNm/LrFar0zDtNTE6GwAAAAAg3JIiHYAnzz77rG655RalpKSoXbt2euutt5Sbmyup6q72MWPG6MiRI+rQoYMWL16s1NRUSdLYsWP1/fffq2PHjkpKStKQIUP0xBNPSKq6S33hwoW67bbb9Mwzz6hZs2Z66qmn1KNHj4htJwAAAAAA4TRu3Djt2rVL69evd7SlvakevU2SYwS37t27S5JOnjypDRs2aObMmWrUqJG++uorHT16VM2aNZNUNUJb7969HZ3tAAAAAABEmik7xpcsWeJ12eWXX67t27d7XJaQkKCnnnpKTz31lMfl55xzjlasWBGMEAEAAAAAiCqlpaWaMWOG9u3b59YpfvDgQX333Xfq3r27KioqNHXqVCUkJKhnz56SqkZoGz9+vK6++mplZmZqypQpGjBggGMY9sGDB+vBBx/U9OnTdezYMT322GN69NFHw76NAAAAAAB4YzFcXwSGWhUWFspms8lutzPUGwAAAABAUnS0Fbdu3apu3bqpXbt2TvM7deqkl156SVdccYUKCgpktVrVs2dPPfnkk8rOznak+8tf/qJnn31WlZWV6t+/v2bMmOF4Qvzw4cMaMWKEVq1apdTUVN1777264447fI4tGvYfAAAAACC8gt1WpGPcTzTWAQAAAACuaCvWD/sPAAAAAOAq2G1FXvYFAAAAAAAAAAAAAIhpdIxHs9JSaejQqr/SUs/zPKVB9KmrXAM5FsKVx0yx+JInGOXj634JRzlH274EAAAAwsHfc9dQpwfgLJA6ZMZ6TUzEFKn0xERMkUxv1pgAQAyl7jdTDe9WXCw1blz1uahISk11nye5p0H0qatcXad9ORbClcdMsfiSJ5A6Eqy6GGv7n98bAAAQR0zVVoxCYd9//p67hjo9AGeB1CEz1mtiIqZIpScmYopkerPGBCAqMZQ6AAAAAAAAAAAAAAB+oGMcAAAAAAAAAAAAABDT6BgHAAAAAAAAAAAAAMQ0OsYBAAAAAAAAAAAAADGNjnEAAAAAAAAAAAAAQEyjYxwAAAAAAAAAAAAAENMshmEYkQ4imhQWFspms8lutystLS2ywRiGdOJE1eeUFMlicZ8nuadB9KmrXF2nfTkWwpXHTLH4kieQOhKsuhhr+5/fGwAAEEdM1VaMQmHff/6eu4Y6PQBngdQhM9ZrYiKmSKUnJmKKZHqzxgQgKgW7rUjHuJ+42AEAAAAAcEVbsX7YfwAAAAAAV8FuKzKUOgAAAAAAAAAAAAAgptExHs3KyqThw6v+yso8z/OUBtGnrnIN5FgIVx4zxeJLnmCUj6/7pa7vifb9DwAAAJiVv+euoU4PwFkgdciM9ZqYiClS6YmJmCKZ3qwxAYAYSt1vphrerbhYaty46nNRkZSa6j5Pck+D6FNXubpO+3IshCuPmWLxJU8gdSRYdTHW9j+/NwAAII6Yqq0YhcK+//w9dw11egDOAqlDZqzXxERMkUpPTMQUyfRmjQlAVGIodQAAAAAAAAAAAAAA/EDHOAAAAAAAAAAAAAAgptExDgAAAAAAAAAAAACIaXSMAwAAAAAAAAAAAABiGh3jAAAAAAAAAAAAAICYRsc4AAAAAAAAAAAAACCmJUU6ANRDSop08OCZz97muU4j+vhSroEcC+HKY6ZYfMnjr2DVxVjc/wAAAIAZ+XvuGur0AJwFUofMWK+JiZgilZ6YiCmS6c0aEwBIshiGYUQ6iGhSWFgom80mu92utLS0SIcDAAAAADAB2or1w/4DAAAAALgKdluRodQBAAAAAAAAAAAAADGNjvFoVlYm/f73VX9lZZ7neUqD6FNXuQZyLIQrj5li8SVPMMrH1/0SjnKOtn0JAAAAhIO/566hTg/AWSB1yIz1mpiIKVLpiYmYIpnerDEBgBhK3W+mGt6tuFhq3Ljqc1GRlJrqPk9yT4PoU1e5uk77ciyEK4+ZYvElTyB1JFh1Mdb2P783AAAgjpiqrRiFwr7//D13DXV6AM4CqUNmrNfEREyRSk9MxBTJ9GaNCUBUYih1AAAAAAAAAAAAAAD8QMc4AAAAAAAAAAAAACCm0TEOAAAAAAAAAAAAAIhpdIwDAAAAAAAAAAAAAGIaHeMAAAAAAAAAAAAAgJhGxzgAAAAAAAAAAAAAIKYlRToA1EOjRtLu3Wc+e5vnOo3o40u5BnIshCuPmWLxJY+/glUXY3H/AwAAAGbk77lrqNMDcBZIHTJjvSYmYopUemIipkimN2tMACDJYhiGEekgoklhYaFsNpvsdrvS0tIiHQ4AAAAAwARoK9YP+w8AAAAA4CrYbUWGUgcAAAAAAAAAAAAAxDQ6xqPZyZPSffdV/Z086XmepzSIPnWVayDHQrjymCkWX/IEo3x83S/hKOdo25cAAABAOPh77hrq9ACcBVKHzFiviYmYIpWemIgpkunNGhMAiKHU/Waq4d2Ki6XGjas+FxVJqanu8yT3NIg+dZWr67Qvx0K48pgpFl/yBFJHglUXY23/83sDAADiiKnailEo7PvP33PXUKcH4CyQOmTGek1MxBSp9MRETJFMb9aYAEQlhlIHAAAAAAAAAAAAAMAPpu8YHz16tDp37uyY/uyzz9SnTx9lZWUpNzdXy5Ytc0o/bdo0dejQQa1bt9Y111yjgoICx7KCggINHTpU7dq1U1ZWlp5++umwbQcAAAAAAAAAAAAAIDJM3TG+b98+zZ071zF9/Phx5eXl6U9/+pP27t2rGTNmaOjQoTpw4IAk6fXXX9fcuXO1du1affvtt8rIyNCoUaMc+W+55RZ169ZNe/fu1erVqzV9+nQtXrw47NsFAAAAAAAAAAAAAAgfU3eM33333br11lsd0/Pnz1fPnj01cOBASdIll1yiiy++WK+99pqkqqfFJ06cqPT0dCUmJmrKlCl65513dOTIEX399ddav369HnroIVksFrVq1Up33XWXZs2aFZFtAwAAAAAg3JYvX66LLrpIHTp0UPv27TV9+nTHsj179mjQoEHKyspShw4dNG/ePKe88+fPV5cuXdSmTRsNGDBAu3fvdiwrKSnRqFGjlJWVpTZt2uj++++XYRhh2y4AAAAAAOpi2o7xf//73yooKND111/vmLd69WpddNFFTul69+6tTZs2qby8XOvXr3da3rx5c2VnZ+vLL7/U6tWr1atXLyUlJbnlrU1ZWZkKCwud/gAAAAAAiEaLFi3SrFmz9M0332jZsmWaOnWqlixZooqKCuXl5enmm2/W3r179c477+iuu+5ytJlXr16tBx98UEuXLtV3332nQYMGaejQoY7vveeee1RZWamdO3dqy5Yt+uijj/TXv/41QlsJAAAAAIA7U3aMFxQU6K677tKMGTOc5ufn56tly5ZO81q0aKGCggIdPnxYFRUVat68ucflteWtzeOPPy6bzeb4a9u2bT22DAAAAACAyHnuuefUqVMnSdI555yjG264QcuXL9eHH36opKQkDR8+XJKUm5urYcOGac6cOZKk6dOna9y4cWrXrp0k6f7779fu3bv1+eefq6ioSHPmzNGTTz6ppKQk2Ww2TZgwgRHaAAAAAACmklR3kvAyDEMjRozQuHHj1LlzZ8f7wyWpvLzcbSi2iooKWSwWlZeXO/JbLBaPy73lrc2ECRM0fvx4x3RhYaF5OscbNZI2bz7z2ds812lEH1/KNZBjIVx5zBSLL3n8Fay6GIv7HwAAAKZ26NAhde7c2esIbTNnzpRU9cR4zbZxUlKSunfvrk2bNunYsWPKyclRenq6U97NmzeroqJCiYmJbustKytTWVmZYzrso7P5e+4a6vQAnAVSh8xYr4mJmCKVnpiIKZLpzRoTAEiyGCZ76dfjjz+ulStX6t1335XFYtGKFSt0++23a/v27brhhhvUp08fp8b4lClT9N133+mZZ55RkyZNdPjwYafGePv27TVv3jx99tlnWrJkid555x3Hsk8++US//e1v9dVXX/kcX2FhoWw2m+x2u9LS0oKz0QAAAACAqBaNbcW1a9fq8ssv18aNGzV16lS1bt1ajzzyiGP5smXLdM899+iLL76Q1WrVjh07nG4Uv/nmm9WjRw+1atVKL730kj788EPHslOnTqlhw4YqKChwaqNXmzRpkiZPnuw2P5r2HwAAAAAgtILd1g7rUOq9e/euM83zzz+vTz75RM2aNVPTpk115ZVXaseOHWratKl69OihVatWOaVftWqV+vbtq9TUVHXq1MlpeX5+vn744Qedf/756tGjh9asWaPKykq3vAAAAAAARCtf2tquFixYoKuuukpz5sxRTk5OnaOs1TWCm6dlkryO0jZhwgTZ7XbH3759+/zeBgAAAAAA/BHSodRPnTqlBg0aOKa//fbbOvPk5+c7Tdd8Yvy7777TE088oeXLl+vSSy/Ve++9p23btmno0KGSpFGjRmny5Mnq16+fUlJSNGHCBI0cOVIpKSnq1auXMjMzNXXqVD3wwAPas2ePXnjhBS1cuDC4Gx1OJ09Kf/5z1ecHH5QaNnSfJ7mnQfSpq1xdp305FsKVx0yx+JInkDoSrLoYa/uf3xsAAICQCKStXa2iokJ33nmnPvroIy1dulTnn3++JCk9PV2HDx92Snvo0CFlZGQ4La9+x3jN5TabzWNeq9Uqm83mMY7k5GQlJyf7HHfQ+XvuGur0AJwFUofMWK+JiZgilZ6YiCmS6c0aEwAoiEOpX3LJJfr444+d5rVo0UIHDx50TLdq1Ur79+/363trdoxL0tKlSzV27FgdOXJEHTp00N///nedd955kqTKykrdf//9mjt3rpKSkjRkyBBNmzbN0djetWuXbrvtNm3ZskXNmjXTY4895uhU95WphscrLpYaN676XFQkpaa6z5Pc0yD61FWurtO+HAvhymOmWHzJE0gdCVZdjLX9z+8NAACII6FqKwa7rX3nnXdqx44devPNN5Va43zttdde01/+8hetX7/eMW/06NFq2bKlJk2apJ///Of6xS9+oTvuuEOSdPLkSbVo0UKfffaZGjVqpKysLB04cEDNmjVzfN+MGTO0YsUKn+IKe1vb33PXUKcH4CyQOmTGek1MxBSp9MRETJFMb9aYAESlYLcVg/bE+LZt29zmBaPPvX///o5OcUm6/PLLnaZrSkhI0FNPPaWnnnrK4/JzzjnH50Y5AAAAAACRFsy2dmlpqWbMmKF9+/Y5dYpLUl5enu6++27NmzdPw4YN0/r167Vo0SKtXbtWUtUIbePHj9fVV1+tzMxMTZkyRQMGDFBOTo4kafDgwXrwwQc1ffp0HTt2TI899pgeffTRgOIEAAAAACAUQjqUurd3iQEAAAAAgMAE2tbetWuXKisr1bdvX6f5nTp10tKlS7V48WKNHDlS48ePV0ZGhl599VW1adNGknTNNdfom2++Ua9evVRZWan+/ftr1qxZju94+eWXNWLECGVmZio1NVX33nuvrr766oC3EQAAAACAYAtpx7hhGI53eBuGobKyslCuDgAAAACAmBdoWzs3N1eVlZVel/fo0UMbN270uvy+++7Tfffd53FZ8+bNtWjRIp/iAAAAAAAgEkLaMS5Js2fPdnwuKSkJ9eoAAAAAAIh5tLUBAAAAAPBPyIdSX7x4sWM6MzMzlKsDAAAAACDm0dYGAAAAAMB/CeFcGe8cBwAAAAAguGhrAwAAAABQt6A9MX706FF1797dMW0Yho4dOxasr4cnVqu0du2Zz97muU4j+vhSroEcC+HKY6ZYfMnjr2DVxVjc/wAAAKgX2toh4u+5a6jTA3AWSB0yY70mJmKKVHpiIqZIpjdrTAAgyWIYhhGML9qwYYPH+T169HB8btWqlfbv3x+M1UVMYWGhbDab7Ha70tLSIh0OAAAAAMAEQtVWpK0NAAAAAIhXwW4rBu2J8ZqNcm+C1AcPAAAAAEBcoK0NAAAAAEBwBK1j3BcLFy4M5+pi38mT0nPPVX0eO1Zq2NB9nuSeBtGnrnJ1nfblWAhXHjPF4kueQOpIsOpirO1/fm8AAADCgrZ2APw9dw11egDOAqlDZqzXxERMkUpPTMQUyfRmjQkAFMSh1P1RUFCgs846K9yrDQpTDe9WXCw1blz1uahISk11nye5p0H0qatcXad9ORbClcdMsfiSJ5A6Eqy6GGv7n98bAAAQR8zQVqSt7Qd/z11DnR6As0DqkBnrNTERU6TSExMxRTK9WWMCEJVMOZT6gAEDZLFYak1z1VVXady4cZKk8847L+rffwYAAAAAQCjR1gYAAAAAIHiC0jH+8MMP15mmTZs2js+8/wwAAAAAgNrR1gYAAAAAIHiC0jF+2WWX+ZW+rjveAQAAAACId7S1AQAAAAAInqB0jEvSf//7X4/zu3TporPPPjtYqwEAAAAAIG7Q1gYAAAAAIDiC1jE+ceJESdK2bdvUqlUr2Ww27dmzR4899ph+9atfBWs1AAAAAADEDdraAAAAAAAER9A6xj/66CNJ0k033aTRo0fr4osv1iOPPBKsrwcAAAAAIO7Q1gYAAAAAIDiC1jGOCLBapdMXSWS1ep/nOo3o40u5BnIshCuPmWLxJY+/glUXY3H/AwAAAGbk77lrqNMDcBZIHTJjvSYmYopUemIipkimN2tMACDJYhiGEcwvdL2LvUuXLvrpT3+qX//617JYLDIMQ6tXr1ZpaWkwVxs2hYWFstlsstvtSktLi3Q4AAAAAAATCHVbkbY2AAAAACDeBLutGLQnxv/73/9Kkg4dOqRNmzZJkr799lt16dJFzZs318MPPxysVQEAAAAAEBdoawMAAAAAEBxBe2J8wIABHuc//PDDuuyyy4KxClMw1V3sp05J//d/VZ9HjZIaNHCfJ7mnQfSpq1xdp305FsKVx0yx+JInkDoSrLoYa/uf3xsAABBHQtVWpK0dIv6eu4Y6PQBngdQhM9ZrYiKmSKUnJmKKZHqzxgQgKgW7rRj0odRjnak6xouLpcaNqz4XFUmpqe7zJPc0iD51lavrtC/HQrjymCkWX/IEUkeCVRdjbf/zewMAAOKIqdqKUSjs+8/fc9dQpwfgLJA6ZMZ6TUzEFKn0xERMkUxv1pgARKVgtxUTghATAAAAAAAAAAAAAACmRcc4AAAAAAAAAAAAACCm0TEOAAAAAAAAAAAAAIhpdIwDAAAAAAAAAAAAAGIaHeMAAAAAAAAAAAAAgJhGxzgAAAAAAAAAAAAAIKYlRToA1ENysvTuu2c+e5vnOo3o40u5BnIshCuPmWLxJY+/glUXY3H/AwAAAGbk77lrqNMDcBZIHTJjvTZhTBUNGurrl16VveSUjO+K1OvcFCUmWCIakxn3k+liioVtIKbojSkWtgEATrMYhmFEOohoUlhYKJvNJrvdrrS0tEiHAwAAAAAwAdqK9cP+A4DQW7I5X5MXb1W+vdQxL9Nm1cS8XA3ulhnByAAAADwLdluRodQBAAAAAAAAIIYt2Zyv0fM2OnWKS9IBe6lGz9uoJZvzIxQZAABA+DCUejQ7dUr65z+rPt98s9Sggfs8yT0Nok9d5eo67cuxEK48ZorFlzyB1JFg1cVY2//83gAAAMCs/D13DXV6AM4CqUNmrNcmiami0tDkxVtlSEqqKNfVW1dIkt7O7a/yxCRZJE1evFWDcjPch1WPo/1k6phiYRuIKXpjioVtAIDTGErdT6Ya3q24WGrcuOpzUZGUmuo+T3JPg+hTV7m6TvtyLIQrj5li8SVPIHUkWHUx1vY/vzcAACCOmKqtGIXCvv/8PXcNdXoAzgKpQ2as1yaJafXOAt300qeSpEYnS7Xt2eslSV3ufkMlDa2OdPNH9lHf9meFdxvCsY5YiCkWtoGYojemWNgGAFGLodQBAAAAAAAAAD45eLy07kR+pAMAAIhWdIwDAAAAAAAAQIxq0cRadyI/0gEAAEQrOsYBAAAAAAAAIEb1yklXps0qi5flFkmZNqt65aSHMywAAICwo2McAAAAAAAAAGJUYoJFE/NyJcmtc7x6emJerhITvHWdAwAAxAY6xgEAAAAAAAAghg3ulqkZw7qrpS3ZaX6GzaoZw7prcLfMCEUGAAAQPkmRDgAAAAAAAAAAEFqDu2VqUFZ/aVLV9Cu39tSFXdvypDgAAIgbdIxHs+Rk6fXXz3z2Ns91GtHHl3IN5FgIVx4zxeJLHn8Fqy7G4v4HAAAAzMjfc9dQpwfgLJA6ZMZ6bcKYEhtZHXl6d2kl1dUpHqf7yXQxxcI2EFP0xhQL2wAAp1kMwzAiHUQ0KSwslM1mk91uV1paWqTDAYKqotLQ2t1HdPB4qVo0sapXTjp3DQMAAAA+oK1YP+w/AACA8OAaMIBoEuy2omnfMf7kk0+qY8eOateunc477zy98847jmWfffaZ+vTpo6ysLOXm5mrZsmVOeadNm6YOHTqodevWuuaaa1RQUOBYVlBQoKFDh6pdu3bKysrS008/HbZtAsxsyeZ89Zu6XDe99KnGLtikm176VP2mLteSzfmRDg0AAAAAAAAAUE9cAwYQ70zbMd67d29t2bJF3377rf72t7/pl7/8pQoKCnT8+HHl5eXpT3/6k/bu3asZM2Zo6NChOnDggCTp9ddf19y5c7V27Vp9++23ysjI0KhRoxzfe8stt6hbt27au3evVq9erenTp2vx4sWR2sz6KS+X/vWvqr/ycs/zPKVB9KmrXAM5FmpML920T6PnbdTBo8W6YvtKXbF9pRIrK3ToaLEWP/y8Pnv6/wJfTxjiD2qeYJSPr/slHOUcbfsSAAAAIWcYhubOnau+ffs6zW/cuLFat26t7OxsZWdna+jQoU7LY+omdH/PXUOdHoCzQOqQGes1MRFTpNITEzF5sGRzvsdrwAfspRo9b6P3znETbUO9YgIARdFQ6meddZb+97//6b///a/ef/99vfXWW45lV111lS677DKNHTtWP/nJT/TAAw9oyJAhkqTDhw8rMzNTP/zwgw4fPqx+/fpp//79Skqqer36M888o08++cTp+2pjquHdioulxo2rPhcVSamp7vMk9zSIPnWVq+u0L8dCjekBkxZrd4lFjU6Watuz10uSutz9hiQ5pisKj1cNqRPIMRfi+IOaJ5A6Eqy6GIptjrZ9CQAAEKVM1VasxZIlS3TfffeppKRESUlJ2r59u2NZ48aN9eWXXyonJ8ct3+uvv64nnnhC//nPf2Sz2XTHHXfo4MGDevPNNyVJV1xxhXr37q0//vGPys/P109+8hNNnz5deXl5PsUV9v3n77lrqNMDcBZIHTJjvSYmYopUemIiJhcVlYb6TV2ufHup2zXgkoZWWSRl2Kxa+cCl7sOqm2Qb6h0TgKgUN0OpVystLdW0adPUs2dPde7cWatXr9ZFF13klKZ3797atGmTysvLtX79eqflzZs3V3Z2tr788kutXr1avXr1cnSK18zrTVlZmQoLC53+gFhzwF5WZ5r1e46EIRIAAAAAoVRcXKypU6dq5syZHpc3bdrU4/xp06Zp4sSJSk9PV2JioqZMmaJ33nlHR44c0ddff63169froYceksViUatWrXTXXXdp1qxZIdwSAAAA+Grt7iPKt5d6XW5IyreXau1urgEDiG2m7RjfuXOn2rZtq5SUFC1YsEAvvPCCJCk/P18tW7Z0StuiRQsVFBTo8OHDqqioUPPmzT0ury2vN48//rhsNpvjr23btkHaQiC6HCqqu/McAAAAgLldd911uuKKKzwuS0hIkM1mc5vPTegAAADR7eBx753igaQDgGhl2o7x9u3ba9++fTpx4oTuuusu9e3bVzt27FB5eblcR3+vqKiQxWJR+el3SdS23NsybyZMmCC73e7427dvX5C2EIguZzdODtp3VVSeqYdrdhU4TQMAAACIDIvFovbt26tjx44aMWKE9u/fL0nchA4AABDlWjSxBjUdAEQr03aMV7NarfrVr36lK6+8UnPmzFF6eroOHz7slObQoUPKyMhQs2bNZBiGjh496nF5bXm9SU5OVlpamtMfEGsybMnyfntIlQuz04OyrmVbDmjgMysc08Nnr3OaBgAAABAZR48e1e7du7Vu3TqlpKQoLy9PhmFwEzoAAECU65WTrkyb1es1YIukTJtVvXKCcw0YAMzK9B3j1ZKTk9WoUSP16NFDq1atclq2atUq9e3bV6mpqerUqZPT8vz8fP3www86//zz1aNHD61Zs0aVlZVueYF49uDPu0iS24lRzenEhLq6zn0zdsEmt3ea/+DDO84BAAAAhFZCQtUlApvNpueee05fffWVdu3axU3oAAAAUS4xwaKJebmSvF8DnpiXG7RrwABgVqbsGP/+++81f/58x13p//3vf/XWW29p6NChuvnmm/Xhhx9q+fLlkqT33ntP27Zt09ChQyVJo0aN0uTJk3Xs2DGdPHlSEyZM0MiRI5WSkqJevXopMzNTU6dOVWVlpXbt2qUXXnhBd955Z8S2FTCDQV0zNGNYd7W0OQ+X7jodDJ4GTa85j2HVAQAAgMirrKxUZWWlGjZsyE3oAAAAMWBwt0yP14AzbFbNGNZdg7tlRigyAAifpEgH4ElycrJefvlljR07Vk2aNFF2drbeeustdezYUZK0YMECjRkzRkeOHFGHDh20ePFipaamSpLGjh2r77//Xh07dlRSUpKGDBmiJ554QlLV+9IWLlyo2267Tc8884yaNWump556Sj169IjYttZLw4bS7NlnPnub5zqN6ONLuQZyLNSYHtwtU4PO/Zm+aTRdhaWnNPuGi9QzJ13KCsJ6GjbUN1On68WPd+pUYtXPzr1XjJMkt+nrvy9Sn86Nw7LNXvP4K1h1MVTbHE37EgAAABGxc+dOVVRUqGPHjiorK9P48ePVs2dPx7u/q29C79evn1JSUrzehP7AAw9oz549euGFF7Rw4cIIb1Ut/D13DXV6AM4CqUNmrNfEREyRSk9MxOSFx2vAHVvW/qS4ybYh4JgAQJLFcH0RGGpVWFgom80mu93OUG+AHxZt+l5jF2yqM91zN16gIRe0Dn1AAAAAQBBFW1txxYoVuv3227V9+3ZJ0rp163TTTTeppKREycnJuuyyy/TnP/9ZZ599tqSqJ8jvv/9+zZ0713ET+rRp05ScXPXE0a5du3Tbbbdpy5YtatasmR577DHHyG6+iLb9BwAAAAAIvWC3FekY9xONdSAwq3cW6KaXPq0z3fyRfdS3/VlhiAgAAAAIHtqK9cP+AwAAAAC4CnZb0ZRDqcNH5eXS0qVVny+/XEpKcp8nuadB9KmrXF2nfTkWwpXndJpeW1fruvzPtajleTIkXbx7oyTpvzndJUmX7N6oZikN1KvtzyK7zYHUkWDVxRDu/6jZlwAAAEA4+HvuGur0AJwFUofMWK+JiZgilV5SxclT+nruG7KXnJLxs8vV69wWtQ+XHY/7lZjiZxsA4DSeGPeTqe5iLy6WGjeu+lxUJKWmus+T3NMg+tRVrq7TvhwL4crjkib37jckSVufvV6S1OXuN2SpMR3x+AOpI8Gqi2HY/6bflwAAAFHKVG3FKBT2/efvuWuo0wNwFkgdMmO9JiZiilD6JZvzNfXNDfpoUp6kqutvTc9uqol5uRrcLTMy2xCOdRCTOdKbNSYAUSnYbcWEIMQEAD577sYL1NKW7DTPdRoAAAAAAACA/5ZsztfoeRt1wF7mNP+AvVSj523Uks35EYoMAIDIo2McQFgN6pqh/4zv75h+5daeTtMAAAAAAAAA/FdRaWjy4q3yNERs9bzJi7eqopJBZAEA8YmOcQBhV/N9Rr3POav29xsBAAAAAAAAqNPa3UeUby/1utyQlG8v1drdR8IXFAAAJkLHOAAAAAAAAAAAUe7gce+d4oGkAwAg1tAxDgAAAAAAAABAlGvRxBrUdLWpORz7ml0FDM8OAIgKdIwDAAAAAAAAABDleuWkK9NmlbeXFlokZdqs6pWTXq/1LNmcr4HPrHBMD5+9Tv2mLteSzfn1+l4AAEItKdIBoB4aNpT++tczn73Nc51G9PGlXAM5FsKVx0yx+JLHX8Gqi7G4/wEAAAAz8vfcNdTpATgLpA6ZsV4TEzGFOX1igkUT83I1et5GlScm6ZFBt0uSTiUmOTrLJ+blKjHBQ9e5j+tYsjlfo+dtVGJFhdP3H7CXavS8jZoxrLsGd8us13aELT0xxc82AMBpFsMwGOPED4WFhbLZbLLb7UpLS4t0OAAAAAAAE6CtWD/sPwBANKuoNLR29xEdPF6qFk2qnsj22PkcJks252vy4q3Kt595l3imzaqJebneO619UFFpqN/U5U7fW5NFUobNqpUPXBrR7QcAxI5gtxV5YhwAAAAAAAAAgACEqhO6PgZ3y9Sg3Iygd9av3X3Ea6e4JBmS8u2lWrv7iPq2P6te6wIAIBToGI9mFRXSJ59Uff7pT6XERPd5knsaRJ+6ytV12pdjIVx5zBSLL3kCqSPBqouxtv/5vQEAAIBZ+XvuGur0AJwFUofMWK+JKeZjqh5W3FJZoT7fbZEkrW3Tte5hxcOwDYlGpfru+7Jq4ryfSnV1ivuwjoPHz3SKJ1RWqFeNba5MSPSYrl7bYaKyjuuYYmEbAOA0hlL3k6mGdysulho3rvpcVCSlprrPk9zTIPrUVa6u074cC+HKY6ZYfMkTSB0JVl2Mtf3P7w0AAIgjpmorRqGw7z9/z11DnR6As0DqkBnrNTHFdEw1hxVvdLJU2569XpLU5e43VNLQWvuw4ibZBn/Tr95ZoJte+lSSPG5ztfkj+3h+YjxKyzruY4qFbQAQtYLdVkwIQkwAAAAAAAAAAMQNf4YVjxW9ctKVaavq9PfEoqph5HvlpIczLAAAfEbHOAAAAAAAAAAAfvA6XHiA6aJBYoJFE/NyJcmtc7x6emJebr3fZQ4AQKjQMQ4AAAAAAAAgqlVUnnlb5JpdBU7TQCi0aGKtO5Ef6aLF4G6ZmjGsu1rakp3mZ9is3t+pDgCASSRFOgAAAAAAAAAACNSSzfma+uYGfXR6evjsdWp69g5NzMulkw4hUz2s+AEvw6lXv2M8FocVH9wtU4Oy+kuTqqZfubWnLuzalifFAQCmxxPjAAAAAAAAAKLSks35Gj1vow7Yy5zmH7CXavS8jVqyOT9CkSHWxfuw4jW3q/c5Z5liOxk5AgBQFzrGAQAAAAAAAESdikpDkxdvlaeur+p5kxdvpXMMIcOw4uaxZHO+Bj6zwjE9fPY69Zu6nJtjAABOGEo9mjVoID355JnP3ua5TiP6+FKugRwL4cpjplh8yeOvYNXFWNz/AAAAgBn5e+4a6vQAnPlYh9buPqL808NYlycm6s/9b3V8lqo6x/PtpVq7+4j6tj8roHUEnD4c6yAmU8Q0uFumBnUYpL0lE1VUVq7ZI3+inp0yan+C2mTbEO0xVY8ckVRR7vQ7UD1yRK03KcTRfgpberPGBACSLIZhcMukHwoLC2Wz2WS325WWlhbpcAAAAAAAJkBbsX7YfwACsWjT9xq7YFOd6Z678QINuaB16AMCEHYVlYb6TV3uuEnGVfW73lc+cKkphnsHAPgn2G1FhlIHAAAAAAAAEHVaNLEGNR2A6FNz5AhPao4cAQAAQ6lHs4oKaePGqs/du0uJie7zJPc0iD51lavrtC/HQrjymCkWX/IEUkeCVRdjbf/zewMAAACz8vfcNdTpATjzsQ71yklXps2qA/ZSWSor1O2HnZKkzS3bqzIh0fGkaK+c9IDXEXD6cKwjRmKqOFWuLe9+pKMnTqphz57q1eHs2p/sjcf9FAvbEKJ1HDx+plM8wcPvgKd0oY6pXunNGFMsbAMAnMZQ6n4y1fBuxcVS48ZVn4uKpNRU93mSexpEn7rK1XXal2MhXHnMFIsveQKpI8Gqi7G2//m9AQAAccRUbcUoFPb95++5a6jTA3DmRx2qfrdwo5Ol2vrs9ZKkLne/odKGVU+Je323cDjqtRl/a0wW05LN+Zr65gZ9NClPUlXZNT27qSbm5Xp/J3Qc7qeY2IYQrWP1zgLd9NKnkqRGJ0u1rcbvQEnDM6NFzB/ZR33bnxWWmOqV3owxxcI2AIhaDKUOAAAAAAAAAJIGd8vUjGHd1dKW7DQ/w2b13ikOU6i+qeGAvcxp/gF7qUbP26glm/MjFBmiSfXIEd7GGLBIyvQ2cgQAIO7QMQ4AAAAAAAAgag3ulqn/jO/vmH7l1p5a+cCldIqbWEWlocmLt8rTUKbV8yYv3qqKSgY7Re0SEyyamJcrSW6d49XTE/Nyax+eHwAQN+gYBwAAAAAAABDVanZ69T7nLDrBTG7t7iPKt3t557OqOsfz7aVau/tI+IJC1GLkCACAr5IiHQAAAAAAAAAAIH4cPO69UzyQdMDgbpkalNVfmlQ1/cqtPXVh17bcJAMAcELHOAAAAAAAAAAgbFo0sQY1HSC5jxwhOsUBAC4YSh0AAAAAAAAAEDa9ctKVabO6vRO6mkVSps2qXjnp4QwLAADEOJ4Yj2YNGkgTJ5757G2e6zSijy/lGsixEK48ZorFlzz+ClZdjMX9DwAAAJiRv+euoU4PwFkgdciM9ZqYvCZLTLBoYl6uRs/bqIrERE276CZJUnlioqOzfGJerudhsONoPwWcnpiIKZLpzRoTAEiyGIZhRDqIaFJYWCibzSa73a60tLRIhwMAAAAAMAHaivXD/gMAc6qoNLR29xEdPF6qFk2qnuAO5jubl2zO1+TFW5VvP/Mu8UybVRPzcjW4W2bQ1gMAAKJTsNuKPDEOAAAAAAAAAHASjk7rwd0yNSg3I6Sd7wAAANXoGI9mlZXStm1Vn7t0kRIS3OdJ7mkQfeoqV9dpX46FcOUxUyy+5AmkjgSrLsba/uf3BgAAAGbl77lrqNMDcBZIHTJjvY7imJZsztfoeRslo1LnHt4nSfqmeVsdsJdq9LyNmjGsu+fO8QBiSpShvqUHpAaScrpIdXWKm2g/mTY9MRFTJNObNSYAEEOp+81Uw7sVF0uNG1d9LiqSUlPd50nuaRB96ipX12lfjoVw5TFTLL7kCaSOBKsuxtr+5/cGAADEEVO1FaNQ2Pefv+euoU4PwFkgdciM9TpKY6qoNNRv6nLl20vV6GSptj17vSSpy91vqKShVRZJGTarVj5wqfuT3XG0n0ydnpiIKZLpzRoTgKgU7LYit9EAAAAAAAAAACRJa3cfcRo+3ZUhKd9eqrW7j4QvKAAAgCCgYxwAAAAAAAAAIEk6eNx7p3gg6QAAAMyCjnEAAAAAAAAAgCSpRRNrUNMBAACYhWk7xpcvX66LLrpIHTp0UPv27TV9+nTHsj179mjQoEHKyspShw4dNG/ePKe88+fPV5cuXdSmTRsNGDBAu3fvdiwrKSnRqFGjlJWVpTZt2uj+++8Xr1kHAAAAAAAAAKlXTroybVXvEvfEIinTZlWvnPRwhgUAAFBvpu0YX7RokWbNmqVvvvlGy5Yt09SpU7VkyRJVVFQoLy9PN998s/bu3at33nlHd911lzZt2iRJWr16tR588EEtXbpU3333nQYNGqShQ4c6vveee+5RZWWldu7cqS1btuijjz7SX//61whtJQAAAAAA4WUYhubOnau+ffs6zf/ss8/Up08fZWVlKTc3V8uWLXNaPm3aNHXo0EGtW7fWNddco4KCAseygoICDR06VO3atVNWVpaefvrpsGwLACD4EhMsmpiXK0lunePV0xPzcpWY4K3rHAAAwJxM2zH+3HPPqVOnTpKkc845RzfccIOWL1+uDz/8UElJSRo+fLgkKTc3V8OGDdOcOXMkSdOnT9e4cePUrl07SdL999+v3bt36/PPP1dRUZHmzJmjJ598UklJSbLZbJowYYJmzZoVkW0EAAAAACCclixZoh/96Ed69NFHdfToUcf848ePKy8vT3/605+0d+9ezZgxQ0OHDtWBAwckSa+//rrmzp2rtWvX6ttvv1VGRoZGjRrlyH/LLbeoW7du2rt3r1avXq3p06dr8eLFYd8+AEBwDO6WqRnDuqulLdlpfobNqhnDumtwt8wIRQYAABC4pEgH4KtDhw6pc+fOWr16tS666CKnZb1799bMmTMlVT0xPn78eMeypKQkde/eXZs2bdKxY8eUk5Oj9PR0p7ybN29WRUWFEhMT3dZbVlamsrIyx3RhYWGwNy1wDRpI99575rO3ea7TiD6+lGsgx0K48pgpFl/y+CtYdTEW9z8AAABMpbi4WFOnTlVKSopuv/12x/z58+erZ8+eGjhwoCTpkksu0cUXX6zXXntNY8eO1bRp0zRx4kRHe3rKlCnKzMzUkSNHdPjwYa1fv17vvPOOLBaLWrVqpbvuukuzZs1SXl5eRLazTv6eu4Y6PQBngdQhM9brKI9pcLdMDeowSPu/+72KT5Zr9sifqGenjNqfFI/D/WTK9MRETJFMb9aYAECSxYiCF2yvXbtWl19+uTZu3KipU6eqdevWeuSRRxzLly1bpnvuuUdffPGFrFarduzYobZt2zqW33zzzerRo4datWqll156SR9++KFj2alTp9SwYUMVFBQ4dZhXmzRpkiZPnuw23263Ky0tLchbCgAAAACIRoWFhbLZbFHTVlyxYoVuv/12bd++XZJ06623qmvXrrq3+gKjpMcee0zffPONXnrpJaWkpGj//v1q3ry5Y/m5556rmTNnas+ePfrXv/6ld99917Hsf//7n4YNG6bdu3d7XL+nm9Dbtm0bNfsPAAAAABB6wW5rm3Yo9WoLFizQVVddpTlz5ignJ0fl5eVy7cuvqKiQxVJ1p2Jty70tk+TI72rChAmy2+2Ov3379gVr0wAAAAAAMIX8/Hy1bNnSaV6LFi1UUFCgw4cPq6KiwqlTvOby2vJ68/jjj8tmszn+at7cDgAAAABAKJh2KPWKigrdeeed+uijj7R06VKdf/75kqT09HQdPnzYKe2hQ4eUkZHhtLz6HeM1l9tsNo95rVarbDabxziSk5OVnJzscVnEVVZK335b9bldOykhwX2e5J4G0aeucnWd9uVYCFceM8XiS55A6kiw6mKs7X9+bwAAAKJGXTeZS5JhGE43ldd1E7q3G9ClqpvQa74GrfqJ8bDx99w11OkBOAukDpmxXhMTMUUqPTERUyTTmzUmAJCJO8bHjRunXbt2af369UpNTXXM79Gjh/7yl784pV21apX69u3rWL5q1Sp1795dknTy5Elt2LBBM2fOVKNGjfTVV1/p6NGjatasmSNv7969lRCNP5wlJVJOTtXnoiIpNdV9nuSeBtGnrnJ1nfblWAhXHjPF4kueQOpIsOpirO1/fm8AAACiRm03oTdr1kyGYejo0aNOryCrXp6fn6+1a9d6zOtNxG9C9/fcNdTpATgLpA6ZsV4TEzFFKj0xEVMk05s1JgCQSYdSLy0t1YwZMzR79mynTnFJysvL0/79+zVv3jxJ0vr167Vo0SL99re/lSSNGjVKTz/9tL777jtVVFRoypQpGjBggHJycpSRkaHBgwfrwQcfVHl5uQ4fPqzHHntM48aNC/cmAgAAAABgGtU3mddUfRN6amqqOnXq5LQ8Pz9fP/zwg84//3z16NFDa9asUWVlpVteAAAAAADMwpQd47t27VJlZaX69u2r7Oxsx9/ll1+ulJQULV68WM8884xatGih2267Ta+++qratGkjSbrmmms0ZswY9erVS61bt9aOHTs0a9Ysx3e//PLL2r9/vzIzM3XhhRdq1KhRuvrqqyO0pQAAAAAARN7NN9+sDz/8UMuXL5ckvffee9q2bZuGDh0qqeom9MmTJ+vYsWM6efKkJkyYoJEjRyolJUW9evVSZmampk6dqsrKSu3atUsvvPCC7rzzzkhuEgAAAAAATkw5lHpubq7TneauevTooY0bN3pdft999+m+++7zuKx58+ZatGhRvWMEAAAAACBWtGnTRgsWLNCYMWN05MgRdejQQYsXL3aM4jZ27Fh9//336tixo5KSkjRkyBA98cQTkiSLxaKFCxfqtttu0zPPPKNmzZrpqaeeUo8ePSK5SQAAAAAAODFlxzgAAAAAAAid/v37a/v27U7zLr/8crd51RISEvTUU0/pqaee8rj8nHPO0YoVK4IdJgAAAAAAQWPKodQBAAAAAAAAAAAAAAgWOsYBAAAAAAAAAAAAADGNodSjWVKSNGbMmc/e5rlOI/r4Uq6BHAvhymOmWHzJ469g1cVY3P8AAACAGfl77hrq9ACcBVKHzFiviYmYIpWemIgpkunNGhMASLIYhmFEOohoUlhYKJvNJrvdrrS0tEiHAwAAAAAwAdqK9cP+AwAAAAC4CnZbkaHUAQAAAAAAAAAAAAAxjTEmoplhSIcPV31u3lyyWNznSe5pEH3qKlfXaV+OhXDlMVMsvuQJpI4Eqy7G2v7n9wYAAABm5e+5a6jTA3AWSB0yY70mJmKKVHpiIqZIpjdrTAAghlL3m6mGdysulho3rvpcVCSlprrPk9zTIPrUVa6u074cC+HKY6ZYfMkTSB0JVl2Mtf3P7w0AAIgjpmorRqGw7z9/z11DnR6As0DqkBnrNTERU6TSExMxRTK9WWMCEJUYSh0AAAAAAAAAAAAAAD/QMQ4AAAAAAAAAAAAAiGl0jAMAAAAAAAAAAAAAYhod4wAAAAAAAAAAAACAmEbHOAAAAAAAAAAAACKiotJwfF6zq8BpGgCCiY5xAAAAAAAAAAAAhN2Szfka+MwKx/Tw2evUb+pyLdmcH7mgAMSspEgHgHpISpJ+85szn73Nc51G9PGlXAM5FsKVx0yx+JLHX8Gqi7G4/wEAAAAz8vfcNdTpATgLpA6ZsV4TEzFFKj0xEVMk0/uRZ8nmfI2et1ENysv1RrfLJEkVCYk6YC/V6HkbNWNYdw3ulhmcmABAksUwDMak8ENhYaFsNpvsdrvS0tIiHQ4AAAAAwARoK9YP+w8AACC+VFQa6jd1ufLtpR6XWyRl2Kxa+cClSkywhDc4AKYR7LYiQ6kDAAAAAAAAAAAgbNbuPuK1U1ySDEn59lKt3X0kfEEBiHmMMRHNDEM6caLqc0qKZLG4z5Pc0yD61FWurtO+HAvhymOmWHzJE0gdCVZdjLX9z+8NAAAAzMrfc9dQpwfgLJA6ZMZ6TUzEFKn0xERMkUzvY56Dx0ud0jc6VSZJKmmQ7JTeKV19YgIA0TEe3U6ckBo3rvpcVCSlprrPk9zTIPrUVa6u074cC+HKY6ZYfMkTSB0JVl2Mtf3P7w0AAADMyt9z11CnB+AskDpkxnpNTMQUqfTEREyRTO9jnhZNrI7PjU6Vaduz10uSutz9hkoaWj2mq1dMACCGUgcAAAAAAAAAAEAY9cpJV6bNKm/PelskZdqs6pWTHs6wAMQ4OsYBAAAAAAAAAAAQNokJFk3My5Ukt87x6umJeblKTGCYdADBQ8c4AAAAAAAAAAAAwmpwt0zNGNZdLW3JTvMzbFbNGNZdg7tlRigyALGKd4wDAAAAAAAAAAAg7AZ3y9SgrP7SpKrpV27tqQu7tuVJcQAhQcc4AAAAAAAAAAAAIqJmJ3jvc86S6BQHECIMpQ4AAAAAAAAAAAAAiGk8MR7NEhOl668/89nbPNdpRB9fyjWQYyFcecwUiy95/BWsuhiL+x8AAAAwI3/PXUOdHoCzQOqQGes1MRFTpNITEzFFMr1ZYwIASRbDMIxIBxFNCgsLZbPZZLfblZaWFulwAAAAAAAmQFuxfth/AAAAAABXwW4rMpQ6AAAAAAAAAAAAACCm0TEOAAAAAAAAAAAAAIhpdIxHs+JiyWKp+isu9jzPUxpEn7rKNZBjIVx5zBSLL3mCUT6+7pdwlHO07UsAAAAgHPw9dw11egDOAqlDZqzXxERMkUpPTMQUyfRmjQkARMc4AAAAAAAAAAAAACDG0TEOAAAAAAAAAAAAAIhpdIwDUaii0nB8XrOrwGkaAAAAAAAAAAAAgLOkSAcAwD/LthzQn9/fpo9OTw+fvU4ZtmTHNAAAAAAAAAAAAABndIwDUWbsgk1yfT78B3tZRGIBAAAAAAAAAAAAogFDqQNRxtOg6TXnMaw6AAAAAAAAAAAA4IwnxqNZYqJ0xRVnPnub5zqN6JOYqKP9B+qzb4+pMqHqfpbl51woSW7TKfvs6pPb2LdjIZDjJ5A8ZorFlzz+ClZdjMX9DwAAAJiRv+euoU4PwFkgdciM9ZqYiClS6YmJmCKZ3qwxAYAki2EYPF7qh8LCQtlsNtntdqWlpUU6HMSRRZu+19gFm+pM99yNF2jIBa1DHxAAAAAAB9qK9cP+AwAAAAC4CnZbkSfGgSjRook1qOkAAAAAAAAAIFwqKg2t3X1EB4+XqkUTq3rlpCsxwRLpsAAAcYSOcSBK9MpJV6bNqgP2Uo/vGbdIyrBVnVACAAAAAAAAgFks2ZyvyYu3Kt9e6piXabNqYl6uBnfLjGBkAIB4khDpAGpjGIbmzp2rvn37Os3/7LPP1KdPH2VlZSk3N1fLli1zWj5t2jR16NBBrVu31jXXXKOCggLHsoKCAg0dOlTt2rVTVlaWnn766bBsS0gUF0upqVV/xcWe53lKg+hTXKzEJo31yZQ8NTpZqpSTpdr6zHXa+sx1juktz1ynT6bkKbHkhCNPrcdCIMdPoMecWWLxJU+A5ROUuhhr+x8AAABR5Y477pDNZlN2drbjb+/evZLq1w43JX/PXUOdHoCzQOqQGes1MRFTpNKbLKYlm/M1et5GHTt0zOma5gF7qUbP26glm/Mjsw3hWEcsxBQL2wAAp5n2ifElS5bovvvuU0lJiZKSzoR5/Phx5eXl6ZVXXtHAgQP18ccfa8iQIdq+fbsyMjL0+uuva+7cuVq7dq1sNpvuuOMOjRo1Sm+++aYk6ZZbblHv3r31+uuvKz8/Xz/5yU/UsWNH5eXlRWpT6+fEibrneUqD6HPihJJU9Q7xP7+/TSmnyhyLWtqSq6ZPuefxazpUecwUiy95AhGsuhhr+x8AAABRZdy4cZo8ebLTvPq2w03L33PXUKcH4CyQOmTGek1M5lhHLMQUpdtQUWlo8uKtjhEwa17TNFQ1CubkxVs1KDfD87DqcbKfwr6OeNwGAJCJnxgvLi7W1KlTNXPmTKf58+fPV8+ePTVw4EBJ0iWXXKKLL75Yr732mqSqu9QnTpyo9PR0JSYmasqUKXrnnXd05MgRff3111q/fr0eeughWSwWtWrVSnfddZdmzZoV9u0DAjWoa4b+M76/Y/qVW3s6TQMAAABAoJo2beo2rz7tcAAAEN/W7j7iNHy6K0NSvr1Ua3dz3gAACD3Tdoxfd911uuKKK9zmr169WhdddJHTvN69e2vTpk0qLy/X+vXrnZY3b95c2dnZ+vLLL7V69Wr16tXL6Qn06rzelJWVqbCw0OkPiLSad0/2Pucsz3dTAgAAAICfPHWM16cd7g1tbQAA4sPB4947xQNJBwBAfZi2Y9yb/Px8tWzZ0mleixYtVFBQoMOHD6uiokLNmzf3uLy2vN48/vjjstlsjr+2bdsGb2MAAAAAADCRCRMmqF27dhowYIA++OADSfVrh3tDWxsAgPjQook1qOkAAKiPqOsYLy8vl2EYTvMqKipksVhUXl4uSbUu97bMmwkTJshutzv+9u3bF6QtAQAAAADAPJ5//nkdOHBAu3fv1n333acbbrhBGzZsqFc73Bva2gAAxIdeOenKtFnl7azAIinTZlWvnPRwhgUAiFNR1zGenp6uw4cPO807dOiQMjIy1KxZMxmGoaNHj3pcXlteb5KTk5WWlub0BwAAAABArElIqLpEkJiYqCuuuEI33XST3n777Xq1w72hrQ0AQHxITLBoYl6uJLl1jldPT8zL5VWRAICwSKo7ibn06NFDq1at0vjx4x3zVq1apV/+8pdKTU1Vp06dtGrVKl155ZWSqoZ8++GHH3T++ecrISFBkydPVmVlpaPBv2rVKvXt2zci21JvCQnSJZec+extnus0oo8v5RrIseBnnopKQ0W9fqJTFZXaueeoLuySokRf1mOS+H3O469g1cVQbXM07UsAAACYRnl5uRo2bFivdrhp+XvuGur0AJwFUofMWK+JiZgild5kMQ3ulqkZw7rriYWf6dO23SRJlRaLMmxWTczL1eBumZHZhnCsIxZiioVtAIDTLIbreGcms2LFCt1+++3avn27JOm7777TeeedpzfffFOXXnqp3nvvPY0ZM0ZbtmxRamqqnn32Wb366qtatmyZUlJSNGrUKDVr1kzPPvusDMPQj3/8Y/3yl7/UAw88oD179mjAgAFauHChevTo4VM8hYWFstlsstvt3NGOuLJkc74mL96qfHupY15mXSevCKqKSkNrdx/RweOlatGkaogp7qYFAAAwh1hoKy5dulSDBg1SQkKCPvjgA914441auXKl0tLSAm6H+yoW9h8AAKgd17YAAP4Kdlsx6p4Yb9OmjRYsWKAxY8boyJEj6tChgxYvXqzU1FRJ0tixY/X999+rY8eOSkpK0pAhQ/TEE09IkiwWixYuXKjbbrtNzzzzjJo1a6annnrK505xIF4t2Zyv0fM2yvUumgP2Uo2et1EzhnWnczzEuDEBAAAAofbss8/qlltuUUpKitq1a6e33npLublVQ58G2g4HAADRIRyd1okJFvVtf1ZQvxMAAH+Y/olxs+EudsSbikpD/aYud+qQrckiKcNm1coHLuUOzxDxdmNC9d7mxgQAAIDIo61YP+w/AAAihwcyAABmFey2Ii9fiGbFxdLZZ1f9FRd7nucpDaJPXeUayLHgY57K5mfr3SnXqtHJUjU6WaoNz/9KG57/lRqdrDpRtp4s1btTrlVl89DHEpY8wSgfX2LxsZyNs89W795dZPWw/w1JjU6WqnfvLjJiZV8CAAAA4eDvuWuo0wNwFkgdMmO9JiZiilR6P/JUP5Bx7NAxp+tO1SNFLtmcH/aYwpaemOJnGwDgtKgbSh0uDh+ue56nNIg+dZVrIMeCD3kaHC1QzQGOziopdMtyVkmhVBL6WMKWJxDBqosuaSyHD6tZjWnX/W9IanbCLp2oZyxm2pcAAABAOPh77hrq9ACcBVKHzFivickc64iFmEKwDRWVhiYv3uoYpbDmdSdDVaMVTl68VYNyMzyPFBkL+zUc64iFmGJhGwBAPDEOAKZVUcmbLgAAAAAAABAaa3cf8fr6RKmqczzfXqq1u4+ELyj4reY1xDW7CrimCAC1oGMcgE+8vT2ct4qHxrItBzTwmRWRDgMAAAAAAAAx6uBx753igaRD+C3ZnO90DXH47HXqN3W59yHwASDO0TEOwGeuneB0iofO2AWbdMBeVmc6ygAAAAAAAACBaNHEGtR0CK/q98O7XkOs8/3wABDH6BgH4JPnbrxALW3JTvMybFY9d+MFkQkoxvky4BGd4gAAAAAAAAhUr5x0ZdqstY4UmWmzqldOejjDgg9c3w9fU/W8yYu3Mqw6ALigYxyIE/V918ygrhn6z/j+julXbu2plQ9cqkFdM4IVIvzEjQkAAAAAAAAIVGKCRRPzciV5HylyYl6uEhN4PMNseD88AAQmKdIBoB4SEqQLLzzz2ds812lEH1/KtZZj4YNtP+jP723XcxnnSpJ+/cp6ZdqsWtT1fNkaNfD5+ElMODPdu8PZUoLFt9jqGX/Y8/grWHUxIUFHc8/Xt0dOqNJS1eD4/HSZuU7/rn8H3Xnlj5RYVhpb+xIAAAAIB3/PXUOdHoCzQOqQGes1MRFTpNL7kWdwt0zNGNZdTyz8zOk6VIbNqol5uRrcLTPsMYUtfRTHVPO975UWi9s1RE/pAo4pVvYrAEiyGIbBWBp+KCwslM1mk91uV1paWqTDAepU/a4Z14pefYo0Y1h37ye4CLvVOwt000uf1plu/sg+6tv+rDBEBAAAAF/QVqwf9h8AAJFVUWlo7e4jOni8VC2aVA2fzpPi5sU1RADxIthtRZ4YB2JYXe+asajqXTODcjM40TWJ6nc7HbCXeiw3i6qGUOfdTgAAAAAAAAiWxAQLHahRhGuIABAYxpgAYhjvmok+4Xi3U0WlodU7C7Ro0/davdP/980DAAAAAAAAiBzeDw8AgaFjPJqdOCFlZ1f9nTjheZ6nNIg+dZWrl2Ph/J9eoJUzbpP1VKmsp0q1csZtHqcLDh6t13rqncZMeYJRPr7uFy/fM/jKvvr7dZ2V1UhOZZbVSNr6j9s1+Mq+Ae//D9bt1GVT3lPb7rnqcUl33frCCl025T2VtG5rjn0JAAAAhIO/566hTg/AWSB1yIT1uqKoWKVt2ulEq7Zas3lf3Temh+O3xoT7iZjiZBuIKegxVb8f3vUaYobNWvvrM020DWGNCQDEUOrRzTCkvXvPfPY2z3Ua0ceXcvVwLKTkf6cUSZbTs9oUHpQ8TH/fuGG91hOUNGbK469g1cUaeX6Wm6HLOrdU4qSqMpozvKcuzE5X4qTv/F9PjTTj5m+SIedj4aC9VI32B/C9odiXAAAAQDj4e+4a6vQAnAVSh0xWr5dsztfUNzfoo+/3SZKGz1qrpmd/rYl5ud47q8LxW2Oy/URMIUpPTKaJqaKiUomn06/ZeVgXdm1b91PcfqxjcLdMDcq6xPkaYl3riIH9yrkWgEDxxDgQB+oaMOfCbN41Y0Y1T2B7n3NWUIY+8va++WoMqw4AAAAAQP0s2Zyv0fM26oC9zGn+AXupRs/bqCWb8yMUWWyoee1izS5eEQfzWrI5XwOfWeGYHj57nfpNXR7034BQXEMEgFhFxzgQJ7y9a0ZSUE+WaJxEt/V7eN88AAAAAACBqqg0NHnx1lpvTJ+8eCvXSwIUro5GoL64QQYAzImOcSAOPHfjBWppS3aa5zodDMu2HPDYOFm25UDQ1+UJnfL1d6iorO5EAAAAAADAo7W7jyjfXup1uSEp316qtbu5Md1fdDQiWnCDDACYFx3jQBwY1DVD/xnf3zH9yq09naaDZeyCTR4bJ2MXbAr6ulx5umO45jR8c3bj4N8wAQAAAABAvDh43HuneCDpUIWORkQTbpABAPOiYxyIE+F410xd768OlWVbDni8Y/gHO08/u+J98wAAAAAAhE6LJtagpkMVOhoRTbhBBgDMKynSAaAeLBYpN/fMZ2/zXKcRfXwp10COhSDlOdGhk747WiLj9Kyvz2onSY7pSkvVvDbNGiklyLEYkh57f7uM0+uruW7jdCxJiRZlGadvDvBlPf4KVl0MVZmdTnO8rNxjGVlOT2c2tapJYkJwYwEAAADMyN9z11CnB+AskDpkknrdKyddmTarDthL3a5TSFVt8AybVb1yPNyYHo7fGpPsJ3/z1OxA9LRfPaULdUymTk9MEY2p5o0vtR2vXm+QMdt+Msl+rXdMACDJYhgG48v4obCwUDabTXa7XWlpaZEOBzCFRZu+92m49OduvEBDLmgd1HWv3lmgm176tM5080f2Ud/2ZwV13dFoyeZ8TV681eku60ybVRPzcjW4W2YEIwMAAIhutBXrh/0HIJZUvwtbch5Jr7rrZsaw7rTB/RTu6z8VlYbW7j6ig8dL1aJJ1Y0MoRh9EbGpotJQv6nLq26Q8bC8+gaZlQ9cynEFAHUIdluRJ8YB1FskhwnzZ2giGjXS4G6ZGpSbEff7AQAAAACAUBncLVMzhnV3uzE9gxvTA+b0JL6H5bU+ie8nHipAfSUmWDQxL1ej522URZ5vkJmYl8v1OACIADrGAdRbOBsnrnztbN9z+IT6TV1Oo0ZVJ+c8PQ8AAAAAQOhwY3pwhaujsfppf9frWwfspRo9byNP+8Nn3CADAOaUEOkAUA8nTkhdu1b9nTjheZ6nNIg+dZVrIMeCD3kqiop14tzOKmzfSWs271NFUbHHPInnddMHL4+R9VSpGp0q1Qczx+iDmVXTFknWU6X64OUxSjyvW9Dj73PVxcpupDPrqbHu6ukPZ43Ri+9/oaOHjzktP2Av1d2zV+l4h071qyPBqouhKOcIHj8AAACAafl77hrq9ACcBVKHTFivE0tL1PeqizXk5p+pb2ajujttw/FbY8L95Gue6o7GrEZyur6TYbPW3mHt4/dXVBqavHirDLlfY6ruKJ+8eKsqKj08FhLF+5WYQreOwd0ytfLOPtr65j364l/j9dqwH2nlA5fW3Slutv1ksv0acEwAIJ4Yj26GIW3deuazt3mu04g+vpRrIMdCLXmWbc7Xn9/fpo+++UqSNHzWWmXYkvWRlzxNJD3/ywv05/e3qWPBt5Iki1F1F+Sjl3VWk2e+Dkn8FkkP/byzRi3crgRDTuu26My0XKYtRtXdxRZDarLTJTZ/BasuhqqcI3D88HsDAAAAU/P33DXU6QE4C6QOmbFeE1PQYxrcLVODsi5R4qSq6ztzhvfUhV3b1n7TgY/fv3b3EceTvRaXa0xS1XWkfHup1u4+4j4SX5TvV2IK3ToSLVLK6eurvXPSJV9GNTDbfjLhfuVcC0Cg6BgH4lRFpaHE05/X7CrQhV1THNOSNHbBJrdho36wl9X6nYO6ZujSLi2lSVXTr9x6unFSEtq79gZ1zdCMlBRNfXOD0/yWtuQ683LaBAAAAAAAED1qdoL3Pucs3zoafXDweGndifxIBwAAzIeh1IE4tGzLAQ18ZoVjevjsdeo3dbmWbTngmOepw7jmPI/DRsm9cRKud2cN7pap/4zv75h+5daeTtMAAAAAAACANy2aWIOaDgAAmA8d40AcGrtgkw64PP19wF6qsQs2+fwd6/ccCXJU9RepTvl4UPNGiDW7CrzeGAEAAAAAABCNeuWkK9NmlberSRZJmTareuWkhzMsAAAQRHSMA3GorqfBfXGoqPZh1c2mtkYN3NXs+P7b8h267OmPHNPDZ69zGnEAAAAAAAAg2iUmWDQxL1eS+/Wi6umJebk8iAEAQBSjYxyIUYE84etP5/jZjet+f7fZeGvUmIVZnspesjnfqeP7rx/t1A+FJ53S1PW+eQAAAAAAgGgzuFumZgzrrpY25+teGTarZgzrrsHdMiMUGQAACIakSAeAerBYpKysM5+9zXOdRvTxpVxrTC/ZnK8n3tyoeWktJEm/eWWdMtKsertFKxWVlss4neW708urpw1L1bwEi0WyVHWUu6b5Lq2FEhMsujDnLElShSGdat1WlZWGvtx9RBdmpysxkOMyBHkqKg1HbL+/tINeX7/PaXsybFZNHthZWljPOhKEuuitzN5v1UaNGiTWbz/5sS8/2HpAo9/cruRTZR7Lvnq6+thIsFi0d1eBenVNUaKn9QAAAABm5O+5a6jTA3AWSB0yY70mpqiMaXC3TA3KHqDSl6quKb1yWy9dmNum9ifFTbYNxERMEU1v1pgAQJLFMAxeFOuHwsJC2Ww22e12paWlRTocwM2SzfkaPW+j29PfFvn+RPjdA8/VtP/skFzyVJ9iVN8hu2RzviYv3qp8e6kjTabNqol5uRG/g9ZTbBlpVt3Uq52ym6eoRZOqd0KZYfir2spMUsjvSK6oNLR29xEdKCzVlHe36EjxKb+/wyzlDgAAECm0FeuH/QcAAAAAcBXstiId436isQ4zq6g01G/qcqfO4JosqrqBztsI3RZVPUW98oFLtWzrgVo7vSPdmVsbM8RW3dl88HhprZ3wvpRZdZl4y19zPT2ymmnD3qN1rreapxsIAmGGcgcAAIgk2or1w/4DAACufL2+BgCIXcFuKzKUOhBD1u4+UmsHpyGp+lYY1yfIq08pJ+blKjHBUjVsVG6Gx5PPikpDkxdv9fgEunH6uyYv3qpBuRlBO1n1p6M53LG58udJel/KLN9eqrW7j6hv+7PqXE+Cy40PtT3J7e0GgkCEa98CAAAAAADzoiMTwWLmkSoBANErIdIBoB5KSqSePav+Sko8z/OUBtGnrnI9Pd35qsuUfKpMkpR8qkyL5tytRXPuVvKpMqfp312YoawUi9PyDJtVf7++iwbfepXjexPLStX3xsEaMvJq9W2VosSyUqlnT5Vc0F1HDtu9ruftOXfrxedHa/227/2K39ux/MH6XbrsT+8rpV9fZf98gIa/8LEu+9P7sne7wC1PyQXd9eLzo9222efY6lk+H6zfpdHzNurIYbvTuo8etitz0CVVMddYz8HjZ07uayuzw4eO+rSeBiedv+OAvVTjZq923lclJTJ69lS7wf3V0MN+qisWT9OS1PBUmV58frRKLujO7w0AAADMzd92QKjTA3AWSB0yY72Os5iWbM53u37Tb+pyLdmcH7GYAkpvxphiYRv8yFP9MIfrda8D9lKNnrfR+zEVZ/vJtOnNGhMAiCfGo1tlpbR+/ZnP3ua5TiP6+FKu69ermaSEy6ue/00wDJ1/YIfjsyTHdGmns3X/5Z2UOLFqeu7wC3Vh17ZKLDnh03oaS0oYWPd63i0s8St+p+kaeca9+pmMGt+bYBg6eKxEti2fu+Vp/OUmne8hFr9i81eN73j831tlyOJ9vxyQKsorlHg6a4smVsfX1FpmqQ39W8/paUOSxTAc+2rNN4d0YXa6EtevV24t+6mu7601z4F67EsAAAAgHPxtB4Q6PQBngdQhM9brOIqpuiPTerLU6XpBdUdmra9ei6P9FLb0URxTzdEgXa9P1TliYRztJ1OnN2tMACCeGAdiToYtWXUNUHVhtvMwVr3POSskw1qd3TjZp3QVNcb+XrOrwGlaktdh0T3lD3Zs/jpgL6szzfo9Rxyfe+WkK9Nm9anM/F2PJ8Nnr9PAZ1YElBcAAAAAAMBVXa+1k6o6MgO5foMqdV07iyX+vHYQAAB/0TEOxJgHf95Fktw6WmtOB6MT3NcO+Los23LAqaN2+Ox16jd1uZZtOeBzLDU7mqsFI7ZQOVR0plM7McGiiXm5kkJfZtV+CKBTPcNW940EvDEMAAAAAID4Q0dmaC3ZnO/x2lmdQ9RHqZqvHQxGOgAAaqJjHIgxg7pmaMaw7mrp0pHpOl1f/nTA13ZX69gFm9yefj5gL9XYBZt8jqVmR7O3WLzFFgkFx8uc9sHgbplhKbNqvtxTXHPvvHJrT/1nfH+nZZ72bc3vjfW7lwEAAAAA0S2ensANNToyQ6d6iHpP185qfdd2FKv52sFgpEP9xevvZUWlodU7C7Ro0/davTN+thuIdbxjHAijikpDa3cf0cHjpWrRxKpeOVVPLdec1yOrmTbsPeqcptJwvJN6za6CqqHQXb635vJBXdtqUFZ/aVLVvFdu7Vn1hPSk4G3LoK4ZmpGSoqlvbnCa79qZu2Rzvqa+uUEfnZ4ePnudMmzJjmlvw2z5c5pR3dFcc588d+MF+vP722qNTXLfdz/u0sh9/6v2MurRvKEanv6OZqkNVHKq9nifWPKVZqw/oJt6tVN281S1aGLVoNwMv8osw5asPSW1r8dXtd1AIFUNtV+Tp31rS2kga1KFY3r47HVqevYOTczL9f4OMQ881ZG6bmIIpF55rGcueVzXHUhsvuTzJX5f1+WvQLcJsYdjAbGKYzv6UYYAYE7R/vvs6VpFXW1Y1+sHF3ZNCfo2+7uOcMTkCzoy/edL2dU1RH2t79qOYtWvHTzgZRQCi6QM25nrJ/VlxnpnlrotBfZ7KYV+G0L9/Us252vy4q1Oo2Fk2qx1/p8IxnXNuo6/aP7/C3OJ1+MpLjvGS0pKNHbsWC1dulQVFRX61a9+palTp8piif0CR+R4+mfaNKWBJOnYiTM9qQkWqebNZ01TGsh6slSfnp527VhetuWA/vz+NreTk0cvy9ag0/NcOzaDZXC3zFo7c5dtOaDRC7fLetL5rtZAhvKuzRNLvtKLG35w2uZBXTN0aZeWtXY0ezqxK0v+0m3/S7WXUeqpUm05/flo8SmpYc0ues8OFJbp2f/scExn2qx+ldmDP++iUQu313v48t/0baelW39wmpdhs+rRyzpLz3rO47pv7xjQQU/97zuVnXS+I6D67uUZw7r71DkeyAlnoPXKUz1zzVNz3YHE5ss2+Rq/L+vyV6DbhNjDsYBYxbEd/ShDADCnaP99rn4C1/VaRW1t2EA7hvyNy591hCMmX4W7IzPa+Vp2/gxR37d9aK79RUL1awdHz9vo9WGOiXm5Qem8MWO9M1PdDuT3sjpfKLchHN8/et5Gt5tS6vo/EYzrmrXlifb/vzCXeD6e4nIo9XvuuUeVlZXauXOntmzZoo8++kh//etfIx1WYJo3r/qrbZ6nNAir6n+mriezx06ccur8kpw766rT2E+cUkGjNBU0SpNU1bFc0ChNJ9KaOYYir7m8eijyk83Saz8WAjl+XKYTEyyOeb3POcsxbTRvrj+/v81xAlEzPsNl2nW5t3m1TXvaZm+xqXnzqk7700NR1fweT/u/rjKqNAKLvyZ/y6zmkPk1vzfB4l8sAzq31H/G99epZmeprGm6Xrm1p1Y+cKkGdc2otexrlvMbG/d5LWep6u7luoYa8lZHahsarD71ypdyrl734+9t9Ts2X7bJ2/fWFkuwhkgLZH8jNnEsIFZxbEc/yjA6lZSUaNSoUcrKylKbNm10//33yzBMPOSkv23lUKcHokBYf58DqUN15HF9AteXNmzNoaxdr0P4tM0+bIe/6whHTP6kr+7IlKo6LmvG5HNHphl/k0OwDn/KznXoeW/XlWodoj5K92vN1w7W3O4Mm7XuBzB8jCms9S5EMQWyDl/TB/J7GY5tqPfvXx3qGqlB8v5/IhjXNes6/mgfIRji/XiyGKZupQZfUVGRWrZsqX379ik9veouxYULF2rKlCn67LPP6sxfWFgom80mu92utDTPHVxATRWVhvpNXV7rHZ6Bcn3qtabqu3FXPnBpRIa/WL2zQDe99GndCYPI120OZZnUjKWJNUmFpeV+5fG3zFyHO6keIvyAvURT/r1NR4tPejyRC9bx4Ws5zx/Zx+vdy3WVh6dYw1GG1QKpZ77EV9v3+rMufwWyvxGbOBYQqzi2o1+0liFtRWnMmDE6efKkXnzxRRUXF2vgwIH69a9/rTvvvLPOvOw/wPyi9fe5Jn/bsOHYZn/XYeZyiOenz3zhb9kF45pLtAvVML9mrHdmq9uBHH+h3oZw7KNw/J8w4/GH+BGNx1Ow24px98T4hg0blJOT4+gUl6TevXtr8+bNqqiocEtfVlamwsJCpz/AH3UNe1QftXWq1RxOKRJqvVs1RHzd5lCWSc1Y/OkUr87jb5klJljUt/1ZGnJBa/Vtf5YaJiWob/uzdE33NvrzNd0keX+HeDCGnfK1nGtL58/QYL7mCaZA6pkv8fnTKV7buvwVyP5GbOJYQKzi2I5+lGF0Kioq0pw5c/Tkk08qKSlJNptNEyZM0KxZsyIdGoAgiYXfZ3/bsOHYZn/XYeZyGNwtUysfuFTzR/bRczdeoPkj+2jlA5fSKX6av2VXPUS9tys3FlXdeBDLQ9S7XvcKVieNGeud2ep2INf8Qr0N4dhH4fg/YcbjD/GD4ykOO8bz8/PVsmVLp3ktWrRQeXm57Ha7W/rHH39cNpvN8de2bdtwhYoYEYkOYjOsv0UTq89pg33fUV3bHOkyqUuw4qsedirD5lwWPg075SNfy7m2dIGcaJutDF3jCWV89f3uYNzMgNjAsYBYxbEd/SjD6MRN6EDsi4XfZ3/bsOHYZn/XYfZyCFVHZizwt+xch6ivKdjv2o43Zqx3ZqvbgVzzC/U2hGMfheP/hBmPP8QPjqc47BgvLy93e8dZdSPdYnE/iZgwYYLsdrvjb9++fWGJ0yclJVL//lV/JSWe53lKg7Dyp4PYm+RTZVrw6h+04NU/KPlUWZ3TNfP0/90Nno+FQI4fP/L0GXGdslMsstQS/8LXH9SL13ZWVorFa/yh2Ob+v7vB63qCUT41573x2oOyeonX2/cEs8wGd8vUyrv66vOP/qz1//mTXrvlfK28q68G33FTUI6F2spZ8u3u5UBOtINRr4LJNZ5Qxlff7w7GzQyIDRwLiFUc29GPMoxOUXcTur9t5VCnB6JAWH+fA6lDPuSp+QSuL23YmttSW7ve6zb7EJO/6whHTGFNH0cxBVJ21Q89uF478+mhhzjZr4GkD2u9C1FMgazDn/T+/l6GYxvq/fvnA39HagjldU1Px5+v6wC84XiSkiIdQLilp6fr8OHDTvMOHTokq9Uqm83mlj45OVnJycnhCs8/lZXSxx+f+extnus0wqr6n+kBe6nHdz37IsEw1GffZsdnSY7pRMOQUWO6enlidZ598n4sBHL8+JjHIumhJ1/WqIXbz8RyOj5LjXjVNUODurRU4sSq6bNSkpR/qvZt9jbt6zbbJLW6YoL2lHhej788fYfrNnuK11WoyixRhmxrV0mSmmc3k2QE7Vioq5yluu9erquOWFT1lHvNE+1g1CtfJVgkw5DPsfkaX23f64m3dfkrkP2N2MSxgFjFsR39KMPoFMhN6OPHj3dMFxYWhrdz3NP5biTTA1EgrL/PgdQhH/JUP4E7et5Gn9qwNbfZU9u/zm32ISZ/1xGOmMKaPo5iCrTsBnfL1KCsJo5rZ3OHX6gLu7at+0nxONmvgaQPa70LUUyBrMOf9P7+XoZjG+r9++eDmtttkfN1u7r+TwTrumZtxx/tI9QXx1McPjHevXt3ffXVVzp69Khj3qpVq9S7d28lJMTd7kAY1DbsUaBcv6eu6UgZ1DVDM4Z1V0ub880lrtM1T6Am53WVVPs2WepY7osHf94loHy+cP3O5268wG2b68oTTbyVs69DtgcyNFgo6pWr6uNs5E9z/Iqtrvjq+l5vsXhbl78Yig3VOBYQqzi2ox9lGJ0CuQk9LS3N6Q+AucXK73P1E7i+tGHDsc3+riNWyiEe1afsas7rfQ5D1NeXGeudGeu2P7+XUui3IVz7yJ/XUwb7uia/+wg1jqc47BjPyMjQ4MGD9eCDD6q8vFyHDx/WY489pnHjxkU6NMQwb/9Mm6Y0UNOUBk7zXH9vmqU0kM0lTc2TEU+drhk2q5678YL6Bx4Eg7tl6j/j+zumX7m1p9O0K18604Oxzd7W47r/fSkj12nXWAZ1zXDa5jsGdFBGmvuJlVnKLBCeynnlA5f6/B7zQN6HXp965ameueapXveEK3IDeld7Xdvk7Xs9xR/M98L7Eluw1gPz41hArOLYjn6UYfThJnQgPsTK77M/bVh/O4YCjcefdYQjJoQGZWceZqx3Zjw+/L3mF+ptCNc+GtwtUysfuFTzR/bRczdeoPkj+9T5fyIY1zXrOv6i/f8vzCHejyeL4TrWWRw4fPiwRowYoVWrVik1NVX33nuv7rjjDp/yFhYWymazyW63R/6O9uJiqXHjqs9FRVJqqvs8yT0NIqai0tDa3Ud08HipWjQ5MxxFzXk9spppw96jzmmKi5WY1kSStOaLvbowO90xraIiVVQazsu7tlViyYnajwXXaV+On0DyBPi9FceLwrLNruv5cZc27vu/jjLq0byhGjZN8yuWikYpbsdCSMosVOXqS54Afm881ZG67k4LpF55rGcueVzXHUhsvuTzJX5f1+WvQLcJsYdjAbGKYzv6RVMZmqqtGCFDhgxRq1atNH36dB07dkyXXnqpHn30UV199dV15g37/vP33DXU6YEoE/Lf50DqUIjrqdt1Cl+Gsg7xOsIRU1h+/+IwJr/LzoTbECsxhbzehSGmWNivYflNDrFgXdes9fiLovYRzC9ajqdgtxXj7h3jktS8eXMtWrQo0mEgDiUmWNS3/Vlu813nuaVxGS7J0/c6LTfhj5e/3LapruX1GILH6XuSEvwvo+Jiv2PxdizEu0D2S6D1ypc89Y3Nl3y+xh8KHIeoxrGAWMWxHf0ow+jy8ssva8SIEcrMzHTchO5LpziA6BOPv8/huPbi7zpi8XpQvKDszMOM9S4Wjo9Qb4MZ91Ewr2sGcx2AN/F6PMVlxzgAAAAAAAgubkIHAAAAAJgZHePRLiWl7nme0iD61FWugRwL4cpjplh8yROIYNXFWNv/AAAAgFn5e+4a6vQAnAVSh8xYr4nJHOuIhZhiYRvCsQ5iMkf6cKyDcy0AAYjLd4zXB++NAwAAAAC4oq1YP+w/AAAAAICrYLcVE4IQEwAAAAAAAAAAAAAApkXHOAAAAAAAAAAAAAAgptExHs1KS6Vf/KLqr7TU8zxPaRB96irXQI6FcOUxUyy+5AlG+fi6X8JRztG2LwEAAIBw8PfcNdTpATgLpA6ZsV4TEzFFKj0xEVMk05s1JgAQ7xj3m6nee1ZcLDVuXPW5qEhKTXWfJ7mnQfSpq1xdp305FsKVx0yx+JInkDoSrLoYa/uf3xsAABBHTNVWjEJh33/+nruGOj0AZ4HUITPWa2IipkilJyZiimR6s8YEICrxjnEAAAAAAAAAAAAAAPxAxzgAAAAAAAAAAAAAIKbRMQ4AAAAAAAAAAAAAiGl0jAMAAAAAAAAAAAAAYhod4wAAAAAAAAAAAACAmJYU6QCijWEYkqTCwsIIRyKpuPjM58JCqaLCfV5N1WkQfeoqV9dpX46FcOUxUyy+5AmkjgSrLsba/uf3BgAAxJHqNmJ1mxH+CXtb299z11CnB+AskDpkxnpNTMQUqfTEREyRTG/WmABEpWC3tS0GrXa/fPfdd2rbtm2kwwAAAAAAmNC+ffvUpk2bSIcRdWhrAwAAAAC8CVZbm45xP1VWVmr//v1q0qSJLBZLpMPxqLCwUG3bttW+ffuUlpYW6XDgA8os+lBm0Ycyiz6UWfShzKIPZRZ9KDPzMgxDx48fV6tWrZSQwFvL/EVbG2ZCWccPyjp+UNbxg7KOH5R1/KCs44treQe7rc1Q6n5KSEiImrv/09LS+JGIMpRZ9KHMog9lFn0os+hDmUUfyiz6UGbmZLPZIh1C1KKtDTOirOMHZR0/KOv4QVnHD8o6flDW8aVmeQezrc1t7AAAAAAAAAAAAACAmEbHOAAAAAAAAAAAAAAgptExHoOSk5M1ceJEJScnRzoU+Igyiz6UWfShzKIPZRZ9KLPoQ5lFH8oMiBzqX/ygrOMHZR0/KOv4QVnHD8o6flDW8SXU5W0xDMMIyTcDAAAAAAAAAAAAAGACPDEOAAAAAAAAAAAAAIhpdIwDAAAAAAAAAAAAAGIaHeMAAAAAAAAAAAAAgJhGx3iMKSkp0ahRo5SVlaU2bdro/vvvF6+RN5fly5froosuUocOHdS+fXtNnz7dsaxbt25q2bKlsrOzlZ2drb59+0YwUkjSHXfcIZvN5iiT7Oxs7d27V5L02WefqU+fPsrKylJubq6WLVsW4WghSe+//75TeWVnZ6tly5Zq0qSJJKlx48Zq3bq1Y9nQoUMjHHH8MgxDc+fOdfutq6tuTZs2TR06dFDr1q11zTXXqKCgIJxhxzVPZXbq1Ck9+uijOu+889S2bVv99Kc/1aZNmxzL169fr8TERKc6+fTTT0cg+vjkrZ7V9VtIPYscT2U2YsQIt/9tqampuvPOOyVJb7zxhpKTk52Wv/baa5HaBCAm0daObYGelyK61HY9Zs+ePRo0aJCysrLUoUMHzZs3L4KRor6efPJJdezYUe3atdN5552nd955x7GMeh27Ro8erc6dOzumKevYwjXa+LN27VpdfPHFysrKUqtWrbRw4UJJlHcsqes6fsjK2kBMGT16tDFixAjj1KlTxrFjx4wLL7zQeP755yMdFmq46667jO3btxuGYRg7d+40Wrdubbz//vuGYRhG165djeXLl0cyPLj4/e9/b/zxj390m19YWGi0bt3aWLZsmWEYhrFixQrDZrMZ+fn54Q4RPvjd735nPPTQQ4ZhGEZqaqqxa9euCEeE999/3+jWrZvRvn17o1OnTo75ddWt1157zfjxj39sFBQUGOXl5cbtt99uXHvttRHZhnjjrcw2b95sPPLII0ZRUZFhGIbx4osvGm3atDFOnjxpGIZhrFu3zmjXrl1EYo533srMMGr/LaSeRU5tZVbT8ePHjYyMDMc55b/+9S/j4osvDleYQFyirR27Aj0vRfTxdj2mvLzc6NatmzF79mzDMAxjy5YtRrNmzYzPPvsscsGiXlasWOFoj3z88ceG1Wo1Dh8+TL2OYd9++62RkpLi+B2nrGMP12jjy7Zt24zMzExHuZaVlRk//PAD5R0Hqq/jh7KseWI8hhQVFWnOnDl68sknlZSUJJvNpgkTJmjWrFmRDg01PPfcc+rUqZMk6ZxzztENN9yg5cuXO5Y3bdo0QpHBG09lMn/+fPXs2VMDBw6UJF1yySW6+OKLeTrLhHbt2qW33npL9913n2Me9SzyiouLNXXqVM2cOdNpfl11a9q0aZo4caLS09OVmJioKVOm6J133tGRI0fCvg3xxluZde3aVY8++qhSU1MlSb/73e9UXFysHTt2ONJQ5yLDW5lV81Yu1LPIqavMqj377LP6+c9/7jinlKhnQCjR1o5tgZ6XIvp4ux7z4YcfKikpScOHD5ck5ebmatiwYZozZ04Eo0V9XHLJJWrQoIEk6eKLL1ZKSooOHTpEvY5hd999t2699VbHNGUdm7hGGz8eeugh3XnnnY5ybdiwoVq0aEF5x7ia1/FDWdZ0jMeQDRs2KCcnR+np6Y55vXv31ubNm1VRURHByFCbQ4cOyWazOaa5qGk+nspk9erVuuiii5zm9e7d22n4YJjDE088od///veOepaQkOBU5xAZ1113na644gq3+bXVrfLycq1fv95pefPmzZWdna0vv/wy5DHHO29l5urEiRM6ceIE/9tMoLYy8/ZbSD2LLF/qWVFRkaZPn65HHnnEaT71DAgd2tqxLZDzUsSG6usxlHXsKi0t1bRp09SzZ0917tyZso5R//73v1VQUKDrr7/eMY+yjk1co40PpaWlevfdd51udqlGece2mtfxQ1nWdIzHkPz8fLVs2dJpXosWLVReXi673R6hqFCbtWvX6t1339WvfvUrSZLFYlH//v0ddy5//fXXEY4QkjRhwgS1a9dOAwYM0AcffCDJe33jHazmcujQIb322mu6/fbbHfMsFovat2+vjh07asSIEdq/f38EI4Sr2urW4cOHVVFRoebNm3tcDnN46KGH1L9/f7Vu3doxb/369crKytKPfvQjTZ48WWVlZRGMEJL330LqmfnNnj1b/fr1U05OjtP8t99+W+3atVOPHj00ffp03n0MBBFt7fhEmy+21bweQ1nHnp07d6pt27ZKSUnRggUL9MILL0iiXseigoIC3XXXXZoxY4bTfMo6NnGNNj58/fXXatSokT766CP96Ec/0jnnnKPf/e53KiwspLxjmOt1/FCWNR3jMaS8vNztAlj13esWiyUSIaEWCxYs0FVXXaU5c+Y4Lmx+/vnn2rt3r7Zs2aIf//jHGjhwoIqKiiIcaXx7/vnndeDAAe3evVv33XefbrjhBm3YsMFrfaOumcs//vEPXXPNNWrRooVj3tGjR7V7926tW7dOKSkpysvLo/PARGqrW+Xl5ZJE3TOp4uJi/eY3v9HHH3+sf/zjH475PXr0UHFxsfbu3atFixZp+fLlmjBhQgQjheT9t5B6Zn4zZ87UXXfd5TTvuuuuk91u17fffqtXXnlFL774oqZPnx6hCIHYQ1s7PtHmi12u12Mo69jTvn177du3TydOnNBdd92lvn37aseOHZR1jDEMQyNGjNC4cePUuXNnp2WUdezhGm38OH78uGM0u7Vr1+rzzz/XoUOHNHbsWMo7hrlexw9lWdMxHkPS09N1+PBhp3mHDh2S1Wpl2GATqaio0JgxYzR58mQtXbpUV111lWNZQkJVlWzUqJEmTJig1NRUrVmzJlKhQmfKJDExUVdccYVuuukmvf32217rW0ZGRiTChBezZ8/WzTff7DSvukxtNpuee+45ffXVV9q1a1ckwoMHtdWtZs2ayTAMHT161ONyRM7OnTvVs2dPNWjQQCtXrtTZZ5/tWFbzhDUnJ0dPPvmk/vWvf0UiTNTg7beQemZu69evV0FBgS655BKn+TXr2Xnnnac//vGP1DMgiGhrxyfafLHH2/UYyjp2Wa1W/epXv9KVV16pOXPmUNYx5oknntCpU6d0xx13uC2jrGMP12jjR/PmzXXq1Ck98cQTslqtatKkiSZNmqR33nmH8o5hrtfxQ1nWdIzHkO7du+urr75yupC5atUq9e7d2/GPA5E3btw47dq1S+vXr9f5559fa9ry8nI1bNgwTJHBF9Vl0qNHD61atcpp2apVq9S3b98IRQZXmzZt0v79+zVgwACvaSorK1VZWUk9M5Ha6lZqaqo6derktDw/P18//PBDnb+nCJ1jx47p0ksv1d13362ZM2cqJSWl1vT8bzOfmr+F1DNzmzdvnq699to675CmngHBRVs7PtHmiz3ersdQ1rEvOTlZjRo1oqxjzPPPP69PPvlEzZo1U9OmTXXllVdqx44datq0KbywMoEAAQAASURBVGUdB7hGG7uysrLUsGFDlZaWOuYlJCTIarVS3jHK03X8kJa1gZhy1VVXGbfffrtx6tQp49ChQ8Z5551nvPXWW5EOC6eVlJQYiYmJxv79+92W/fDDD8aGDRsMwzCM8vJy47HHHjM6duxolJSUhDtM1LBkyRKjoqLCMAzDWLp0qdGsWTNjy5Ytxr59+4ymTZsaH374oWEYhvHvf//byMrKMoqKiiIZLmp4/PHHjauvvtpp3jfffGN89dVXhmEYRmlpqTFmzBjj4osvjkR4OO2jjz4yOnXq5Jiuq24988wzxoUXXmgcPXrUKCsrM37zm98Y48aNi0js8cq1zP7v//7P+NnPfuY1/aeffmoUFBQYhmEY+fn5xkUXXWT88Y9/DHmcOMO1zOr6LaSeRZ5rmVXr1KmT8fbbb7vN//jjjx2/kzt27DA6depkzJo1K+RxAvGEtnbs8/e8FNGltusxxcXFRmZmpvGPf/zDMAzDWLdunZGZmWns27cv3GEiCL777jvj1VdfNU6dOmUYRtV5UkZGhvHVV19Rr2Nczd9xyjr2cI02vowZM8YYOXKkcerUKaO0tNS49tprjfvvv5/yjlGeruOHsqyT6t+1DjN5+eWXNWLECGVmZio1NVX33nuvrr766kiHhdN27dqlyspKt7taOnXqpJdeekm//vWvVVBQIKvVqp49e2rp0qWyWq0RihaS9Oyzz+qWW25RSkqK2rVrp7feeku5ubmSqt5LNmbMGB05ckQdOnTQ4sWLlZqaGuGIUW3NmjXq3r2707wjR47opptuUklJiZKTk3XZZZfpjTfeiFCE8KRNmza11q2xY8fq+++/V8eOHZWUlKQhQ4boiSeeiHDU8W3Hjh1avXq1srOzneY/9NBDGjlypL744gtdc801SkpKUqNGjfSb3/xG999/f2SChaS6fwupZ+Z07NgxffXVV27/2yRp+fLlGjp0qJKTk5WWlqbx48fr1ltvjUCUQOyirR1/6jovRXSp7XrM0qVLtXjxYo0cOVLjx49XRkaGXn31VbVp0yZC0aI+kpOT9fLLL2vs2LFq0qSJsrOz9dZbb6ljx46SuJYTL/gNjz1co40vU6dO1ejRo9W6dWs1adJE1113naZMmaKGDRtS3jHI03X8UP6OWwzD5e3lAAAAAAAAAAAAAADEEF6GBQAAAAAAAAAAAACIaXSMAwAAAAAAAAAAAABiGh3jAAAAAAAAAAAAAICYRsc4AAAAAAAAAAAAACCm0TEOAAAAAAAAAAAAAIhpdIwDAAAAAAAAAAAAAGIaHeMAAMSwBx98ULNnz3abv2LFCvXr18+v75o5c6aGDx/udwwPP/ywJk2a5Fee//znP+rfv7/f6wIAAAAAIBxobwMAEH3oGAcAIMbs2bNH33zzjb755hvt27dPe/fudUx///33debv37+/VqxY4fd6s7OztWfPHp/S3n333WrevLnTn8Vi0ddff+33egEAAAAACAfa2wAARLekSAcAAACC6/bbb9fhw4cd09u2bdO7774rSerRo4f+/ve/Ryo0h2effVbPPvusY3rPnj3q0aOH2rdvH8GoAAAAAADwjvY2AADRjY5xAABizJIlSyRVDd+2bt06NWzYUJdccokuuOAClZeXq6ioSCUlJV7zHz9+XIWFhX6vN9B8kjRjxgzddNNNSkxMDCg/AAAAAAChRnsbAIDoRsc4AAAxaPjw4dq5c6duuOEGlZWV6eabb9avf/1rtWvXTo888ohKSkqUk5PjMe/OnTv9HmLt2LFjOnLkiL7++mv96Ec/8ivvp59+qtmzZ+uLL75wi+Pee+9V586d9dvf/tav7wQAAAAAIBRobwMAEL3oGAcAIMZ88803+vDDD7Vr1y41aNBAUlXDPScnR0eOHNFNN92kFStW6OGHH3bL+/HHH6tBgwZasGCB7r33Xp/XuWjRIjVv3lzz58/X9ddf73O+lStX6oYbbtC8efOUkZHhtCwlJUWdO3dW27Ztff4+AAAAAABChfY2AADRLSHSAQAAgOBq3LixSktLnYZZO3jwoKxWq4qLi/XNN9/o+++/95i3+l1khmHovffe82l9lZWVev755zV//nytW7dOX375ZZ15Tp06peeff17XXHONZs2apZ/97GduaTIzM/Xb3/5Wl19+uU9xAAAAAAAQSrS3AQCIbjwxDgBAjMnIyNAf//hH9ezZUwMGDNDJkyf1ySef6OWXX9bHH3+sv/zlL7Lb7bLZbE75/vGPf+jw4cO6+eablZubqyFDhujTTz9V69ata13fY489ps6dO2vgwIH629/+pl/+8pdas2aNmjRp4jH9nj171L9/f+Xk5GjVqlU699xzg7btAAAAAACECu1tAACiGx3jAADEoDvvvFM33nijNm/erAYNGuiFF15wNJyHDBniNrTb4sWLNWnSJK1YsUIWi0Xdu3fXlClT9NOf/lRvv/221/eY/d///Z9ef/11rVy5UpKUl5enDRs26OKLL9aiRYvUrl07tzzZ2dlavHixunXrpsrKyhBsPQAAAAAAoUF7GwCA6MVQ6gAAxKgVK1bo1KlT6tevn9vd5FarVZmZmZIku92uRx99VG+99ZbT+8WGDx+uhx56SBs3bvT4/bt379bMmTP173//2+lu+EmTJunaa6/V9u3bvcZ23nnn6eOPP9Yll1zicXmrVq00ePBgn7cVAAAAAIBwob0NAEB04olxAABi1Jo1a5SRkeHxfWJ9+vTRv/71L0mSzWbTunXrPH7HiBEjvH5/Tk6O1q5d63HZI488EkDEZ+Tm5io3N7de3wEAAAAAQCjQ3gYAIDrxxDgAAAAAAAAAAAAAIKbxxDgAADHs0Ucf1VNPPeV1+WeffeYY4i0SPv30UzVt2tTr8q1bt6pVq1bhCwgAAAAAAB/Q3gYAIPpYDMMwIh0EAAAwvyNHjqioqEjt2rXzK9+BAwckSRkZGaEICwAAAACAqEZ7GwCA8KBjHAAAAAAAAAAAAAAQ03jHOAAAAAAAAAAAAAAgptExDgAAAAAAAAAAAACIaXSMAwAAAAAAAAAAAABiGh3jAAAAAAAAAAAAAICYRsc4AAAAAAAAAAAAACCm0TEOAAAAAAAAAAAAAIhpdIwDAAAAAAAAAAAAAGIaHeMAAAAAAAAAAAAAgJhGxzgAAAAAAAAAAAAAIKbRMQ4AAAAAAAAAAAAAiGl0jAMAAAAAAAAAAAAAYhod4wAAAAAAAAAAAACAmEbHOAAAAAAAAAAAAAAgptExDgAAAAAAAAAAAACIaXSMAwAAAAAAAAAAAABiGh3jAACE0dixY3XhhRdGOgwAAAAAAGIGbW0AAOALOsYBAAij1q1bq3379n7ny8/P18yZM0MQkXlkZ2fLYrE4/fXv398pzcmTJ/WHP/xBrVq1UqNGjdSvXz9t2LDBKc2///1v9evXT82aNVOzZs30i1/8Qps3b3YsX7Fihdt6av7985//DMfmAgAAAACChLa2d+Fqa1d77bXXdP7556tRo0bq1KmTnn/+eRmGEcpNBADAZxaD/0oAAJjetGnTNG3aNO3ZsyfSoYRMdna2brnlFo0YMcIxz2q1KiMjwzF922236X//+5/++te/KiMjQ3/+85+1dOlSbdmyRZmZmZKkP/3pT8rOztYFF1wgu92uKVOm6PPPP9dXX32ltLQ0lZaW6sCBA27rf/PNN/X4449r165dSktLC/0GAwAAAAAiirZ2lWC0tSXpvffeU15enh5//HH94he/0Pr163XHHXdo0qRJuueee8K74QAAeJAU6QAAAED4VFZWOu4QN6NOnTopOzvb47Jt27bplVde0YYNG/TjH/9YkjRnzhyde+65mjFjhh599FFJ0sMPP+yU75VXXlFmZqY2bNigAQMGyGq1uq2jvLxcf//73zVhwgQ6xQEAAAAAfqGtPUCS9PLLL+vKK6/U/fffL0nq2rWrdu7cqZdffpmOcQCAKTCUOgAAYTRu3DinIcsmTZqkCy64QBs3btRPfvITpaSk6LzzztN//vMfR5rs7Gzdfffd2rt3r1tDu7CwUGPGjNHZZ5+tlJQU/fznP9fOnTsdy6uHDf/888/Vt29fNWjQQF999VWtMVbn+eabb3TDDTeoSZMmys7O1tNPP+2WdtOmTcrLy1PTpk1ltVp14YUXatGiRY7lxcXFys7O1nPPPefT/mnZsqXXZe+88466dOniaKhLUsOGDXX11Vdr2bJlXvNVVFTU+d1z585VSUmJfv/73/sUJwAAAADAPGhr1y5cbe3ExESlpqY6pWvcuLEjLQAAkUbHOAAAEXb48GGNHj1aDz30kFauXKlzzz1X11xzjQoKCiRJK1eu1COPPKLWrVtr9+7d2r17t6Sqp5yvuOIKffzxx/rnP/+pjz/+WElJSfrFL37h1ui85557NH78eG3YsMExDFpdfvOb3+iyyy7TqlWrdOutt+ree+/V0qVLHcs3btyoiy66SGlpaVq8eLE++eQT9e/fX9dee63efPNNSVJSUpLatm2rs846y6d1Xn/99UpLS1O3bt305JNPOm3H5s2bdd5557nlyc3N1TfffOM2/9SpU/r88881fPhwjRgxQrm5uR7XWVlZqalTp2r8+PGyWq0+xQkAAAAAMDfa2meEq639+9//XosWLdJbb72l8vJyffrpp3rmmWd4WhwAYBoMpQ4AQITt379f7733nn70ox9JkmbOnKnMzEy9//77GjZsmNq0aaP09HQlJSU5DX02f/58bdy4Udu2bVNWVpYk6dVXX1Xbtm311ltv6frrr3ekveKKKzR06FC/4rrxxhv1u9/9TpJ03nnn6d1339W//vUvXX755ZKk++67Tz/96U/1z3/+05GnZ8+eOnbsmCZMmKDrrrtOycnJ+uSTT3xa3z//+U81atRIZWVlWrFihR599FHt3LlTf//73yVJhw4dUvv27d3ypaeny263O83LyMjQwYMHZRiGRo4cqWnTpnld79tvv639+/frtttu8ylOAAAAAID50dauEs629iWXXKJJkybp2muvlcVikWEYuuWWWzRq1Cif9w8AAKHEE+MAAERYmzZtHA11qarx2bZtW+3bt6/WfO+//74GDhzoaKhLUpMmTXTBBRfo888/d0r785//3O+4fvGLXzhNn3/++Y6YSktL9fHHH2vEiBFu+W6++Wbt2LFD+fn5fq3voosuUvfu3dW3b19NmDBB06dP18yZM7V//35JVXftJyS4n7p4eo/bJ598onXr1um1117T119/re7du+vgwYMe1/u3v/1Nw4cPl81m8yteAAAAAIB50dauEs629ty5c/XEE0/ob3/7m9atW6d//vOf+u9//6s//OEPfsUMAECo0DEOAECEpaenu81r3LixysrKas136NAhvffee7JarU5/n3zyiaOBW62294n5GlfNmAoKClRRUaG2bdu65asePu7o0aN+r7OmIUOGqLKyUl988YUkKS0tze1udUk6duyY2/Bx5557rnr06KEbbrhBy5YtU1JSkh5//HG3vDt37tTy5cs1fPjwesUKAAAAADAX2tqehaqtffz4cd1111168cUXNWbMGPXo0UO/+tWv9N577+nJJ5/Ul19+Wa+4AQAIBoZSBwAgSjVt2lR5eXkeO3xdn372dPd3fdhsNlksFn3//fduyw4cOCBJOvvss+u1jpMnT0qSkpOTJUkdO3bU8uXL3dJt27ZN3bp18/o9DRo0UO/evbV9+3a3Za+++qqys7PVo0ePesUKAAAAAIgNtLWr+NvW3rp1q+x2u37yk584pcvNzVV6erpWr17t8V3mAACEE0+MAwAQBRo0aOB2V3u/fv30xRdfKCcnR507d3b6q76TPFQaN26sPn36aNasWW7L5s+fr+7du9e7sb5gwQI1atRI3bt3lyRdfvnl2rBhg7755htHmlOnTumtt97SkCFDJEmGYbh9T0VFhTZs2KCOHTu6LXv77bd1zTXX1CtOAAAAAEB0oq0dvLZ2q1atJEnr1q1zSrdjxw4VFBSEfN8BAOALOsYBAIgCHTt21IEDB/TGG2/o008/lSTdeuutKi8v15VXXqkPP/xQW7du1TvvvKO8vDyPw6AF25NPPqlly5Zp2LBh+t///qf169fr/vvv19y5c/Xss89KqroTfeDAgVqwYEGt3/X+++9r7Nix+uSTT/T555/r8ccf1x/+8Ac98sgjjjvyBwwYoH79+un666/Xf//7X33xxRf69a9/rYYNGzrev7Z3715deumlWrhwobZu3aoVK1bouuuu0/79+3XPPfc4rbOgoECfffaZ293sAAAAAID4QFs7eG3ttm3batiwYbr99tv1j3/8Q1u3btWiRYuUl5enH//4xxo8eHAI9xoAAL5hKHUAAKLAwIEDNWLECN16661KT0/X3r17lZaWpo8//lj33nuvrr32WhmGoQ4dOmjEiBFq0qRJyGPq16+fVqxYoYcfflg/+9nPZLFY1KdPHy1fvlx9+/aVVHWX+VdffaUffvih1u9q166d1q5dq1deeUWlpaXq0qWLXnzxRbd3fy9cuFBjx45VXl6eDMPQ5Zdfrg8//FBWq1VS1ZBy7du317hx43Tw4EG1bt1aAwcO1KZNmxx3r1dbv369DMNgGHUAAAAAiFO0tasEq609a9YsPf/883riiSe0e/duZWZm6uqrr9Yf//hHNWjQILg7CgCAAFgMT+OgAAAAAAAAAAAAAAAQIxhKHQCAOPOzn/1MVqvV498//vGPSIcHAAAAAEDUoa0NAID58cQ4AABx5ttvv9WJEyc8LsvMzHS8ZwwAAAAAAPiGtjYAAOZHxzgAAAAAAAAAAAAAIKYxlDoAAAAAAAAAAAAAIKbRMQ4AAAAAAAAAAAAAiGlJkQ4g2lRWVmr//v1q0qSJLBZLpMMBAAAAAJiAYRg6fvy4WrVqpYQE7kH3F21tAAAAAICrYLe16Rj30/79+9W2bdtIhwEAAAAAMKF9+/apTZs2kQ4j6tDWBgAAAAB4E6y2Nh3jfmrSpImkqgJIS0sL78pPnZJmz676fOutUoMG/qfx5TsAhEYw6mc4voNYQxdrMERTrGbB/0//hat+xhrqpzOOI8SZwsJCtW3b1tFmhH8i2tauVtvvTaDLEL/qc14QqWOqPjGFqv6YcT9FSqj2IzGFPib4ht+DM9gX0Y3fISCogt3WthiGYQTlm+JEYWGhbDab7HZ75BrrAAAAAABToa1YP+w/AAAAAICrYLcVefEZAAAAAAAAAAAAACCmMZR6NKmokD75pOrzT38qJSb6n8aX7wAQGsGon+H4DmINXazBEE2xmgX/P/0XrvoZa6ifzjiOAESb2n5vAl2G+FWf84JIHVP1iSlU9ceM+ylSQrUfiSn0McE3/B6cwb6IbvwOAabGUOp+iujwbsXFUuPGVZ+LiqTUVP/T+PIdAEIjGPUzHN9BrKGLNRiiKVaz4P+n/8JVP2MN9dMZxxHiDEOB148p9l9tvzeBLkP8qs95QaSOqfrEFKr6Y8b9FCmh2o/EFPqY4Bt+D85gX0Q3foeAoGIodQAAAAAAAAAAAAAA/EDHOAAAAAAAAAAAAAAgptExDgAAAAAAAAAAAACIaXSMAwAAAAAAAAAAAABiGh3jAAAAAAAAAAAAAICYRsc4AAAAAAAA/p+9e4+Pqrr3//+eJEggkJFAIQGRi1Qr0tqCBiker/iQegRqK6fHih5tv3DEU8Gqp345vSBVv0JLUYun9FTrrf68fat8Na3isSK9HCiISo8IHFQuUgxKAsxAIIEk+/dHmkwmJJM9s/fat3k9H488HjOz9qz57JW11t6fWTN7AAAAACDSivwOAFno0UP60Y9St3PZxk4dAMxwY3x6UQexmovVDWGKNSg4fmbPq/EZNYzPdPQjAGGTab7JtQz5y8l5gV99yklMpsZPENvJL6bakZjMxwR7mA9SaItwYx4CAi1mWZbldxBhkkwmFY/HlUgkVFpa6nc4AAAAAIAAIFd0hvYDAAAAAHTkdq7IN8YjpqnZ0rrt+/TJwXoN7FusyhFlKiyI+R0WAAAAAAChRa4NAAAAAOHHwniYNDVJb73VcnvsWKmwMK14xcZq3fnCO+q/9V1J0sZBp2hQvxLNnzJak8dU2KoDgEHdjT8749OLOojVXKxuCFOsQeFVH4gSr8Zn1DA+09GPAIRNF/NNt7k28xQ64+S8wK8+5SSmXJ8bxnbyi6l2JCbzMcEe5oMU2iLcmIeAQONS6lny9fJudXVSnz4ttw8dkkpK2opWbKzW7CfeUvHRem2+90pJ0unf/rXqTyiWJC2bMbYlYc9QBwDDuht/dsanF3UQq7lY3RCmWIPCqz4QJV6Nz6hhfKajHyHPcClwZwLRfp3MN7Zy7RGlzFM4npPzAr+OfU5iyvW5YWwnv5hqR2IyHxPsYT5IoS3CjXkIcJXbuWKBCzEZsXv3bk2ZMkVDhgzRyJEjdeedd7aVvf322zrnnHM0bNgwjR49Wq+++mrac++77z6NGjVKQ4YM0RVXXKHa2tq2straWk2fPl0nn3yyhg0bpp/85Cee7ZMpTc2WFlRtUmefcGh9bEHVJjU18xkIAAAAAMhn5Nr2kWsDAAAAQLQEdmH82muv1ejRo/XXv/5V69ev13PPPadHH31UBw8e1JQpU3TXXXdp586dWrZsmaZPn649e/ZIkp599lk9/vjjWrdunT788EOVl5dr1qxZbfVec801GjNmjHbu3Kk1a9Zo6dKlqqqq8ms3XbFu+z5VJ+q7LLckVSfqtW77Pu+CAgAAAAAEDrm2fXZz7fU7yLUBAAAAIAwCuzD+9ttv65prrlEsFlNZWZkuv/xyrV+/Xk899ZTOPvtsTZo0SZJ0/vnn67zzztMzzzwjqeUT7PPnz1dZWZkKCwt155136sUXX9S+ffu0detWrV+/Xt/97ncVi8U0ePBgzZkzRw8//LCfu+rYJwe7TtRz2Q4AAAAAEE3k2vbZzaH3HmowHAkAAAAAwA2BXRi/8sor9cADD+jo0aPauXOnXnjhBV155ZVas2aNJk6cmLbt+PHjtWHDBjU2Nmr9+vVp5QMGDNDw4cP1zjvvaM2aNaqsrFRRUdFxz+1KQ0ODkslk2l/QDOxb7Op2AAAAAIBoIte2z24O/ak+PQ1HAgAAAABwQ2AXxu+++26tWLFC/fr104gRI3ThhRfqggsuUHV1tQYNGpS27cCBA1VbW6uamho1NTVpwIABnZZnem5X7rnnHsXj8ba/oUOHureTLqkcUaaKeLFiXZTHJFXEi1U5oszLsAAAAAAAAUOubZ/dXPus4eTaAAAAABAGgVwYb2pq0mWXXaabb75ZiURCu3fv1l/+8hfdf//9amxslGVZx20fi8XU2NgoSRnLuyrryrx585RIJNr+du3a5dJeuqewIKb5U0ZL0nEJe+v9+VNGq7Cg6/0EAAAAAEQbuXZ2yLUBAAAAIFqKut/EeytXrtTRo0d18803S5IqKiq0ZMkSTZ06VRMnTlRNTU3a9nv37lV5ebn69esny7K0f/9+lZWVHVdeXV2tdevWdfrcrvTs2VM9ewbksmg9ekjz56dutzN5TIWWzRiru5f/RfdNvEqS1FhYqPJ4seZPGa3JYyq6rQOAYd2NPzvj04s6iNVcrG4IU6xB4VUfiBKvxmfUMD7T0Y+AwCHX7kYn842tXPvoUeYpHM/JeYFfxz4nMeX63DC2k19MtSMxmY8J9jAfpNAW4cY8BARazOr4se4A+O1vf6sf/OAHevPNN9se++///m9dfPHFuu222/TGG2/o17/+dVvZl770JX3ta1/Tddddp9NPP10//vGPdfnll0uSqqur9elPf1qffPKJ3nnnHU2dOlXV1dUqKGj5svyiRYu0efNmPfroo7ZiSyaTisfjSiQSKi0tdW+nXdLUbGnd9n365GC9BvZtuXw6n14HAAAAALOCnitK5NpOkGsDAAAAgPfczhUDeSn1c889V3v27NFTTz0lSTp06JC++93v6sorr9TVV1+t1157TStXrpQkvfTSS9q8ebOmT58uSZo1a5YWLFigAwcO6OjRo5o3b55mzpyp3r17q7KyUhUVFVq0aJGam5u1bds2/exnP9NNN93k2766rbAgpgmn9Ne0zw/RhFP6k6gDAAAAACSRaztBrg0AAAAA4RfIb4xL0saNG3XLLbdo69atKigo0LRp03T33Xerd+/eeuWVVzR37lzt27dPo0aN0n/8x3/os5/9rCSpublZ3/nOd/T444+rqKhI06ZN03333dd2ibZt27bpG9/4ht59913169dPd999d1uib4evn2JvbpY2b265ffrpUkEnn2vobhs7dQAww43x6UUdxGouVjeEKdag4PiZPa/GZ9QwPtPRj5Bngv6N51bk2hlkmm9yLUP+cnJe4FefchKTqfETxHbyi6l2JCbzMcEe5oMU2iLcmIcAV7mdKwZ2YTyofE3W6+qkPn1abh86JJWUZL+NnToAmOHG+PSiDmI1F6sbwhRrUHD8zJ5X4zNqGJ/p6EfIM4FY2A2xQLRfpvkm1zLkLyfnBX71KScxmRo/QWwnv5hqR2IyHxPsYT5IoS3CjXkIcFVeXEodAAAAAAAAAAAAAAC3sDAOAAAAAAAAAAAAAIg0FsYBAAAAAAAAAAAAAJHGwjgAAAAAAAAAAAAAINJYGAcAAAAAAAAAAAAARBoL4wAAAAAAAAAAAACASCvyOwBkoUcP6bbbUrdz2cZOHQDMcGN8elEHsZqL1Q1hijUoOH5mz6vxGTWMz3T0IwBhk2m+ybUM+cvJeYFffcpJTKbGTxDbyS+m2pGYzMcEe5gPUmiLcGMeAgItZlmW5XcQYZJMJhWPx5VIJFRaWup3OAAAAACAACBXdIb2AwAAAAB05HauyKXUAQAAAAAAAAAAAACRxqXUw6S5Wfrww5bbJ58sFXTyuYbutrFTBwAz3BifXtRBrOZidUOYYg0Kjp/Z82p8Rg3jMx39CEDYZJpvci1D/nJyXuBXn3ISk6nxE8R28oupdiQm8zHBHuaDFNoi3JiHgEDjUupZ8vXybnV1Up8+LbcPHZJKSrLfxk4dAMxwY3x6UQexmovVDWGKNSg4fmbPq/EZNYzPdPQj5BkuBe5MINov03yTaxnyl5PzAr/6lJOYTI2fILaTX0y1IzGZjwn2MB+k0BbhxjwEuIpLqQMAAAAAAAAAAAAAkAUWxgEAAAAAAAAAAAAAkcbCOAAAAAAAAAAAAAAg0lgYBwAAAAAAAAAAAABEGgvjAAAAAAAAAAAAAIBIY2EcAAAAAAAAAAAAABBpRX4HgCwUFUk33pi6ncs2duoAYIYb49OLOojVXKxuCFOsQcHxM3tejc+oYXymox8BCJtM802uZchfTs4L/OpTTmIyNX6C2E5+MdWOxGQ+JtjDfJBCW4Qb8xAQaDHLsiy/gwiTZDKpeDyuRCKh0tJSv8MBAAAAAAQAuaIztB8AAAAAoCO3c0UupQ4AAAAAAAAAAAAAiDSuxRAmliXV1LTcHjBAisWy38ZOHQDMcGN8elEHsZqL1Q1hijUoOH5mz6vxGTWMz3T0IwBhk2m+ybUM+cvJeYFffcpJTKbGTxDbyS+m2pGYzMcEe5gPUmiLcGMeAgKNS6lnydfLu9XVSX36tNw+dEgqKcl+Gzt1ADDDjfHpRR3Eai5WN4Qp1qDg+Jk9r8Zn1DA+09GPkGe4FLgzgWi/TPNNrmXIX07OC/zqU05iMjV+gthOfjHVjsRkPibYw3yQQluEG/MQ4CoupQ4AAAAAAAAAAAAAQBZYGAcAAAAAAAAAAAAARBoL4wAAAAAAAAAAAACASGNhHAAAAAAAAAAAAAAQaSyMAwAAAAAAAAAAAAAijYVxAAAAAAAAAAAAAECkFfkdALJQVCT90z+lbueyjZ06AJjhxvj0og5iNRerG8IUa1Bw/MyeV+Mzahif6ehHAMIm03yTaxnyl5PzAr/6lJOYTI2fILaTX0y1IzGZjwn2MB+k0BbhxjwEBFrMsizL7yDCJJlMKh6PK5FIqLS01O9wAAAAAAABQK7oDO0HAAAAAOjI7VyRS6kDAAAAAAAAAAAAACKNazGEiWVJhw+33O7dW4rFst/GTh0AzHBjfHpRB7Gai9UNYYo1KDh+Zs+r8Rk1jM909CMAYZNpvsm1DPnLyXmBX33KSUymxk8Q28kvptqRmMzHBHuYD1Joi3BjHgICjW+Mh8nhw1KfPi1/rZNjttvYqQOAGW6MTy/qIFZzsbohTLEGBcfP7Hk1PqOG8ZmOfgQgbDLNN7mWIX85OS/wq085icnU+AliO/nFVDsSk/mYYA/zQQptEW7MQ0CgsTAOAAAAAAAAAAAAAIg0FsYBAAAAAAAAAAAAAJHGwjgAAAAAAAAAAAAAINJYGAcAAAAAIA+8/PLLGj58eNrfoEGD1LdvX0nS22+/rXPOOUfDhg3T6NGj9eqrr6Y9/7777tOoUaM0ZMgQXXHFFaqtrW0rq62t1fTp03XyySdr2LBh+slPfuLpvgEAAAAA0J1ALoyTrAMAAAAA4K4vfelL2rFjR9rfFVdcoblz5+rgwYOaMmWK7rrrLu3cuVPLli3T9OnTtWfPHknSs88+q8cff1zr1q3Thx9+qPLycs2aNaut7muuuUZjxozRzp07tWbNGi1dulRVVVV+7SoAAAAAAMcJ5MI4yToAAAAAAGZt27ZNy5cv17/+67/qqaee0tlnn61JkyZJks4//3ydd955euaZZyS1fAB9/vz5KisrU2Fhoe688069+OKL2rdvn7Zu3ar169fru9/9rmKxmAYPHqw5c+bo4Ycf9nP3AAAAAABIU+R3AHa0Jutbt27NmKzPnTs3LVmXpDvvvFMVFRXat2+fampqtH79er344ovHJetTpkzxcxftKSyUrrwydTuXbezUAcAMN8anF3UQq7lY3RCmWIOC42f2vBqfUcP4TEc/AgJv4cKF+pd/+RfF43GtWbNGEydOTCsfP368NmzYoMbGRq1fvz6tfMCAARo+fLjeeecd7dixQ5WVlSoqKkp77tKlS7t87YaGBjU0NLTdTyaTLu5ZjjLNN7mWIX85OS/wq085icnU+AliO/nFVDsSk/mYYA/zQQptEW7MQ0CgxSzLsvwOojuzZs3SSSedpB/84Ae6/vrrdcYZZ+i2225rK7/77rv1/vvv68EHH1Tv3r310UcfacCAAW3ln/70p/XQQw9px44d+r//9//qN7/5TVvZf/3Xf2nGjBnavn17p6/dWbI+dOhQJRIJlZaWGthbAAAAAEDYJJNJxePx0OSKe/fu1ahRo/Tee+9p4MCBmjx5sq6++mpdc801bds8+OCDqqqq0i9+8QsNGTJETU1NaXVMnDhRt956q7Zu3ar33ntPv/zlL9vK3nvvPY0bN67LBe877rhDCxYsOO7xsLQfAAAAAMA8t3PtQF5Kvb29e/fqmWee0Q033CBJqq6u1qBBg9K2GThwoGpra1VTU6Ompqa0RfH25Zme25V77rlH8Xi87W/o0KEu7RkAAAAAAP741a9+pSuuuEIDBw6UJDU2Nqrj5+abmpoUi8XU2NgoSRnLuyrryrx585RIJNr+du3a5cZuAQAAAADQpcAvjJOsAwAAAADgrkceeURXX3112/2ysjLV1NSkbbN3716Vl5erX79+sixL+/fv77Q803O70rNnT5WWlqb9AQAAAABgUuAXxknW26mrk2Kxlr+6uty2sVMHADPcGJ9e1EGs5mJ1Q5hiDQqOn9nzanxGDeMzHf0ICKwNGzboo48+0oUXXtj22Lhx47R69eq07VavXq0JEyaopKREp512Wlp5dXW1Pv74Y5155pkaN26c1q5dq+bm5uOeGyqZ5ptcy5C/nJwX+NWnnMRkavwEsZ38Yqodicl8TLCH+SCFtgg35iEg0AK9ME6yDgAAAACAu1asWKHzzjtPRUVFbY9dffXVeu2117Ry5UpJ0ksvvaTNmzdr+vTpkqRZs2ZpwYIFOnDggI4ePap58+Zp5syZ6t27tyorK1VRUaFFixapublZ27Zt089+9jPddNNNvuwfAAAAAACdCfTCOMk6AAAAAADuWrt2rcaOHZv22EknnaSnn35aN954owYOHKi77rpLVVVVKikpkSTNnTtX559/vk499VQNHz5cvXr10sKFCyVJsVhMzz//vF555RUNGjRIkydP1uLFizVu3DjP9w0AAAAAgK4Udb+Jf7pL1vft26dRo0Ydl6zv3r1bp556qoqKijRt2rTjkvVvfOMbWrJkifr160eyDgAAAADIK8uXL+/08UsvvVRbtmzptKygoECLFy/W4sWLOy0fOXKkVq1a5VaIAAAAAAC4LtAL4yTrAAAAAAAAAAAAAACnAn0pdQAAAAAAAAAAAAAAnGJhHAAAAAAAAAAAAAAQaYG+lDo6KCyULrssdTuXbezUAcAMN8anF3UQq7lY3RCmWIOC42f2vBqfUcP4TEc/AhA2meabXMuQv5ycF/jVp5zEZGr8BLGd/GKqHYnJfEywh/kghbYIN+YhINBilmVZfgcRJslkUvF4XIlEQqWlpX6HAwAAAAAIAHJFZ2g/AAAAAEBHbueKXEodAAAAAAAAAAAAABBpLIwDAAAAAAAAAAAAACKNhfEwqauTSkpa/urqctvGTh0AzHBjfHpRB7Gai9UNYYo1KDh+Zs+r8Rk1jM909CMAYZNpvsm1DPnLyXmBX33KSUymxk8Q28kvptqRmMzHBHuYD1Joi3BjHgICrcjvAJClw4edb2OnDgBmuDE+vajDq9fJx1jdEKZYg4LjZ/a8Gp9Rw/hMRz8CEDaZ5ptcy5C/nJwX+NWnnMRkavwEsZ38YqodnSAmuIn5IIW2CDfmISCw+MY4AAAAAAAAAAAAACDSWBgHAAAAAAAAAAAAAEQaC+MAAAAAAAAAAAAAgEhjYRwAAAAAAAAAAAAAEGksjAMAAAAAAAAAAAAAIq3I7wCQhYIC6fzzU7dz2cZOHQDMcGN8elEHsZqL1Q1hijUoOH5mz6vxGTWMz3T0IwBhk2m+ybUM+cvJeYFffcpJTKbGTxDbyS+m2pGYzMcEe5gPUmiLcGMeAgItZlmW5XcQYZJMJhWPx5VIJFRaWup3OAAAAACAACBXdIb2AwAAAAB05HauyEdOAAAAAAAAAAAAAACRxsI4AAAAAAAAAAAAACDSWBgPk7o66VOfavmrq8ttGzt1ADDDjfHpRR3Eai5WN4Qp1qDg+Jk9r8Zn1DA+09GPAIRNpvkm1zLkLyfnBX71KScxmRo/QWwnv5hqR2IyHxPsYT5IoS3CjXkICLQivwNAlmpqnG9jpw4AZrgxPr2ow6vXycdY3RCmWIOC42f2vBqfUcP4TEc/AhA2meabXMuQv5ycF/jVp5zEZGr8BLGd/GKqHZ0gJriJ+SCFtgg35iEgsPjGOAAAAAAAAAAAAAAg0lgYBwAAAAAAAAAAAABEGgvjAAAAAAAAAAAAAIBIY2EcAAAAAAAAAAAAABBpLIwDAAAAAAAAAAAAACKtyO8AkIWCAumss1K3c9nGTh0AzHBjfHpRB7Gai9UNYYo1KDh+Zs+r8Rk1jM909CMAYZNpvsm1DPnLyXmBX33KSUymxk8Q28kvptqRmMzHBHuYD1Joi3BjHgICLWZZluV3EGGSTCYVj8eVSCRUWlrqdzgAAAAAgAAgV3SG9gMAAAAAdOR2rshHTgAAAAAAAAAAAAAAkcbCOAAAAAAAAAAAAAAg0lgYD5PDh6Xhw1v+Dh/ObRs7dQAww43x6UUdxGouVjeEKdag4PiZPa/GZ9QwPtPRjwCETab5Jtcy5C8n5wV+9SknMZkaP0FsJ7+YakdiMh8T7GE+SKEtwo15CAi0Ir8DQBYsS9q5M3U7l23s1AHADDfGpxd1EKu5WN0QpliDguNn9rwan1HD+ExHPwIQNpnmm1zLkL+cnBf41aecxGRq/ASxnfxiqh2JyXxMsIf5IIW2CDfmISDQ+MY4AAAAAAAAAAAAACDSWBgHAAAAAAAAAAAAAEQaC+MAAAAAAAAAAAAAgEhjYRwAAAAAAAAAAAAAEGksjAMAAAAAAAAAAAAAIq3I7wCQhVhMGj06dTuXbezUAcAMN8anF3UQq7lY3RCmWIOC42f2vBqfUcP4TEc/AhA2meabXMuQv5ycF/jVp5zEZGr8BLGd/GKqHYnJfEywh/kghbYIN+YhINBilmVZfgfRlXXr1um2227Tzp07dezYMT3wwAP6yle+orfffluzZ89WdXW1SkpKdP/99+uSSy5pe959992nBx54QEeOHFFlZaUeeugh9e/fX5JUW1urG264QWvXrlUsFtOcOXN066232o4pmUwqHo8rkUiotLTU9X0GAAAAAIRPmHJFcm0AAAAAQBi4nSsG9lLqW7Zs0Ze//GX94Ac/0M6dO7Vjxw6de+65OnjwoKZMmaK77rpLO3fu1LJlyzR9+nTt2bNHkvTss8/q8ccf17p16/Thhx+qvLxcs2bNaqv3mmuu0ZgxY7Rz506tWbNGS5cuVVVVlV+7CQAAAACAZ8i1AQAAAAD5KrDfGP/qV7+qs846S/PmzUt7/Be/+IVefvllLV++vO2xqVOn6uKLL9bcuXP1xS9+UbfffrumTZsmSaqpqVFFRYU+/vhj1dTU6Nxzz9VHH32koqKWq8gvWbJEf/zjH9Pqy4RPsQMAAAAAOgpLrkiuDQAAAAAIi7z4xnh9fb1+85vf6Prrrz+ubM2aNZo4cWLaY+PHj9eGDRvU2Nio9evXp5UPGDBAw4cP1zvvvKM1a9aosrKyLVFv/9yuNDQ0KJlMpv355vBh6YwzWv4OH85tGzt1ADDDjfHpRR3Eai5WN4Qp1qDg+Jk9r8Zn1DA+09GPgMAh1+5Gpvkm1zLkLyfnBX71KScxmRo/QWwnv5hqR2IyHxPsYT5IoS3CjXkICLSi7jfx3tatW9WrVy+9/vrruueee3To0CFdcskl+vGPf6zq6mpddNFFadsPHDhQa9euVU1NjZqamjRgwIDjymtra1VdXa1BgwZ1WtaVe+65RwsWLHBv55ywLGnTptTtXLaxUwcAM9wYn17UQazmYnVDmGINCo6f2fNqfEYN4zMd/QgIHHLtbmSab3ItQ/5ycl7gV59yEpOp8RPEdvKLqXYkJvMxwR7mgxTaItyYh4BAC+Q3xg8ePNj2ifR169bpL3/5i/bu3au5c+eqsbFRHa/+3tTUpFgspsbGRknKWN5VWVfmzZunRCLR9rdr1y6X9hIAAAAAAO+QawMAAAAA8lkgF8YHDBigY8eOaeHChSouLlbfvn11xx136MUXX1RZWZlqamrStt+7d6/Ky8vVr18/WZal/fv3d1qe6bld6dmzp0pLS9P+AAAAAAAIG3JtAAAAAEA+C+TC+LBhw3TCCSeovr6+7bGCggIVFxdr3LhxWr16ddr2q1ev1oQJE1RSUqLTTjstrby6uloff/yxzjzzTI0bN05r165Vc3Pzcc8FAAAAACDKyLUBAAAAAPkskAvjxcXFuvbaa3XrrbeqsbFRDQ0Nmj9/vmbMmKGrr75ar732mlauXClJeumll7R582ZNnz5dkjRr1iwtWLBABw4c0NGjRzVv3jzNnDlTvXv3VmVlpSoqKrRo0SI1Nzdr27Zt+tnPfqabbrrJz90FAAAAAMA4cm0AAAAAQD4L5MK4JC1atEhHjhzRkCFDdMYZZ2jUqFG68847ddJJJ+npp5/WjTfeqIEDB+quu+5SVVWVSkpKJElz587V+eefr1NPPVXDhw9Xr169tHDhQklSLBbT888/r1deeUWDBg3S5MmTtXjxYo0bN87PXQUAAAAAwBPk2gAAAACAfFXkdwBd6dOnj371q191WnbppZdqy5YtnZYVFBRo8eLFWrx4caflI0eO1KpVq9wK01uxmDRsWOp2LtvYqQOAGW6MTy/qIFZzsbohTLEGBcfP7Hk1PqOG8ZmOfgQEErl2Bpnmm1zLkL+cnBf41aecxGRq/ASxnfxiqh2JyXxMsIf5IIW2CDfmISDQYpZlWX4HESbJZFLxeFyJREKlpaV+hwMAAAAACAByRWdoPwAAAABAR27nioG9lDoAAAAAAAAAAAAAAG5gYRwAAAAAAAAAAAAAEGksjIfJkSPS2We3/B05kts2duoAYIYb49OLOojVXKxuCFOsQcHxM3tejc+oYXymox8BCJtM802uZchfTs4L/OpTTmIyNX6C2E5+MdWOxGQ+JtjDfJBCW4Qb8xAQaPzGeJZ8/d2zujqpT5+W24cOSSUl2W9jpw4AZrgxPr2og1jNxeqGMMUaFBw/s+fV+Iwaxmc6+hHyDL+R7Uwg2i/TfJNrGfKXk/MCv/qUk5hMjZ8gtpNfTLUjMZmPCfYwH6TQFuHGPAS4it8YBwAAAAAAAAAAAAAgCyyMAwAAAAAAAAAAAAAijYVxAAAAAAAAAAAAAECksTAOAAAAAAAAAAAAAIg0FsYBAAAAAAAAAAAAAJFW5HcAyNKAAc63sVMHADPcGJ9e1OHV6+RjrG4IU6xBwfEze16Nz6hhfKajHwEIm0zzTa5lyF9Ozgv86lNOYjI1foLYTn4x1Y5OEBPcxHyQQluEG/MQEFgxy7Isv4MIk2QyqXg8rkQiodLSUr/DAQAAAAAEALmiM7QfAAAAAKAjt3NFLqUOAAAAAAAAAAAAAIg0FsYBAAAAAAAAAAAAAJHGwniYHDkiXXBBy9+RI7ltY6cOAGa4MT69qINYzcXqhjDFGhQcP7Pn1fiMGsZnOvoRgLDJNN/kWob85eS8wK8+5SQmU+MniO3kF1PtSEzmY4I9zAcptEW4MQ8BgcZvjGfJ1989q6uT+vRpuX3okFRSkv02duoAYIYb49OLOojVXKxuCFOsQcHxM3tejc+oYXymox8hz/Ab2c4Eov0yzTe5liF/OTkv8KtPOYnJ1PgJYjv5xVQ7EpP5mGAP80EKbRFuzEOAq/iNcQAAAAAAAAAAAAAAssDCOAAAAAAAAAAAAAAg0lgYBwAAAAAAAAAAAABEGgvjAAAAAAAAAAAAAIBIY2EcAAAAAAAAAAAAABBpRX4HgCz17u18Gzt1ADDDjfHpRR1evU4+xuqGMMUaFBw/s+fV+Iwaxmc6+hGAsMk03+Rahvzl5LzArz7lJCZT4yeI7eQXU+3oBDHBTcwHKbRFuDEPAYEVsyzL8juIMEkmk4rH40okEiotLfU7HAAAAABAAJArOkP7AQAAAAA6cjtX5FLqAAAAAAAAAAAAAIBIY2EcAAAAAAAAAAAAABBpLIyHSX299Pd/3/JXX5/bNnbqAGCGG+PTizqI1VysbghTrEHB8TN7Xo3PqGF8pqMfAQibTPNNrmXIX07OC/zqU05iMjV+gthOfjHVjsRkPibYw3yQQluEG/MQEGj8xniWfP3ds7o6qU+fltuHDkklJdlvY6cOAGa4MT69qINYzcXqhjDFGhQcP7Pn1fiMGsZnOvoR8gy/ke1MINov03yTaxnyl5PzAr/6lJOYTI2fILaTX0y1IzGZjwn2MB+k0BbhxjwEuIrfGAcAAAAAAAAAAAAAIAssjAMAAAAAAAAAAAAAIo2FcQAAAAAAAAAAAABApLEwDgAAAAAAAAAAAACINBbGAQAAAAAAAAAAAACRxsI4AAAAAAAAAAAAACDSYpZlWX4HESbJZFLxeFyJREKlpaV+hwMAAAAACAByRWdoPwAAAABAR27ninxjHAAAAAAAAAAAAAAQaSyMAwAAAAAAAAAAAAAijYXxMKmvl6ZPb/mrr89tGzt1ADDDjfHpRR3Eai5WN4Qp1qDg+Jk9r8Zn1DA+09GPAIRNpvkm1zLkLyfnBX71KScxmRo/QWwnv5hqR2IyHxPsYT5IoS3CjXkICLRA/sb4t771Lf3qV79Sv3792h77/e9/r2HDhuntt9/W7NmzVV1drZKSEt1///265JJL2ra777779MADD+jIkSOqrKzUQw89pP79+0uSamtrdcMNN2jt2rWKxWKaM2eObr311qxi8/V3z+rqpD59Wm4fOiSVlGS/jZ06AJjhxvj0og5iNRerG8IUa1Bw/MyeV+Mzahif6ehHyDNh+Y3soObbgWi/TPNNrmXIX07OC/zqU05iMjV+gthOfjHVjsRkPibYw3yQQluEG/MQ4Kq8+Y3xm2++WTt27Gj7GzZsmA4ePKgpU6borrvu0s6dO7Vs2TJNnz5de/bskSQ9++yzevzxx7Vu3Tp9+OGHKi8v16xZs9rqvOaaazRmzBjt3LlTa9as0dKlS1VVVeXXLgIAAAAA4DnybQAAAABAPgrswviJJ5543GNPPfWUzj77bE2aNEmSdP755+u8887TM888I6nl0+vz589XWVmZCgsLdeedd+rFF1/Uvn37tHXrVq1fv17f/e53FYvFNHjwYM2ZM0cPP/ywl7sFAAAAAICvyLcBAAAAAPkoVAvja9as0cSJE9MeGz9+vDZs2KDGxkatX78+rXzAgAEaPny43nnnHa1Zs0aVlZUqKio67rmZNDQ0KJlMpv0BAAAAABBWQci3ybUBAAAAAF4L7ML4vHnzdPLJJ+vCCy/Uf/7nf0qSqqurNWjQoLTtBg4cqNraWtXU1KipqUkDBgzotDzTczO55557FI/H2/6GDh3qwt4BAAAAAOCPIOTb5NoAAAAAAK8FcmH8pz/9qfbs2aPt27frX//1X/UP//APevPNN9XY2CjLstK2bWpqUiwWU2NjoyRlLO+qLJN58+YpkUi0/e3atcuFPQQAAAAAwHtBybfJtQEAAAAAXgvkwnhBQUtYhYWFuuyyy3TVVVfp//2//6eysjLV1NSkbbt3716Vl5erX79+sixL+/fv77Q803Mz6dmzp0pLS9P+AAAAAAAIo6Dk2+TaAAAAAACvFXW/if8aGxt1wgknaNy4cVq9erVuueWWtrLVq1fra1/7mkpKSnTaaadp9erVuvzyyyW1XAru448/1plnnqmCggItWLBAzc3NbW8ErF69WhMmTPBln3LSu7d06FDqdi7b2KkDgBlujE8v6iBWc7G6IUyxBgXHz+x5NT6jhvGZjn4EhAL5djuZ5ptcy5C/nJwX+NWnnMRkavwEsZ38Yqodicl8TLCH+SCFtgg35iEg0GJWx+udBcArr7yiSy65RAUFBfrP//xP/eM//qP+9Kc/qbS0VJ/97Gf13HPP6aKLLtJLL72kG2+8Ue+++65KSkp077336sknn9Srr76q3r17a9asWerXr5/uvfdeWZalL3zhC/ra176m22+/XTt27NCFF16o559/XuPGjbMdWzKZVDweVyKR4BPtAAAAAABJ4ckVg5pvh6X9AAAAAADecTtXDOQ3xu+9915dc8016t27t04++WQtX75co0ePliQ9/fTTuvHGG7Vv3z6NGjVKVVVVKikpkSTNnTtXu3fv1qmnnqqioiJNmzZNCxculCTFYjE9//zz+sY3vqElS5aoX79+Wrx4cVaL4gAAAAAAhBn5NgAAAAAgXwXyG+NB5uun2BsapH/+55bb//EfUs+e2W9jpw4AZrgxPr2og1jNxeqGMMUaFBw/s+fV+Iwaxmc6+hHyDN94diYQ7Zdpvsm1DPnLyXmBX33KSUymxk8Q28kvptqRmMzHBHuYD1Joi3BjHgJc5XauyMJ4lnxN1uvqpD59Wm4fOiT97ZP7WW1jpw4AZrgxPr2og1jNxeqGMMUaFBw/s+fV+Iwaxmc6+hHyTCAWdkMsEO2Xab7JtQz5y8l5gV99yklMpsZPENvJL6bakZjMxwR7mA9SaItwYx4CXOV2rljgQkwAAAAAAAAAAAAAAAQWC+MAAAAAAAAAAAAAgEhjYRwAAAAAAAAAAAAAEGksjAMAAAAAAAAAAAAAIo2FcQAAAAAAAAAAAABApLEwDgAAAAAAAAAAAACItCK/A0AWeveWPvkkdTuXbezUAcAMN8anF3UQq7lY3RCmWIOC42f2vBqfUcP4TEc/AhA2meabXMuQv5ycF/jVp5zEZGr8BLGd/GKqHYnJfEywh/kghbYIN+YhINBilmVZfgcRJslkUvF4XIlEQqWlpX6HAwAAAAAIAHJFZ2g/AAAAAEBHbueKXEodAAAAAAAAAAAAABBpLIyHSUOD9C//0vLX0JDbNnbqAGCGG+PTizqI1VysbghTrEHB8TN7Xo3PqGF8pqMfAQibTPNNrmXIX07OC/zqU05iMjV+gthOfjHVjsRkPibYw3yQQluEG/MQEGhcSj1Lvl7era5O6tOn5fahQ1JJSfbb2KkDgBlujE8v6iBWc7G6IUyxBgXHz+x5NT6jhvGZjn6EPMOlwJ0JRPtlmm9yLUP+cnJe4FefchKTqfETxHbyi6l2JCbzMcEe5oMU2iLcmIcAV3EpdQAAAAAAAAAAAAAAssDCOAAAAAAAAAAAAAAg0lgYBwAAAAAAAAAAAABEGgvjAAAAAAAAAAAAAIBIY2EcAAAAAAAAAAAAABBpLIwDAAAAAAAAAAAAACKtyO8AkIVevaTt21O3c9nGTh0AzHBjfHpRB7Gai9UNYYo1KDh+Zs+r8Rk1jM909CMAYZNpvsm1DPnLyXmBX33KSUymxk8Q28kvptqRmMzHBHuYD1Joi3BjHgICLWZZluV3EGGSTCYVj8eVSCRUWlrqdzgAAAAAgAAgV3SG9gMAAAAAdOR2rsil1AEAAAAAAAAAAAAAkcbCeJgcPSr967+2/B09mts2duoAYIYb49OLOojVXKxuCFOsQcHxM3tejc+oYXymox8BCJtM802uZchfTs4L/OpTTmIyNX6C2E5+MdWOxGQ+JtjDfJBCW4Qb8xAQaFxKPUu+Xt6trk7q06fl9qFDUklJ9tvYqQOAGW6MTy/qIFZzsbohTLEGBcfP7Hk1PqOG8ZmOfoQ8w6XAnQlE+2Wab3ItQ/5ycl7gV59yEpOp8RPEdvKLqXYkJvMxwR7mgxTaItyYhwBXcSl1AAAAAAAAAAAAAACywMI4AAAAAAAAAAAAACDSWBgHAAAAAAAAAAAAAEQaC+MAAAAAAAAAAAAAgEhjYRwAAAAAAAAAAAAAEGksjAMAAAAAAAAAAAAAIq3I7wCQhV69pI0bU7dz2cZOHQDMcGN8elEHsZqL1Q1hijUoOH5mz6vxGTWMz3T0IwBhk2m+ybUM+cvJeYFffcpJTKbGTxDbyS+m2pGYzMcEe5gPUmiLcGMeAgItZlmW5XcQYZJMJhWPx5VIJFRaWup3OAAAAACAACBXdIb2AwAAAAB05Hau6Oml1MePH+/lywEAAAAAEHnk2gAAAAAAdM/opdSPHTumHj16tN3/8MMPTb5c9B09Kv2f/9Ny+9/+TTrhhOy3sVMHADPcGJ9e1EGs5mJ1Q5hiDQqOn9nzanxGDeMzHf0IMIZc25BM802uZchfTs4L/OpTTmIyNX6C2E5+MdWOxGQ+JtjDfJBCW4Qb8xAQaK5dSv3888/X73//+7THBg4cqE8++aTt/uDBg/XRRx+58XK+8fXybnV1Up8+LbcPHZJKSrLfxk4dAMxwY3x6UQexmovVDWGKNSg4fmbPq/EZNYzPdPQj5BlTuSK5tocyzTe5liF/OTkv8KtPOYnJ1PgJYjv5xVQ7EpP5mGAP80EKbRFuzEOAqwJ7KfXNmzcf9xg/Xw4AAAAAQO7ItQEAAAAAcIfR3xiPxWImqwcAAAAAIO+QawMAAAAAkD2jC+OWZen555/X888/r+eee04NDQ0mXw4AAAAAgMhzK9eePXu2PvOZz7Tdf/vtt3XOOedo2LBhGj16tF599dW07e+77z6NGjVKQ4YM0RVXXKHa2tq2straWk2fPl0nn3yyhg0bpp/85Ce57RwAAAAAAIYYXRiXpEceeUSPPPKIHn30UR05ciTr55OoAwAAAACQzmmuvWvXLj3++ONt9w8ePKgpU6borrvu0s6dO7Vs2TJNnz5de/bskSQ9++yzevzxx7Vu3Tp9+OGHKi8v16xZs9qef80112jMmDHauXOn1qxZo6VLl6qqqsr5jgIR1dSc+kmEtdtq0+4DAAAAMMP4pdSrqqra/uLxeFbPJ1EHAAAAACCd01xbkr797W/r+uuvb7v/1FNP6eyzz9akSZMkSeeff77OO+88PfPMM5JaPoQ+f/58lZWVqbCwUHfeeadefPFF7du3T1u3btX69ev13e9+V7FYTIMHD9acOXP08MMPu7PDQMSs2FitSUtWtd2/7pE3dO6ilVqxsdq/oAAAAIA8YPwb4+1l+ztoJOoA8gnfGAAAAEAuss21f/vb36q2tlZXXnll22Nr1qzRxIkT07YbP368NmzYoMbGRq1fvz6tfMCAARo+fLjeeecdrVmzRpWVlSoqKjruuV1paGhQMplM+wPywYqN1Zr9xFvak0j/CYQ9iXrNfuItFscBAAAAg4q638Se/fv3a+zYsW33LcvSgQMHcq6vNVH/1re+pd/97neSnCXqO3bs6DRRX7p0acY4Ghoa0n6vzddkvbhYWrcudTuXbezUAcCMDONvxcZq3fnCO+p/7RJJ0sZfbdCgfu9p/pTRmjymwlYdtsrd2iYodYQtVjeEKdag4PiZPa/GZ9QwPtPRjwBXuJ1r19bWas6cOfrtb3/bdvU1SaqurtZFF12Utu3AgQO1du1a1dTUqKmpSQMGDDiuvLa2VtXV1Ro0aFCnZV255557tGDBgpz3w4hM802uZchfnfSLpmZLC6o2yZLUUNRDU/+W/zUU9ZAlKSZpQdUmXXLb+Sr0o0856eemxg9jL8VUOxKT+ZhgD/NBCm0RbsxDQKDFLMty5SuJb775ZqePjxs3ru324MGD9dFHH3VbV21trSorK9sS9RtuuEFbtmzR5MmTdfXVV+uaa65p2/bBBx9UVVWVfvGLX2jIkCFqampKq2vixIm69dZbtXXrVr333nv65S9/2Vb23nvvady4cRkXu++4445Ok/VEIqHS0tJu9wUAutP6jYGOk3Hr936WzRibvjgOAACAwEkmk4rH467nim7m2pZl6YorrtDFF1+sm266SatWrWrLtydNmqRrr71W1157bdv2P//5z/Xyyy/r3//93zVs2DA1NjamfTv9nHPO0e233653331X27ZtS7si25YtWzR+/HglEolOY+nsQ+hDhw4l10akrfmgVlc9+Odut3tq5jmacEp/DyICAAAAgs3tXNu1b4y3T8q7YmcN3rIsffOb39TNN9+sz3zmM2mfYG9sbDyujqamJsViMTU2NrY9v32i3r68q+dmMm/ePN1yyy1t91uTdQBwQ/tvDHSU9o2B0eUqLMjuEpkAAAAIP7dybUlauHChjh07pm9961vHlZWVlammpibtsb1796q8vFz9+vWTZVnav3+/ysrKjiuvrq7WutZvtnQo60rPnj3Vs2dPW3EDUfHJwXpXtwMAAACQHdcWxu14/vnnu90mSIm6FLBk/ehR6f77W27PnSudcEL229ipA4AZnYy/ddv3qTrR8qZHj6Zjun79i5KkR86aqmOFLZfTq07Ua932fS3fGHBjjHs1lxDr8du4IUyxBgXHz+x5NT6jhvGZjn4EeMZOri1JP/3pT1VXV6d+/fpJavnw+ZEjR3TiiSdq3rx5Wr16ddoHw1evXq2vfe1rKikp0WmnnabVq1fr8ssvl9Ry6fWPP/5YZ555pgoKCrRgwQI1NzeroKCg7bkTJkxweU8NyzTf5FqG/NVJvxjYN3VJ1M7yv1aDehZIP/5x2nP9itlWmZPnmqo3iky1IzGZjwn2MB+k0BbhxjwEBJprl1LPRm1trfr37/ySUBUVFaqrq2tLplsT9b59+2revHl644039Otf/7pt+y996Uv62te+puuuu06nn366fvzjH6cl6p/+9Kf1ySef6J133tHUqVNVXV3dVveiRYu0efNmPfroo7ZjN3V5PFvq6qQ+fVpuHzoklZRkv42dOgCY0cn4e2HDbs19eoMkqdfRem2+90pJ0unf/rWOnJB60+T+f/y8pn1+iDtj3Ku5hFiP38YNYYo1KDh+Zs+r8Rk1jM909CPkGV9zxb/JlGt3pv2l1P/617/qs5/9rJ577jlddNFFeumll3TjjTfq3XffVUlJie699149+eSTevXVV9W7d2/NmjVL/fr107333ivLsvSFL3xBX/va13T77bdrx44duvDCC/X888/b+sa7FIz2yzjf5FqG/NVJv2hqtnTuopXak6hXcSf5X0xSebxYf/rWeBWW9k17rl8x2ypz8lxT9UaRqXYkJvMxwR7mgxTaItyYhwBXBfJS6hdeeGG3lySfOnWqbr75ZknSZz/72S5//6y6ujrtfsdEfeHChVq5cmVbor5582ZNnz5dkjRr1iwtWLBA5557rnr37q158+Zp5syZ6t27tyorK1VRUaFFixa1Jeo/+9nPbH+yHgBMaP+NATe2AwAAQHS4mWt356STTtLTTz+tG2+8Ufv27dOoUaNUVVWlkr+9GTd37lzt3r1bp556qoqKijRt2jQtXLhQkhSLxfT888/rG9/4hpYsWaJ+/fpp8eLFthfFgXxRWBDT/CmjNfuJt9RxZLfenz9lND+jBQAAABjiysL49773vW63Oemkk9pu5/oldRJ1AFFTOaJMFfFi7Ul0/htyrd8YqBxR1mk5AAAAost0rn3BBRdoy5YtbfcvvfTStPvtFRQUaPHixVq8eHGn5SNHjtSqVauyen0gH00eU6FlM8Zq0XNvpj1eHi/W/CmjNXlMRcu3xQAAAAC4zpWF8Ysvvjir7bv7xHt7JOoAooxvDAAAAKArJnNtAP6ZPKZClwy7QLqj5f6j15+ts84YSt4HAAAAGObKwrgk/eEPf+j08dNPP12f+tSn3HoZAIgcW98YAAAAQF4i1waiqf0i+PiR/SUWxQEAAADjXFsYnz9/viRp8+bNGjx4sOLxuHbs2KG7775bX//61916GQCIJL4xAAAAgM6QawMIgqZmS4V/u712W63OOqM3+SoAAABCp8Ctil5//XW9/vrruvDCC3Xffffp9ddf14wZM9yqHgAir+M3BniTAQAAAOTaAPy2YmO1Ji1Z1Xb/ukfe0LmLVmrFxmr/ggIAAABy4No3xuGB4mLp9ddTt3PZxk4dAMxwY3x6UQexmovVDWGKNSg4fmbPq/EZNYzPdPQjAGGTab7JtQz5y8l5gV99qpPXXbGxWrOfeEux5mb941X/R5LUUNRDexL1mv3EW1o2Y2zLz3+ZGj9BbCe/mGpHYjIfE+xhPkihLcKNeQgItJhlWZabFV511VWaPXu2zjvvPH3/+9/X6aefrr/7u7/Ttddeq1gsJsuytGbNGtXX17v5sp5JJpOKx+NKJBIqLS31OxwAAAAAQACYzhXJtQF4ranZ0rmLVqo60fm8EpNUHi/Wn26/iCueAQAAwAi3c0XXvjH+hz/8QZK0d+9ebdiwQZL04Ycf6vTTT9eAAQP0ve99z62XAgAAAAAgL5BrA/DLuu37ulwUlyRLUnWiXuu279OEU/p7FxgAAACQI9cWxufPn992e/ny5Vq+fLkkadCgQerVq5cuvvhit14qfx07Jv3iFy23Z82SevTIfhs7dQAww43x6UUdxGouVjeEKdag4PiZPa/GZ9QwPtPRjwBXkGt7KNN8k2sZ8peT8wK/+lSH1/3kYGpRvKipUVf9ZYUk6akzJ6uxMPWW4icH682NnyC2k19MtSMxmY8J9jAfpNAW4cY8BASa65dSjzpfL+9WVyf16dNy+9AhqaQk+23s1AHADDfGpxd1EKu5WN0QpliDguNn9rwan1HD+ExHP0Ke4VLgzgSi/TLNN7mWIX85OS/wq091eN01e+p11YN/liT1OlqvzfdeKUk6/du/1pETUr97+tTMczShvNjM+AliO/nFVDsSk/mYYA/zQQptEW7MQ4Cr3M4VC1yICQAAAAAAAECEVI4oU0W8WF39enhMUkW8WJUjyrwMCwAAAMgZC+MAAAAAAAAA0hQWxDR/ymhJOm5xvPX+/CmjVVjQ1dI5AAAAECwsjAMAAAAAAAA4zuQxFVo2Y6wGxXumPV4eL9ayGWM1eUyFT5EBAAAA2SvyOwAAAAAAAAAAwTR5TIUuGXaBdEfL/UevP1tnnTGUb4oDAAAgdFgYBwAAAAAAANCl9ovg40f2l1gUBwAAQAhxKXUAAAAAAAAAAAAAQKTxjfEw6dlT+s1vUrdz2cZOHQDMcGN8elEHsZqL1Q1hijUoOH5mz6vxGTWMz3T0IwBhk2m+ybUM+cvJeYFffcpJTKbGTxDbyS+m2pGYzMcEe5gPUmiLcGMeAgItZlmW5XcQYZJMJhWPx5VIJFRaWup3OAAAAACAACBXdIb2AwAAAAB05HauyKXUAQAAAAAAAAAAAACRxqXUw+TYMen/+/9abl99tdSjR/bb2KkDgBlujE8v6iBWc7G6IUyxBgXHz+x5NT6jhvGZjn4EIGwyzTe5liF/OTkv8KtPOYnJ1PgJYjv5xVQ7EpP5mGAP80EKbRFuzENAoHEp9Sz5enm3ujqpT5+W24cOSSUl2W9jpw4AZrgxPr2og1jNxeqGMMUaFBw/s+fV+Iwaxmc6+hHyDJcCdyYQ7Zdpvsm1DPnLyXmBX33KSUymxk8Q28kvptqRmMzHBHuYD1Joi3BjHgJcxaXUAQBop6k59fmutdtq0+4DAAAAAAAAAABILIwDAEJsxcZqTVqyqu3+dY+8oXMXrdSKjdX+BQUAAAAAAAAAAAKHhXEAQCit2Fit2U+8pT2JhrTH9yTqNfuJt1gcBwAAAAAAAAAAbVgYBwCETlOzpQVVm9TZRdNbH1tQtYnLqgMAAAAAAAAAAEksjAMAQmjd9n2qTtR3WW5Jqk7Ua932fd4FBQAAAAAAAAAAAouFcQBA6HxysOtF8Vy2AwAAAAAAAAAA0VbkdwDIQs+e0rPPpm7nso2dOgCY4cb49KKOEMQ6sG9x2+2jRT1047T/3Xa7vYF9i32P1XVhijUoOH5mz6u5JGoYn+noRwDCJtN8k2sZ8peT8wK/+pSTmEyNnyC2k19MtSMxmY8J9jAfpNAW4cY8BARazLIsfoA1C8lkUvF4XIlEQqWlpX6HAwB5qanZ0rmLVmpPor7T3xmPSSqPF+tPt1+kwoKY1+EBAIA8RK7oDO0HAAAAAOjI7VyRS6kDAEKnsCCm+VNGS2pZBG+v9f78KaNZFAcAAAAAAAAAAJK4lHq4NDZKy5e33L7iCqmok39fd9vYqQOAGW6MTy/qCEmsk8dUaNmMsbrr/72jz61/XZL0yqkTNLBfieZPGa3JYyoCE6urwhRrUHD8zJ5Xc0nUMD7T0Y8AhE2m+SbXMuQvJ+cFfvUpJzGZGj9BbCe/mGpHYjIfE+xhPkihLcKNeQgINC6lniVfL+9WVyf16dNy+9AhqaQk+23s1AHADDfGpxd1hCzWpoOHVFjaV5K09r936qwzhqZ/UzxAsboiTLEGBcfP7Hk1l0QN4zMd/Qh5hkuBOxOI9ss03+Rahvzl5LzArz7lJCZT4yeI7eQXU+1ITOZjgj3MBym0RbgxDwGucjtX5OMmAIBQa78IPn5kf4nLpwMAAAAAAAAAgA74jXEAAAAAAAAAAAAAQKSxMA4AAAAAAAAAAAAAiDQWxgEAAAAAAAAAAAAAkcbCOAAAAAAAAAAAAAAg0lgYBwAAAAAAAAAAAABEWpHfAXTlRz/6kR566CHV19crHo/r7rvv1tSpUyVJb7/9tmbPnq3q6mqVlJTo/vvv1yWXXNL23Pvuu08PPPCAjhw5osrKSj300EPq37+/JKm2tlY33HCD1q5dq1gspjlz5ujWW2/1ZR+zdsIJ0iOPpG7nso2dOgCY4cb49KIOYjUXqxvCFGtQcPzMnlfjM2oYn+noR0AgkWtnkGm+ybUM+cvJeYFffcpJTKbGTxDbyS+m2pGYzMcEe5gPUmiLcGMeAgItZlmW5XcQnfn973+vL37xi+rRo4f+8Ic/6NJLL9Vf//pXnXDCCTr99NP16KOPatKkSfr973+vadOmacuWLSovL9ezzz6rhQsX6ne/+53i8bi+9a1v6ZNPPtFzzz0nSbrssss0fvx4/eAHP1B1dbW++MUvaunSpZoyZYqtuJLJpOLxuBKJhEpLS002AQAAAAAgJMKSK5JrAwAAAADCwu1cMbAL4x31799f//Vf/6U//OEPevnll7V8+fK2sqlTp+riiy/W3Llz9cUvflG33367pk2bJkmqqalRRUWFPv74Y9XU1Ojcc8/VRx99pKKili/LL1myRH/84x/T6suEZB0AAAAA0FFYc0VybQAAAABAULmdKwb2Uuqt6uvr9fOf/1xnn322PvOZz2jRokWaOHFi2jbjx4/Xhg0b1NjYqPXr16eVDxgwQMOHD9c777yjHTt2qLKysi1Rb33u0qVLu3z9hoYGNTQ0tN1PJpMu7l2WGhulV15puX3ppVJRJ/++7raxUwcAM9wYn17UQazmYnVDmGINCo6f2fNqfEYN4zMd/QgINHLtTmSab3ItQ/5ycl7gV59yEpOp8RPEdvKLqXYkJvMxwR7mgxTaItyYh4BAC+w3xj/44ANdcMEF2r17tyorK/Xkk09q5MiRmjx5sq6++mpdc801bds++OCDqqqq0i9+8QsNGTJETU1NaXVNnDhRt956q7Zu3ar33ntPv/zlL9vK3nvvPY0bN67LJPyOO+7QggULjnvcl0+x19VJffq03D50SCopyX4bO3UAMMON8elFHcRqLlY3hCnWoOD4mT2vxmfUMD7T0Y+QZ8LyjWdy7QwyzTe5liF/OTkv8KtPOYnJ1PgJYjv5xVQ7EpP5mGAP80EKbRFuzEOAq9zOtQtciMmIU045Rbt27dLhw4c1Z84cTZgwQe+9954aGxvVcS2/qalJsVhMjY2NkpSxvKuyrsybN0+JRKLtb9euXS7tIQAAAAAA3iLXBgAAAADkq8AujLcqLi7W17/+dV1++eV67LHHVFZWppqamrRt9u7dq/LycvXr10+WZWn//v2dlmd6bld69uyp0tLStD8AAAAAAMKMXBsAAAAAkG8CvzDeqmfPnurVq5fGjRun1atXp5WtXr1aEyZMUElJiU477bS08urqan388cc688wzNW7cOK1du1bNzc3HPRcAAAAAgHxDrg0AAAAAyBeBXBjfvXu3nnrqqbbLtf3hD3/Q8uXLNX36dF199dV67bXXtHLlSknSSy+9pM2bN2v69OmSpFmzZmnBggU6cOCAjh49qnnz5mnmzJnq3bu3KisrVVFRoUWLFqm5uVnbtm3Tz372M910002+7SsAAAAAAF4g1wYAAAAA5LMivwPoTM+ePfXLX/5Sc+fOVd++fTV8+HAtX75cp556qiTp6aef1o033qh9+/Zp1KhRqqqqUklJiSRp7ty52r17t0499VQVFRVp2rRpWrhwoSQpFovp+eef1ze+8Q0tWbJE/fr10+LFizVu3Djf9hUAAAAAAC+QawMAAAAA8lkgF8YHDBig3/3ud12WX3rppdqyZUunZQUFBVq8eLEWL17cafnIkSO1atUqN8IEAAAAACA0yLUBAAAAAPkskAvj6MIJJ0gPPJC6ncs2duoAYIYb49OLOojVXKxuCFOsQcHxM3tejc+oYXymox8BCJtM802uZchfTs4L/OpTTmIyNX6C2E5+MdWOxGQ+JtjDfJBCW4Qb8xAQaDHLsiy/gwiTZDKpeDyuRCKh0tJSv8MBAAAAAAQAuaIztB8AAAAAoCO3c8UCF2ICAAAAAAAAAAAAACCwuJR6mDQ1SX/8Y8vtv/s7qbAw+23s1AHADDfGpxd1EKu5WN0QpliDguNn9rwan1HD+ExHPwIQNpnmm1zLkL+cnBf41aecxGRq/ASxnfxiqh2JyXxMsIf5IIW2CDfmISDQuJR6lny9vFtdndSnT8vtQ4ekkpLst7FTBwAz3BifXtRBrOZidUOYYg0Kjp/Z82p8Rg3jMx39CHmGS4E7E4j2yzTf5FqG/OXkvMCvPuUkJlPjJ4jt5BdT7UhM5mOCPcwHKbRFuDEPAa7iUuoAAAAAAAAAAAAAAGSBhXEAAAAAAAAAAAAAQKSxMA4AAAAAAAAAAAAAiDQWxgEAAAAAAAAAAAAAkcbCOAAAAAAAAAAAAAAg0lgYBwAAAAAAAAAAAABEWpHfASALPXpIP/pR6nYu29ipA4AZboxPL+ogVnOxuiFMsQYFx8/seTU+o4bxmY5+BCBsMs03uZYhfzk5L/CrTzmJydT4CWI7+cVUOxKT+ZhgD/NBCm0RbsxDQKDFLMuy/A4iTJLJpOLxuBKJhEpLS/0OBwAAAAAQAOSKztB+AAAAAICO3M4VuZQ6AAAAAAAAAAAAACDSuJR6mDQ1SW+91XJ77FipsDD7bezUAcAMN8anF3UQq7lY3RCmWIOC42f2vBqfUcP4TEc/AhA2meabXMuQv5ycF/jVp5zEZGr8BLGd/GKqHYnJfEywh/kghbYIN+YhINC4lHqWfL28W12d1KdPy+1Dh6SSkuy3sVMHADPcGJ9e1EGs5mJ1Q5hiDQqOn9nzanxGDeMzHf0IeYZLgTsTiPbLNN/kWob85eS8wK8+5SQmU+MniO3kF1PtSEzmY4I9zAcptEW4MQ8BruJS6gAAAAAAAAAAAAAAZIGFcQAAAAAAAAAAgBBoak5dBHjtttq0+wCAzFgYBwAAAAAAAAAACLgVG6s1acmqtvvXPfKGzl20Uis2VvsXFACECAvjAAAAAAAAAAAAAbZiY7VmP/GW9iQa0h7fk6jX7CfeYnEcAGxgYRwAAAAAAAAAACCgmpotLajapM4umt762IKqTVxWHQC6wcI4AAAAAAAAAABAQK3bvk/Vifouyy1J1Yl6rd+xz7ugACCEivwOAFno0UOaPz91O5dt7NQBwAw3xqcXdRCruVjdEKZYg4LjZ/a8Gp9Rw/hMRz8CEDaZ5ptcy5C/nJwX+NWnnMRkavwEsZ38Yqodicl8TLCH+SClk/355GBqUbyxsFD3Tbyq7XZ7H9c3Rastwoh5CAi0mGVZXFsjC8lkUvF4XIlEQqWlpX6HAwAAAAAIAHJFZ2g/AACArq35oFZXPfjnbrd7auY5mnBKfw8iAgBvuJ0rcil1AAAAAAAAAACAgKocUaaKeLFiXZTHJFXEi1U5oszLsAAgdLiUepg0N0ubN7fcPv10qaCTzzV0t42dOgCY4cb49KIOYjUXqxvCFGtQcPzMnlfjM2oYn+noRwDCJtN8k2sZ8peT8wK/+pSTmEyNnyC2k19MtSMxmY8J9jAfpHSyP4UFMc2fMlqzn3hLBVazTqnZJUl6f8BQKdayv/OnjFahLOndTWnPhceYh4BA41LqWfL18m51dVKfPi23Dx2SSkqy38ZOHQDMcGN8elEHsZqL1Q1hijUoOH5mz6vxGTWMz3T0I+QZLgXuTCDaL9N8k2sZ8peT8wK/+pSTmEyNnyC2k19MtSMxmY8J9jAfpGTYnxUbq7XouTf1+h1TJEmnf/vXOvFTJ2r+lNGaPKYiem0RRsxDgKvczhX5xjgAAAAAAAAAAEDATR5ToUuGXSDd0XL/0evP1llnDFVhQVcXWQcAtMfCOAAAAAAAAAAAQAi0XwQfP7K/xKI4ANjGDxQAAAAAAAAAAAAAACKNhXEAAAAAAAAAAAAAQKSxMA4AAAAAAAAAAAAAiDQWxgEAAAAAAAAAAAAAkVbkdwDIQo8e0m23pW7nso2dOgCY4cb49KIOYjUXqxvCFGtQcPzMnlfjM2oYn+noRwDCJtN8k2sZ8peT8wK/+pSTmEyNnyC2k19MtSMxmY8J9jAfpNAW4cY8BARazLIsy+8gwiSZTCoejyuRSKi0tNTvcAAAAAAAAUCu6AztBwAAAADoyO1ckUupAwAAAAAAAAAAAAAijUuph0lzs/Thhy23Tz5ZKujkcw3dbWOnDgBmuDE+vaiDWM3F6oYwxRoUHD+z59X4jBrGZzr6EYCwyTTf5FqG/OXkvMCvPuUkJlPjJ4jt5BdT7UhM5mOCPcwHKbRFuDEPAYEW2Eupr1y5Ut///vf18ccfy7Is3XzzzbrpppskSTt27NDMmTO1detW9ejRQ3fccYdmzJjR9tynnnpKP/zhD3Xw4EF9+tOf1sMPP6wRI0ZIko4cOaK5c+fqlVdeUVNTk77+9a9r0aJFisVituLy9fJudXVSnz4ttw8dkkpKst/GTh0AzHBjfHpRB7Gai9UNYYo1KDh+Zs+r8Rk1jM909CPkmbBcCpxcO4NM802uZchfTs4L/OpTTmIyNX6C2E5+MdWOxGQ+JtjDfJBCW4Qb8xDgqry5lPoLL7yghx9+WO+//75effVVLVq0SCtWrFBTU5OmTJmiq6++Wjt37tSLL76oOXPmaMOGDZKkNWvW6N/+7d/0yiuv6K9//asuueQSTZ8+va3eW2+9Vc3Nzfrggw/07rvv6vXXX9cDDzzg014CAAAAAOAdcm0AAAAAQL4K7ML4/fffr9NOO02SNHLkSP3DP/yDVq5cqddee01FRUW67rrrJEmjR4/WjBkz9Nhjj0mSli5dqptvvlknn3yyJOk73/mOtm/frr/85S86dOiQHnvsMf3oRz9SUVGR4vG45s2bp4cfftiXfQQAAAAAwEvk2gAAAACAfBXYhfGO9u7dq3g8rjVr1mjixIlpZePHj0/7FHv78qKiIo0dO1YbNmzQm2++qREjRqisrCztuRs3blRTU1Onr9vQ0KBkMpn2BwAAAABAFJBrAwAAAADyRSgWxtetW6ff/OY3+vrXv67q6moNGjQorXzgwIGqra2VpIzlXZU1NjYqkUh0+tr33HOP4vF429/QoUNd3DMAAAAAAPxBrg0AAAAAyCeBXxh/+umnNXXqVD322GMaMWKEGhsbZVlW2jZNTU2KxWKSlLG8qzJJbc/vaN68eUokEm1/u3btcmvXAAAAAADwBbk2AAAAACDfFPkdQFeampp000036fXXX9crr7yiM888U5JUVlammpqatG337t2r8vLytPLW3z1rXx6Pxzt9bnFxseLxeKdx9OzZUz179nRz1wAAAAAA8AW5NgAAAAAgXwV2Yfzmm2/Wtm3btH79epWUlLQ9Pm7cOP34xz9O23b16tWaMGFCW/nq1as1duxYSdLRo0f15ptv6qGHHlKvXr30P//zP9q/f7/69evX9tzx48eroCDwX56XioqkG29M3c5lGzt1ADDDjfHpRR3Eai5WN4Qp1qDg+Jk9r8Zn1DA+09GPgEAi184g03yTaxnyl5PzAr/6lJOYTI2fILaTX0y1IzGZjwn2MB+k0BbhxjwEBFrM6ni9swCor69Xnz59tGvXLlVUVKSVHT58WKNGjdKPfvQjzZgxQ+vXr9fUqVO1bt06nXTSSVq+fLluueUW/fGPf1RFRYXuuOMObdy4UcuXL5ckTZs2TYMHD9bSpUt14MABXXTRRfrhD3+oL3/5y7ZiSyaTisfjSiQSKi0tdXvXAQAAAAAhFIZckVwbAAAAABAmbueKgfzIybZt29Tc3Nz2yfRWp512ml555RVVVVVp5syZuuWWW1ReXq4nn3xSJ510kiTpiiuu0Pvvv6/Kyko1Nzfrggsu0MMPP9xWxy9/+Ut985vfVEVFhUpKSnTbbbfZTtQBAAAAAAgrcm0AAAAAQD4L5DfGg8zXT7FbltT6u20DBkixWPbb2KkDgBlujM9utmlqatZbb76nmkMNOvHkwaoc2V+FBe6/TmDqCFusbghTrEHB8TN7Xo3PqGF8pqMfIc/wjWdnAtF+meabXMuQv5ycF/jVp5zEZGr8BLGd/GKqHYnJfEywh/kghbYIN+YhwFVu54osjGfJ12S9rk7q06fl9qFDUrvfg7O9jZ06AJjhxvjMsM2KjdVa9Nybev2OKZKk07/9a534qRM1f8poTR5TYasOr2J1rY6wxeqGMMUaFBw/s+fV+Iwaxmc6+hHyTCAWdkMsEO2Xab7JtQz5y8l5gV99yklMpsZPENvJL6bakZjMxwR7mA9SaItwYx4CXOV2rljgQkwAAJ+t2Fit2U+8pT2JhrTH9yTqNfuJt7RiY7VPkQEAAAAAAAAAAPiPhXEACLmmZksLqjaps8t/tD62oGqTmpq5QAgAAAAAAAAAAMhPLIwDQMit275P1Yn6LsstSdWJeq3bvs+7oAAAAAAAAAAAAAKEhXEACLlPDna9KJ7LdgAAAAAAAAAAAFHDwjgAhNzAvsWubgcAAAAAAAAAABA1LIwDQMhVjihTRbxYsS7KY5Iq4sWqHFHmZVgAAAAAAAAAAACBUeR3AMhCUZH0T/+Uup3LNnbqAGCGG+Ozk20KC2KaP2W0Zj/xlpoLCvXrMRdLkpoKCtsWy+dPGa3Cgpij13EjVtfrCFusbghTrEHB8TN7Xo3PqGF8pqMfAQibTPNNrmXIX07OC/zqU05iMjV+gthOfjHVjsRkPibYw3yQQluEG/MQEGgxy7Isv4MIk2QyqXg8rkQiodLSUr/DAYA2KzZWa0HVJlUnUr8lXhEv1vwpozV5TIWPkQEAAEQfuaIztB8AAAAAoCO3c0U+cgIAETF5TIUuGV2uddv36ZOD9RrYt+Xy6W3fFAcAAAAAAAAAAMhTLIyHiWVJhw+33O7dW4p1stjV3TZ26gBghhvjs5ttCmPShPJiqbw493nCo1hdqSNssbohTLEGBcfP7Hk1PqOG8ZmOfgQgbDLNN7mWIX85OS/wq085icnU+AliO/nFVDsSk/mYYA/zQQptEW7MQ0CgFfgdALJw+LDUp0/LX+vkmO02duoAYIYb49OLOojVXKxuCFOsQcHxM3s29rfpUF3bNms37lJTcye/zkO7ZVdud5uw8GqeBwC3ZJpvci1D/nJyXuBXn3ISk6nxE8R28oupdiQm8zHBHuaDFNoi3JiHgEBjYRwAAABZWbGxWpOWrGq7f90jb+jcRSu1YmO1f0EBAAAAAAAAQAYsjAMAAMC2FRurNfuJt7Qn0ZD2+J5EvWY/8RaL4wAAAAAAAAACiYVxAAAA2NLUbGlB1SZ1ctH0tscWVG3q/LLqAAAAAAAAAOAjFsYBAABgy7rt+1SdqO+y3JJUnajXuu37vAsKAAAAyHPtP5i6dlstH1QFAADoAgvjAIDjkFQD6MwnB7teFM9lOwAAAADOrNhYrUlLVrXdv+6RN3TuopX8xBEAAEAnWBgHAKQhqQbQlYF9i13dDgAAAEDuVmys1uwn3tKeREPa43sS9Zr9xFvk8QAAAB0U+R0AslBYKF15Zep2LtvYqQOAGW6MT8N1tCbVJzQe029PmyhJai4oaEuql80Yq8ljKgIRq6ev41asbghTrEHB8TN7Xexv5YgyVcSLtSdRr+aCgrR5QpJiksrjxaocUZaxnshifKbzap4HALdkmm9yLUP+cnJe4FefchKTqfETxHbyS4f9bWq2tKBqkyzpuHNzSy3n5guqNumS0eUqNNVWpv63UYsJ9jAfpNAW4cY8BARazLIsro+bhWQyqXg8rkQiodLSUr/DAQDXNDVbOnfRyi5/P7h1wetPt1+kwoKYt8EBCIzWD9BILb8p3qp1Vmj7AA0A5BlyRWdoPwDIzpoPanXVg3/udrunZp6jCaf09yAiAAAA97mdK3IpdQCAJGnd9n1dLopLLQtg1Yl6rdu+z7ugAATO5DEVWjZjrMrj6ZdLL48XsygOAACArDQ1W1rzQa1e2LBbaz6oVVMz39+x65ODXefvuWwHAACQD7iUOgBAEkl1VDQ1W1q3fZ8+OVivgX1bLmnNN/zhtsljKnTJ6HL6GgAAAHK2YmO1FlRtSvuAdkW8WPOnjObDljYM7Fvc/UZZbAcAAJAP+MZ4mNTVSbFYy19dXW7b2KkDgBlujE+DdbRPlnsdrdeORZdrx6LL1eto+kL4wL7Fvsfq+eu4FasbMrzOio3VmnTnbzVh1ABN+8JJ+sa/r9K5i1ZqxcZqf2INCo6f2bOxv4VHDrf1tQnlxZ0vitNu2ZXb3SYsvJrnAcAtmeabXMuQv5ycF/jVp5zElOVzW3+e58DeA2m5555EvWY/8VYqhwliO/mlw/5WjihTRbxYMXWew8fU8kGDyhFl5trKVJ+JWkywJ4zzpim0RbgxDwGBxsI4AECS0pLqzqQl1Qic1jeW9iQa0h4/7o0lAAAAAPBRU7OlBVWb1NlF01sfW1C1icuqd6OwIKb5U0ZL0nF5fOv9+VNGc1UnAACAdlgYBwBIIqkOM95YAgAAABAW67bvS7t8ekeWpOpEvdZt3+ddUCE1eUyFls0Yq0HxnmmPl8eLtWzGWC5Jj0hp/57G2m21vMcBAMgJC+MAgDYk1eHEG0sAAAAAwuKTg13nLrlsl+8mj6nQ7265oO3+o9efrT/dfhH5OyJlxcZqTVqyqu3+dY+80flPxwEA0I0ivwMAAATL5DEVumTYBdIdLfcfvf5snXXGUL4pHmC8sQQAAAAgLAb2LXZ1OygtXx8/sr9E/o4Iaf3puOKjnf903LIZYzV5RKlP0QEAwoZvjAMAjtMxqWZRPNh4YwkAAABAWFSOKFNFvPi4n/BqFZNUES9W5YgyL8MCEED8dBwAwG0sjAMAEHK8sQQAAAAgLAoLYpo/ZbQkHZfDtN6fP2U0H9AGYPun49bv4KfjAAD2cCn1MCkslC67LHU7l23s1AHADDfGpxd1EKu5WN3Qyeu0vrE0+4m31FxQoJUjz5IkNRcUdP7GUr4dCzh+Zs+r8Rk1YZpLvEA/AhA2meabXMuQv5ycF/jVp5zElOVzJ4+p0LIZY3XP8xvS8pfyeLHmTxmd+n3sILaTX0z9f4jJfEywp5P2b/+TcB3f72jvk8PHovW/C+MxBCnMQ0CgxSzL4jojWUgmk4rH40okEiot5bdLAADBsWJjtRZUbUr7NHVFxzeWAACAEeSKztB+QH5qara0bvs+fXKwXgP7tlzlim+KA2i15oNaXfXgn7vd7qmZ52jCKf09iAgA4DW3c0W+MQ4AQERMHlOhS0aX88YSAAAAgFAoLIixmAWgS60/HbcnUd/p74zHJJXz03EAgCywMA4AQITwxhIAAAAAAIiC9j8dF5PSFsc7/ek4AAC6UdD9JgiMujqppKTlr64ut23s1AHADDfGpxd1EKu5WN0QpliDguNn9rwan1HD+ExHPwIQNpnmm1zLkL+cnBf41aecxGRq/ASxnfxiqh2JyXxMsKeL9p88pkLLZozV8F6WNi35qjYt+ap6Ha1XebxYy2aMbfnpuKj975gbw415CAg0vjEeNocPO9/GTh0AzHBjfHpRh1evk4+xuiFMsQYFx8/seTU+o4bxmY5+BCBsMs03uZYhfzk5L/CrTzmJydT4CWI7+cVUOzpBTHBTF+0/eUyFLhl2gQrvaJAkPXr92TrrjKHp3xSP2v+OuTHcmIeAwGJhHAAAAAAAAAAABFb7RfDxI/tLXD4dAJCDQF9K3bIsPf7445owYULa42+//bbOOeccDRs2TKNHj9arr76aVn7fffdp1KhRGjJkiK644grV1ta2ldXW1mr69Ok6+eSTNWzYMP3kJz/xZF8AAAAAAAgCcm0AAAAAQD4K7ML4ihUr9LnPfU4//OEPtX///rbHDx48qClTpuiuu+7Szp07tWzZMk2fPl179uyRJD377LN6/PHHtW7dOn344YcqLy/XrFmz2p5/zTXXaMyYMdq5c6fWrFmjpUuXqqqqyvP9AwAAAADAa+TaAAAAAIB8FdiF8bq6Oi1atEgPPfRQ2uNPPfWUzj77bE2aNEmSdP755+u8887TM888I6nlE+zz589XWVmZCgsLdeedd+rFF1/Uvn37tHXrVq1fv17f/e53FYvFNHjwYM2ZM0cPP/yw5/sHAAAAAIDXyLUBAAAAAPkqsL8x/tWvflWStGrVqrTH16xZo4kTJ6Y9Nn78eG3YsEGNjY1av359WvmAAQM0fPhwvfPOO9qxY4cqKytVVFSU9tylS5d2GUdDQ4MaGhra7ieTSSe7BQAAAACAb8i1AQAAAAD5KrAL412prq7WRRddlPbYwIEDtXbtWtXU1KipqUkDBgw4rry2tlbV1dUaNGhQp2Vdueeee7RgwQL3dsCJggLp/PNTt3PZxk4dAMxwY3x6UQexmovVDWGKNSg4fmbPq/EZNYzPdPQjIFTyOtdulWm+ybUM+cvJeYFffcpJTKbGTxDbyS+m2pGYzMcEe5gPUmiLcGMeAgItZlmW5XcQmaxatUo33HCDtmzZIkmaNGmSrr32Wl177bVt2/z85z/Xyy+/rH//93/XsGHD1NjYqFgs1lZ+zjnn6Pbbb9e7776rbdu2pV3ObcuWLRo/frwSiUSnr9/Zp9iHDh2qRCKh0tJSt3cXAAAAABBCyWRS8Xg8NLkiuTYAAAAAIOjczrVD95GTsrIy1dTUpD22d+9elZeXq1+/frIsS/v37++0PNNzu9KzZ0+Vlpam/QEAAAAAECXk2gAAAACAqAvdwvi4ceO0evXqtMdWr16tCRMmqKSkRKeddlpaeXV1tT7++GOdeeaZGjdunNauXavm5ubjngsAAAAAQL4i1wYAAAAARF3oFsavvvpqvfbaa1q5cqUk6aWXXtLmzZs1ffp0SdKsWbO0YMECHThwQEePHtW8efM0c+ZM9e7dW5WVlaqoqNCiRYvU3Nysbdu26Wc/+5luuukmP3fJvro66VOfavmrq8ttGzt1ADDDjfHpRR3Eai5WN4Qp1qDg+Jk9r8Zn1DA+09GPgFDJ61y7Vab5Jtcy5C8n5wV+9SknMZkaP0FsJ7+YakdiMh8T7GE+SKEtwo15CAi0Ir8DyNZJJ52kp59+WjfeeKP27dunUaNGqaqqSiUlJZKkuXPnavfu3Tr11FNVVFSkadOmaeHChZKkWCym559/Xt/4xje0ZMkS9evXT4sXL9a4ceP83KXsdLg8XU7b2KkDgBlujE8v6vDqdfIxVjeEKdag4PiZPa/GZ9QwPtPRj4DQyPtcu1Wm+SbXMuQvJ+cFfvUpJzGZGj9BbCe/mGpHJ4gJbmI+SKEtwo15CAiswC+MX3DBBdqyZUvaY5deeulxj7UqKCjQ4sWLtXjx4k7LR44cqVWrVrkdJgAAAAAAoUGuDQAAAADIN6G7lDoAAAAAAAAAAAAAANlgYRwAAAAAAAAAAAAAEGksjAMAAAAAAAAAAAAAIo2FcQAAAAAAAAAAAABApBX5HQCyUFAgnXVW6nYu29ipA4AZboxPL+ogVnOxuiFMsQYFx8/seTU+o4bxmY5+BCBsMs03uZYhfzk5L/CrTzmJydT4CWI7+cVUOxKT+ZhgD/NBCm0RbsxDQKDFLMuy/A4iTJLJpOLxuBKJhEpLS/0OBwAAAAAQAOSKztB+AAAAAICO3M4V+cgJAAAAAAAAAAAAACDSWBgHAAAAAAAAAAAAAEQaC+NhcviwNHx4y9/hw7ltY6cOAGa4MT69qINYzcXqhjDFGhQcP7Pn1fiMGsZnOvoRgLDJNN/kWob85eS8wK8+5SQmU+MniO3kF1PtSEzmY4I9zAcptEW4MQ8BgVbkdwDIgmVJO3embueyjZ06AJjhxvj0og5iNRerG8IUa1Bw/MyeV+MzarrZ36amZhX+rXztBzU664yhKiyIZVVHqNCPAIRNpvkm1zLkLyfnl371KScxmRo/QWwnv5hqR2IyHxPsYT5IoS3CjXkICDS+MQ4AAAAYtmJjtSYtWdV2/7pH3tC5i1ZqxcZq/4ICAAAAAAAA8ggL4wAAAIBBKzZWa/YTb2lPoiHt8T2Jes1+4i0WxwEAAAAPNDWnvn25dltt2n0AAJAfWBgHAAAADGlqtrSgapM6e8ut9bEFVZt4Uw4AAAAwiCs4AQAAiYVxAAAAwJh12/epOlHfZbklqTpRr3Xb93kXFAAAAJBHuIITAABoxcI4AAAAYMgnB7teFM9lOwAAAAD2cQUnAADQXpHfASALsZg0enTqdi7b2KkDgBlujE8v6iBWc7G6IUyxBgXHz+x5NT6jppP9Hdi3uK3Yiklb+5/cdru9tu2i1Gb0IwBhk2m+ybUM+cvJ+aVffcpJTKbGTxDbyS+m2jHiMbW/glNn5+Ptr+A0oaJXfvWpoGE+SKEtwi2IcyOANjHLsvg4XBaSyaTi8bgSiYRKS0v9DgcAAAAB1tRs6dxFK7UnUd/pt1RiksrjxfrT7RepsICkFwgzckVnaD8AgAkvbNituU9v6Ha7+//x85r2+SHmAwIAAFlxO1fkUuoAAHSjqdnSmg9q9cKG3VrzQS2XWANgW2FBTPOntHzau+Oyd+v9+VNGsygOAAAAGND+Ck5ubAcAAMKNS6kDAJDBio3VWlC1qe3Sa5JUES/W/CmjNXlMhY+RAQiLyWMqtGzG2OPmknLmEgAAAMCoyhFlqogXd3sFp8oRZV6HBgAAfMA3xsPk8GHpjDNa/g4fzm0bO3UAMMON8elFHcTa9vCKjdWa/cRb2l9zQP/50I36z4duVPGxeu1J1Gv2E29pxcbq7F7HDV61a5Rw/MyeV+MzajLs7+QxFfrTTedo03O36r//7y16Zsbn9KfbLzp+UTxKbUY/AhA2meabXMuQv5ycX/rVp5zEZGr8BLGd/GKqHSMeU/srOPU6Vp+W2x93Bad861NBw3yQQluEWxDnRgBt+MZ4mFiWtGlT6nYu29ipA4AZboxPL+ogVkktl09fULVJlqSYJZ1a+6H0t9uWWj5VvqBqky4ZXd6SQHs1v3rVrlHC8TN7Xo3PqOlmfwtjUu/3/0eSNH5EmdTZ5dOj1Gb0IwBhk2m+ybUM+cvJ+aVffcpJTKbGTxDbyS+m2jEPYmq9gtOi595My+2Pu4JTvvWpoGE+SKEtwi2IcyOANiyMAwDQiXXb96Vd8rgjS1J1ol7rtu/ThFP6excYAAAAAADIyuQxFbpk2AXSHS33H73+bJ11xtCWD7oDAIC8waXUAQDoxCcHu14Uz2U7BFtTc+pTuGu31abdBwAAAOAPztPhpvaL4ONH9mdRHACAPMTCOADkGd5YsGdg32JXt0NwrdhYrUlLVrXdv+6RN3TuopXpvyEPAAAAoEsm8kzO0wEAAOA2FsYBII/wxoJ9lSPKVBEvVlefH49JqogXq3JEmZdhwWUrNlZr9hNvaU+iIe3xPYl6zX7iLcYGAAAA0A0TeSbn6QAAADCBhXEAyBNBe2Mh6N9cLyyIaf6U0ZJ03OJ46/35U0Zz6bUQa2q2tKBqkzrrea2PLajaFLi+CURJ0I8FAAAgMxN5JufpAICoIgcG/FfkdwDIQiwmDRuWup3LNnbqAGCGG+Mzxzrav7FgxaS/lg6U/nbbUstC74KqTbpkdHnLQq/hWFdsrNbC597SE3+L458efUP9Bryn+VNGa/KYCtdex2kdk8dUaNmMsVr43FtpbVYeL84tVjd40Y+ipov9Xbd9n6oTLb8R33FcSC1jozpRr3Xb92lCRS/azNQ2UcL4TNfNvrh6LAAAN2Sab3ItQ/5ycl7gV5/KMibbeeZN56gwi3rtnqev37lf4/Np7DnpM6b6VIZ6myzp2JCham629M72fTprdO/0D5b7EBPvmwZcGOdNU2iLcOvif2ArB+b/BxgXsyyLj6RkIZlMKh6PK5FIqLS01O9wAMCWNR/U6qoH/9ztdk/NPEcTTulvNJbWbxR0PPi0nuotmzE2fUEkAJqaLa3bvk+fHKzXwL4tl0/nm+Lh98KG3Zr79IZut7v/Hz+vaZ8fYj4gII+E8VgAdIdc0RnaDwgfU3km5+nht2JjtRZUbWr7gIPU8lNkx30AEgDyBDkwkDu3c0UupQ4AeeCTg/Xdb5TFdk3NltZ8UKsXNuzWmg/sX/bHj0vi5Rpre4UFMU04pb+mfX6IJpzSn0XxiBjYt9jV7QDYw+VRAQCIBrfzzFacp4db6+JP+0Vxid+HB5C/yIGBYOFS6gCQB9x8Y8HJJ7/bXxKvM2mXrnbhm+t8Sh2ZVI4oU0W8WHsS9Z0mJzG1XDa/ckSZ16EBkeb1sQAAAJhhagGb8/Tw6m7x57ifcQOAPEAODAQL3xgPkyNHpLPPbvk7ciS3bezUAcAMN8ZnjnW0vrEQk9TzWINeeOzbeuGxb6vnsQZJLclpRfs3Frqop/WT3/tqEml1dPrJ707qaP9Ngc7iaNW2nYM2cRprVu1udxs3hCnWoOhifwsLYpo/ZbQkqbhDf2x9i2b+lNEtb9jQZua2iRLGZ7ou9sXIsQAA3JBpvsm1DPnLyXmBX30qy5hs55nlvbKq1/Z5ekN9fo09J33GVJ/qUG/7xZ/O+kT7xR+vYrJdZqccZoVx3jSFtgi3Dv+DrHJg/n+AcXxjPEyam6X161O3c9nGTh0AzHBjfOZYR+sbC7OfeEuFlqUz97wnSSqwrOMXALuop/0nvws61NHpJ787qaP9NwU61tFe23Y5tokbsdpp16y3cUOYYg2KDPs7eUyFls0Yq0XPvZnWT8o7XlmANjO3TZQwPtN1sS9GjgUA4IZM802uZchfTs4L/OpTWcZkO8+UlfW+2jpPr6vLq7HX1Nikwr/t79r39+qsM4ZmzOHTmOpTHeptv/iT6Tzvk4P1UnOxJzHZLrNTDrPCOG+aQluEW4f/QVY5MP8/wDi+MQ4AIdL+t2bWbsvu97Jb31gYFO+Z9nh5vFjLZox19TLoXWn/jYLOHPfN9RxlG6uTdkX4TR5Tod/dckHb/UevP1t/uv0iLrcPGOLVsQAAAJjnNM/srm7O01us2FitSUtWtd2/7pE3dO6ilYH7vW5+Hx4AjkcODAQLC+MAEBJuJMJO3lho/8nvXLdrf0m8jieDnX5zPUfZxBqWNxhgVvs+N35kf37vDjDIq2MBAADwhskFbM7TUz8TtieRfsndTn8mzGcs/gDA8ciBgWBhYRwAQsDNRDjXNxbc+uS3yW8U2I2h1Y6aw6F5gwEAosSLYwEAAPBOPi1gNzVbWvNBrV7YsFtrPjB7xbH2PxPWUetjC6o2BeaqZ0FY/OGKcOHF/w5RRg4MBAe/MQ7AN03NltZt36dPDtZrYN+WTwz7kTx7FUdTs6XCv91eu61WZ53R29brdJcIp/1etovxdtT6ye89XVyiPKaWk7nWT35n2t/JYyp0ybALpDtayh+9/uz030f7m1zbzE6sg0p76ql1H7rWrrnG2rGO7vqiG6/jVixO67C7v27E4UWb2YnDq7kmKm2G3ATl+Nodu8cC5Lew9GcACArmzZRMbZFrrrJiY7UWVG1K++muiva/e+5yvHZ/Jmz9jn0a7+jV7cfUsZ065g3tfx++vXKX2imTFRurtei5N/X63+5f98gbOvFT79l+3ajlQWGaD/Lxf+fX/ydM/cIkP9qBHDidk+M04AQL4wB8YSeZ9GJhzm5S6zQWJyf42fxe9oRyc7/T1frJ79lPvNXtJ7/t7G/HbxSoQ3s6aTM7sV5VebLu/d17XdaRTbvajTVTP7LTF50mina5MT67q8Pu/roRhxdt1l0sbr6BZvp13Gyz7t6cCFOiE6QPrmTi1XHNLd0dCyRv2jVMH1yJYixdMbn4AABBlunY5+RcMJdFTjeODX6cI2VqC0k55SpTz6zQL/6w/bgPV7decczJN/66es0vjSm39fy9hxoylufSp+zkdJnyBieLP7mcp7Reaa/4aOdXhFs2Y6wmjyjN+PxM++PGB79z2d9c6/XzPCrb/Xl1057u/3cZYvYy78+G0/naxLzp9DiR6/46YaJer96X7oydHDgXJucoE3E5OU4HVRhy7I7CGLMb8nJh/MiRI5o7d65eeeUVNTU16etf/7oWLVqkWCwE//ABA5xvY6cOwKDWZCVTMik5PwDaSeK6i8PuAp6d/S0+2qDaXqkkrNMT/E7GZ8ffy25fx3HblRe7M090sU37T363j6O8k3bNdX+lLNssx1gbGpvTts+1Xe3G2t0Jn50x4bRd03SzP07GZ3d1zDpvRLdvKLXurxtxOOlHaTKUO/3/ujGvufE6brZZ65sTv/5bPR3fnAjTglc2H1zpan/buDVHdxGnF8e1rDjcX9vt6oBX7RGkPh+kWLpitz8jWEKda7fKNG/lWob8lcP5ZaZjn9T1+a+U+Vxw1nkj9OJfqrtd5Mx4zHV5f5zU291rdtUWNzzxVqfV2MlV/uMP2zt97nFXHMvyDeVM8T78XzvSHusqb/1Un54Zc7xs+1R3HwJobaeMecOI0raYulz86eL/l+15Sscr7bWPKe3/863xKszQZ7raHzvjJ9dzKxOLQ36eR2W7P+WlxapvbOr+f9d6Nb8O/7+sc1iPOMndZ503Qv/5xjZnuWWWc6Odfp7r/jppfxP1evW+tKPzxizPK934cooJuXzQrLvjdFDzwDDk2B2FMWa3xCzLyrsf67jxxht19OhR/fznP1ddXZ0mTZqka6+9VjfddFO3z00mk4rH40okEiot7fpThgA619Rs6dxFK7v8BnRMUrx3DyUOHzvu4NiaQmWzuNNVHf/+9bG687ebMsZRHi/W9/9+tP7lya7r6S4WO/tbHi/Wn26/qMvkec0HtbrqwT93+Rqtnpp5jiac0r/b7dzQ1afJ3NhfN+qwE6sb7Wo31u76Ubx3Dx04fKzLOgaV9pQU056kO23SFTfGZ3djS2p5P6Srnwpr3RfLsrQn2fm3HtyIw602k7qfb7r7/9qNw/TruDn2uou1qzccs5nnvdLdvmT6IIeX++PWfBS2tncaqxev4eXrhC2Wrrh9LuAVckVybcCpTHN0V2/e2TkX7IrpczM/jjndHUO6kylXsSPbvNzOMS9mI3/q6piYa5/K1AROY8ok1z7jJL/Ptc+4MX6cjPmu6vXzPCqX/bErl/+dX+eMTnL3rjidN53281z7cXfPzcREvV69L+2loL7/YmI+CGoeGIYcu6Owxex2rljgQkyhcujQIT322GP60Y9+pKKiIsXjcc2bN08PP/yw36EBecHOZcEPdHLy0VomtXxirylDptrdb3JL0vdf2Gjr8uTfe2Gjo1iyuQx6V1p/L7urw31MLZ/mav1tby8UFsQ04ZT+mvb5IZpwSv+2kxE39teNOuzE6ka72o01Uz9q7fOZ6tiTbOhyUbz969htk664MT67G1tS5jeaWvelq0Vxt+Jwq826m2/s/H/txOHF67g19uzMwQ/+8fikrH15d3OrV+zsy4KqTbrjxXd93x835iMpfG3vJFYvXsPL1wlbLJm4fS4Ab5BrA87YmaM7Y+dcsLvnmjg38+uY090xpDtOw+l4xbfu2DnmtcbUMXdtvd/6k2YdOelTmbSPqavyXI7TTvqM3XbvbLtc+4zT8eP0/9NVvX6dR+W6P3bl8r/z45zRae7eFafzppN+nul1Tc31pur14n1pLwX1/RdT80EQ88Cw5NjthTFmt+Xdwvibb76pESNGqKwstdAxfvx4bdy4UU1NTcdt39DQoGQymfYHIHfZJokdubW4U1t31Nbr7cuwnZ1YnCRnrVp/L1vKPhH2mhv760YddrjRrnZjyNSP3OS0TdwYn3bHlknZxOF0n52+8WY3Di9ex62xl82be12VByXRsftGS3cf5PBif9yYj8LY9k5i9eqNtCC9YRekWDLx6lwA7iLXBpxx63wvFybOzfw65vh9bBjYtzir7e3G+82Jw1UeT6+7PF6c8RtdfvYpycyHBLrqM3bbvbPtnPaZXMePk/9Ppnr9Oo8y3d+c/O+8nBdMtoOTedNJGzjpx0E7hnjxvrSXgvr+i+n5wO9jfXthybHbC2PMbsu7hfHq6moNGjQo7bGBAweqsbFRiUTiuO3vuecexePxtr+hQ4d6FerxjhyRLrig5e/Ikdy2sVMHYFC2SWJX3FjccUum12u/vz2PNejpJ/+3nn7yf6vnsYbjt8swPlt/L3tY71haHcclwm7ME3a26aLcjf3Nqg4HsUrO29VurG5y0o/a2NifKDHZj9yab7prey9ex62x1z5WJ+MiCIlOtjFk2t9PDta7N0d3ws3x61rbO9hfu/3ISaxevZEWpDfsghRLJk7e3IZ/Qp1rt8o0b+VahvyV5fmlW+dQTmR63Zq9+43sT7b1dlfm17Eh1yu52Y130uhy/WnOBP3l9f+j9b+7S89cc6b+dPtFGXNWL/pUpnrLe1g595lMOtuu/RXhOoup7f9T3itjnzHVTp3F7Mb5Vmd1+HUe5cb+ZPzfjSg7rs9kncN6wK3zaEe5paG50Uk/zrZdTNXrxfvSkpydN2ZxXulWf3M7/zOdTwYpDwxLjt1eGGN2W5HfAXitsbFRHX9WvfXT67HY8d8KnDdvnm655Za2+8lk0r+EvblZ+v3vU7dz2cZOHYBBrcnKnkS9o0un2F3cyaSspIf213V+eZyYpH4lPbSvrvvLG2V6vfb7W2BZOmfXRklSwd/modbfRmk5wT+ccXxOHlOhS4b1VeH8ljoev+4snXXG0PRvNLsxT9jZpotyN/Y3qzocxNrKSbvaidVuP+pKTKnfGP846bwf2d0fJ+Mz09iSWn63z7I6v3xS675YlqWPkw2uxGGyHzk9GT8uji548Tpujb32sXZWj11BSHSyjSHT/g7sW+zeHN2J7savW8e1rDjYX7v9yEmsXr1pGKRF3iDFkomd/mxn7oS3Qp1rt8o0b+VahvyV5fmlW+dQTmQ85pacYGR/sq23uzKnOU2mXKUrrTNcLldyy+aYV3jksOLrVkuSBgzv1xJsq07awlSfiin1G+OZ8oazTj4x5z6TSWfbtV4RbvYTb6mwQ0xp/x9ZGfuMqbHXWcxunG91Vodf51Fu7E/H9j9ubHXoM1nnsB5w6zzaUW5pYG5se10bj9l9rhvbZ1uvF+9LS3J23pjFeaVb/c3t/M9UPhnEPDAsOXZ7YYzZbXn3jfGysjLV1NSkPbZ3714VFxcrHo8ft33Pnj1VWlqa9gcgd3YuX31i7x6OfvfZ7m9H3zVtTMY47po2xvFvULt9GfT2240f2T8Ql09vz4399ePS8bm2q51Y7fSjfr17ZKzjjqln6I6p5tvErfGZaWzFJM38uxEZX2P+lNG6Y+oZRuNofR2nbWZnvunu/2snDi9ex62xZyfWTFXYmVu9Yvd4Ul7a09Gxwg1uzUdha3snsXrxGl6+TthiySRMPyODFHJtwJnu5uhMMp0L2lEQ6/p5rceGs4Znd2ywe8zJtt7u2DmGdFXWXa4Sk/TP541QRZaXNHcab67HPCd9qiutdc38uxFtbdJZuZMPCeR6ntJ6RbhB8Z5pj3f3/8n0P7DDzvjpLGanY76rev06j3JjDhtUekLa407+d36dMzrJ3bvj5FzdST930o9zjdlUvV68L+2loL7/kut80N1xWgpeHhiWHLu9MMbstrxbGB87dqz+53/+R/v37297bPXq1Ro/frwKCvKuOQBftCYrnf0+1s9njNXCr3xWkvnFncs+N7jLOJbNGKvLPjfYlRPsXJOzsHJjf8PUZt3Faqcf3fOVz+rnGfri5DEVnrWJG+Ozu7E177LRGcvb768bcZhsMzvzjZ3/b1Bex41+ZidWE2+kmWD3eNLdBzm82p9M48bN45oXvHiTy6s30oL0hl2QYulOd/05SOcCaEGuDTjjZEFX6vpcsCJerH8+r+tzr+4Wg6Xcjg1+HnO6yyUynTN3l6vMu2y0/nT7RXpq5jm6/x8/r6dmnpN+SXOX43VyzHP6IYFMHwJobSc3cy03+szkMRX63S0XtN1/9Pqzbf1/usqDTI4fp2M+U1v4cR7lxhz22q0Xtj3u9H/n1zmjk9y9u/4mOZs3u+oXTl7X1Fxv8hhi+n1pLwX1/Zfu4sp0jOnuOB20PDBMOXarMMbstpjV8VpneWDatGkaPHiwli5dqgMHDuiiiy7SD3/4Q335y1/u9rnJZFLxeFyJRML7T7TX1Ul9+rTcPnRIKinJfhs7dQAeaWq2tG77Pn1ysF4D+/7t0mB/m3BXbKzWgqpNqk6kfsuiIl6s+VNG2z4A2q0jUxxuxSJJTQcPqbC0ryRp7X/vPP5y3V6NcY9ex4397bYOl2L1Yn/t9KPu+qKtNnGpD7gxPrvbH1v760YcHvQjt/6/3fHqddxosxUbq7XouTf1+h1TJEmnf/vXOvFTJ7bF6tbc6gU7sXa3v5Lcm6O74dVxrVsu7K+tdnXIq/YIUp8PUizdcWNO84qvuWJAhDbXbpVpTsq1DPkrx/PLTMc+STmfC3Y393d7zDWwP07qtdPGmY4hbuQqbuv2NXNsCyd9qtt2ypQ3OOgzjs5TnPSZLvbHzvjJNeZMz5W6H/OZ+NGPHe2Pg/nAVg7rISe5u+PcMse50VQ/dpJfmMxbjL4v7eS8MYfzSpNzlBPdva6T43TQhCnHbhWmmN3OFfNyYbympkbf/OY3tXr1apWUlOi2227Tt771LVvPZWEc8I4rizsuHURdqScgC7iBeZ08jDU0/ciGoJyg2orDqw9HeNQmnryOW32+mzcngtKP7AjSB1fcEKV+5IZIjd8QxhIVgVjY9Vloc+1WLIzDTYYWeJzM334scpqsN+/GnoEFX8nhOYGhxZ8wxmRqbIbxnC3n/YnYfOCoTzjJLR20hcljTK78GgNBnIecxBvKdgyZMO5rWGJ2O1csciGm0BkwYIBeeOEFv8MA0I3CgpgmnNLf9zrcrAf5LUr9KCj7EpQ4JO9iCdI+d6f9yfT4kf2P+3GrsO1Ld7F2t79BEra2b2WqXfNx/AYpFkQHuTbgjkzHPifzd3fPNXXMDdM5UlSZ6lOmhDEmU2MziG3RnajtT66c9olWXs6bJo8xufKrz4Str5qco5wIWzs6EcZ9DWPMbsjLhfFQ693b+TZ26gBghhvj04s6vHqdfIzVDWGKNSg4fmbPq/EZNYzPdPQjAGGTab7JtQz5y8l5gV99yklMpsZPENvJL6ba0QligpuYD1Joi3BjHgICKy8vpe5EIC7vBgAAAAAIFHJFZ2g/AAAAAEBHbueKBS7EBAAAAAAAAAAAAABAYLEwDgAAAAAAAAAAAACINBbGw6S+Xvr7v2/5q6/PbRs7dQAww43x6UUdxGouVjeEKdag4PiZPa/GZ9QwPtPRjwCETab5Jtcy5C8n5wV+9SknMZkaP0FsJ7+YakdiMh8T7GE+SKEtwo15CAg0fmM8S77+7lldndSnT8vtQ4ekkpLst7FTBwAz3BifXtRBrOZidUOYYg0Kjp/Z82p8Rg3jMx39CHmG38h2JhDtl2m+ybUM+cvJeYFffcpJTKbGTxDbyS+m2pGYzMcEe5gPUmiLcGMeAlzFb4wDAAAAAAAAAAAAAJAFFsYBAAAAAAAAAAAAAJHGwjgAAAAAAAAAAAAAINJYGAcAAAAAAAAAAAAARBoL4wAAAAAAAAAAAACASCvyO4CwsSxLkpRMJr1/8bq61O1kUmpqyn4bO3UAMMON8elFHcRqLlY3hCnWoOD4mT2vxmfUMD7T0Y+QZ1pzxNacEdnxNddulWm+ybUM+cvJeYFffcpJTKbGTxDbyS+m2pGYzMcEe5gPUmiLcGMeAlzldq4ds8jas/LXv/5VQ4cO9TsMAAAAAEAA7dq1SyeddJLfYYQOuTYAAAAAoCtu5dosjGepublZH330kfr27atYLOZ3OJ1KJpMaOnSodu3apdLSUr/DATKivyIs6KsIE/orwoT+ijDJ1F8ty9LBgwc1ePBgFRTwq2XZItdGPqJPwU30J7iNPgU30Z/gNvpU/nA71+ZS6lkqKCgIzaf/S0tLmRAQGvRXhAV9FWFCf0WY0F8RJl3113g87kM00UCujXxGn4Kb6E9wG30KbqI/wW30qfzgZq7Nx9gBAAAAAAAAAAAAAJHGwjgAAAAAAAAAAAAAINJYGI+gnj17av78+erZs6ffoQDdor8iLOirCBP6K8KE/oowob/mN/7/cBt9Cm6iP8Ft9Cm4if4Et9GnkKuYZVmW30EAAAAAAAAAAAAAAGAK3xgHAAAAAAAAAAAAAEQaC+MAAAAAAAAAAAAAgEhjYRwAAAAAAAAAAAAAEGksjAMAAAAAAAAAAAAAIo2F8Yg5cuSIZs2apWHDhumkk07Sd77zHVmW5XdYgCRp5cqVmjhxokaNGqVTTjlFS5cubSvbsWOHLrnkEg0bNkyjRo3SE0884WOkQMrs2bP1mc98pu3+22+/rXPOOUfDhg3T6NGj9eqrr/oYHdBi3bp1Ou+88zRs2DANHjxYzz//vCT6K4Jn9+7dmjJlioYMGaKRI0fqzjvvbCujvyIILMvS448/rgkTJqQ93l3/vO+++zRq1CgNGTJEV1xxhWpra70MGx4g14ZT5MMwhZwVbiGvhFvI++AGcjMYYyFSZs+ebX3zm9+0jh07Zh04cMA666yzrJ/+9Kd+hwVYlmVZc+bMsbZs2WJZlmV98MEH1pAhQ6yXX37ZamxstMaMGWM98sgjlmVZ1rvvvmv169fPevvtt/0LFrAs68MPP7R69+5tnXbaaZZlWVYymbSGDBlivfrqq5ZlWdaqVauseDxuVVdX+xkm8tzmzZutioqKtn7Z0NBgffzxx/RXBNJFF11kfec737Gam5ut2tpa68wzz7QeeeQR+isC4eWXX7bGjBljnXLKKW3Hfsvq/vj/zDPPWF/4whes2tpaq7Gx0brhhhusr3zlK77sA8wh14ZT5MMwgZwVbiGvhJvI++AUuRlMilkWH3GOikOHDmnQoEHatWuXysrKJEnPP/+87rzzTr399ts+Rwcc75ZbblFRUZEmTZqk22+/Pa2fzpkzR4WFhbr33nt9jBD57sorr1R5ebl+97vfacuWLfrFL36hl19+WcuXL2/bZurUqbr44os1d+5cHyNFPvvqV7+qs846S/PmzUt7nP6KICorK9Mf/vAHjRkzRpL0ve99TwcOHNDnPvc5+it899xzz6lXr17q3bu3brjhBm3ZskVS9/PpF7/4Rd1+++2aNm2aJKmmpkYVFRX6+OOP2/IyhBu5NkwgH4YbyFnhFvJKuIm8D06Rm8EkLqUeIW+++aZGjBiRNsDHjx+vjRs3qqmpycfIgM7t3btX8Xhca9as0cSJE9PKxo8frw0bNvgTGCDpt7/9rWpra3XllVe2PUZfRdDU19frN7/5ja6//vrjyuivCKIrr7xSDzzwgI4ePaqdO3fqhRde0JVXXkl/RSB89atf1WWXXXbc45n6Z2Njo9avX59WPmDAAA0fPlzvvPOO8ZjhDXJtmEA+DKfIWeEW8kq4jbwPTpGbwSQWxiOkurpagwYNSnts4MCBamxsVCKR8CkqoHPr1q3Tb37zG33961/vsu/y+x/wS21trebMmaNly5alPU5fRdBs3bpVvXr10uuvv67Pfe5zGjlypP75n/9ZyWSS/opAuvvuu7VixQr169dPI0aM0IUXXqgLLriA/opAy9Q/a2pq1NTUpAEDBnRajmgg14bbyIfhFDkr3EReCbeR98EUcjO4gYXxCGlsbFTHK+O3fno9Fov5ERLQqaefflpTp07VY489phEjRnTZd+m38INlWfrmN7+pm2++WZ/5zGfSyuirCJqDBw+2fSJ23bp1+stf/qK9e/dq7ty59FcETlNTky677DLdfPPNSiQS2r17t/7yl7/o/vvvp78i0DL1z8bGRkmi/0YcuTbcRD4Mp8hZ4TbySriJvA8mkZvBDUV+BwD3lJWVqaamJu2xvXv3qri4WPF43KeogJSmpibddNNNev311/XKK6/ozDPPlNR13y0vL/cjTOS5hQsX6tixY/rWt751XBl9FUEzYMAAHTt2TAsXLlSPHj1UXFysO+64QxdeeKEuvvhi+isCZeXKlTp69KhuvvlmSVJFRYWWLFmiqVOnauLEifRXBFam43+/fv1kWZb279+fdplt+m+0kGvDDeTDcAs5K9xGXgk3kffBJHIzuIFvjEfI2LFj9T//8z/av39/22OrV6/W+PHjVVDAvxr+u/nmm7Vt2zatX7++7U0ASRo3bpxWr16dtu3q1as1YcIEr0ME9NOf/lR//OMf1a9fP5144om6/PLL9d577+nEE0+kryJwhg0bphNOOEH19fVtjxUUFKi4uJj+isA5evSoiorSP5fbo0cPHT16lP6KQMvUP0tKSnTaaaellVdXV+vjjz9OO99FuJFrww3kw3ALOSvcRl4JN5H3wSRyM7jCQqRMnTrVuuGGG6xjx45Ze/futT772c9ay5cv9zsswDpy5IhVWFhoffTRR8eV1dXVWRUVFdavfvUry7Is64033rAqKiqsXbt2eR0mcJzXX3/dOu200yzLsqxdu3ZZJ554ovXaa69ZlmVZv/3tb61hw4ZZhw4d8jNE5Lkbb7zRmjlzpnXs2DGrvr7e+spXvmJ95zvfob8icA4cOGANHjzYevLJJy3LsqyDBw9al19+uXXDDTfQXxEo7Y/9ltX98X/JkiXWWWedZe3fv99qaGiw/umf/sm6+eabfYkd5pBrwwnyYZhEzgo3kFfCLeR9cBO5GUzgUuoR88tf/lLf/OY3VVFRoZKSEt1222368pe/7HdYgLZt26bm5ubjPgF42mmn6ZVXXlFVVZVmzpypW265ReXl5XryySd10kkn+RQt0LmTTjpJTz/9tG688Ubt27dPo0aNUlVVlUpKSvwODXls0aJFmj17toYMGaK+ffvqq1/9qu68806dcMIJ9FcESjwe1yuvvKJbbrlF8+bNU0FBgaZNm6a7775bvXv3pr8isLo7/s+dO1e7d+/WqaeeqqKiIk2bNk0LFy70OWq4jVwbTpAPwyvkrMgVeSXcQt4Hk8jN4IaYZXX4JXoAAAAAAAAAAAAAACKEH8MCAAAAAAAAAAAAAEQaC+MAAAAAAAAAAAAAgEhjYRwAAAAAAAAAAAAAEGksjAMAAAAAAAAAAAAAIo2FcQAAAAAAAAAAAABApLEwDgAAAAAAAAAAAACINBbGAQCIsH/7t3/TI488ctzjq1at0rnnnptVXQ899JCuu+66rGP43ve+pzvuuCOr5/zud7/TBRdckPVrAQAAAADgBfJtAADCh4VxAAAiZseOHXr//ff1/vvva9euXdq5c2fb/d27d3f7/AsuuECrVq3K+nWHDx+uHTt22Nr229/+tgYMGJD2F4vFtHXr1qxfFwAAAAAAL5BvAwAQbkV+BwAAANx1ww03qKampu3+5s2b9Zvf/EaSNG7cOP3Hf/yHX6G1uffee3Xvvfe23d+xY4fGjRunU045xceoAAAAAADoGvk2AADhxsI4AAARs2LFCkktl2974403dMIJJ+j888/X5z//eTU2NurQoUM6cuRIl88/ePCgkslk1q+b6/MkadmyZbrqqqtUWFiY0/MBAAAAADCNfBsAgHBjYRwAgAi67rrr9MEHH+gf/uEf1NDQoKuvvlrXXnutTj75ZH3/+9/XkSNHNGLEiE6f+8EHH2R9ibUDBw5o37592rp1qz73uc9l9dw///nPeuSRR/Tf//3fx8Vx22236TOf+Yz+1//6X1nVCQAAAACACeTbAACEFwvjAABEzPvvv6//n717j4+iuv8//t4kQEggKyliwi1BESXipdwpVEChqDVSq9gLaFW+oFC51FsL2CKgFSxe8SvfX2tR0AraihUUQRSwtiDIzYKCilxECEICbEwgQJL9/bFmYZPNJpPdmZ2ZvJ6Pxz4y58zsyWfOnLMnJ2d39r333tPOnTvVoEEDSYGJe7t27XT48GH94he/0KpVq/TAAw9Uee7777+vBg0aaMGCBbr33ntr/TvfeOMNNW/eXPPnz9eNN95Y6+f9+9//1k033aSXXnpJGRkZIftSUlJ04YUXqk2bNrUuDwAAAAAAszDfBgDA2RLiHQAAAIitJk2aqKSkJOQ2awcPHlRycrKKi4u1Y8cO7du3L+xzK76LzO/3a8mSJbX6feXl5Xr66ac1f/58ffTRR9qyZUuNzzl16pSefvppXX/99ZozZ45+9KMfVTkmMzNT//M//6NBgwbVKg4AAAAAAMzEfBsAAGfjE+MAALhMRkaG/vCHP6hbt27q37+/Tp48qQ8++EB//etf9f777+tPf/qTfD6fvF5vyPNefPFF5efna+jQocrJydHgwYP14YcfqlWrVhF/38MPP6wLL7xQAwYM0P/+7//qZz/7mdauXaumTZuGPX737t3q16+f2rVrp9WrV+v888+P2bkDAAAAAGAW5tsAADgbC+MAALjQmDFj9POf/1xbt25VgwYN9OyzzwYnzoMHD65ya7fFixfrwQcf1KpVq+TxeNS5c2dNmzZNP/zhD/XPf/6z2u8x+/Of/6xXX31V//73vyVJubm52rBhgy6//HK98cYbatu2bZXnZGdna/HixerUqZPKy8tNOHsAAAAAAMzBfBsAAOfiVuoAALjUqlWrdOrUKfXp06fKu8mTk5OVmZkpSfL5fJo6dapef/31kO8Xu/XWWzVp0iRt3LgxbPm7du3Sc889p7feeivk3fAPPvigfvrTn2r79u3VxnbxxRfr/fffV9++fcPub9mypa666qpanysAAAAAAFZhvg0AgDPxiXEAAFxq7dq1ysjICPt9Yj179tTf//53SZLX69VHH30Utozhw4dXW367du20bt26sPt+//vf1yHi03JycpSTkxNVGQAAAAAAmIH5NgAAzsQnxgEAAAAAAAAAAAAArsYnxgEAcLGpU6dq5syZ1e7ftGlT8BZv8fDhhx/qrLPOqnb/p59+qpYtW1oXEAAAAAAAtcB8GwAA5/H4/X5/vIMAAAD2d/jwYRUVFalt27aGnnfgwAFJUkZGhhlhAQAAAADgaMy3AQCwBgvjAAAAAAAAAAAAAABX4zvGAQAAAAAAAAAAAACuxsI4AAAAAAAAAAAAAMDVWBgHAAAAAAAAAAAAALgaC+MAAAAAAAAAAAAAAFdjYRwAAAAAAAAAAAAA4GosjAMAAAAAAAAAAAAAXI2FcQAAAAAAAAAAAACAq7EwDgAAAAAAAAAAAABwNRbGAQAAAAAAAAAAAACuxsI4AAAAAAAAAAAAAMDVWBgHAAAAAAAAAAAAALgaC+MAAAAAAAAAAAAAAFdjYRwAAAAAAAAAAAAA4GosjAMAAAAAAAAAAAAAXI2FcQAALDRu3Dh17do13mEAAAAAAOAazLUBAEBtsDAOAICFWrVqpfPOO8/w8/Ly8vTcc8+ZEJF9ZGdny+PxhDz69esXcszJkyf1u9/9Ti1btlTjxo3Vp08fbdiwIeSYt956S3369FGzZs3UrFkz/fjHP9bWrVtDjikvL9ef/vQnnXfeeWrYsKHOP/9819cvAAAAALgVc+3qxWqufabS0lJ16NBBl112WZV9b775pjp37qzk5GRlZ2friSeeiPEZAQBQdyyMAwBgofvvv1+vvPKK4ee98soreuihh0yIyF4eeOAB7dq1K/hYsGBByP4777xTr7/+uubOnat169apTZs2GjhwoPLy8oLHbNq0SXfeeac++OADvfnmmyorK9PAgQNVWFgYPOa+++7To48+qqlTp2rDhg0aPXq07rrrLr366quWnSsAAAAAIDaYa0cWi7n2mebOnasvvviiSv7KlSt14403atiwYdq8ebMeeOABTZgwQf/3f/9nynkBAGBUUrwDAAAA1ikvLw++Q9yOLrjgAmVnZ4fdt23bNr3wwgvasGGDvv/970sKTMbPP/98zZ49W1OnTpUUmPCf6YUXXlBmZqY2bNig/v37q6CgQE8//bRefvllDRkyRJJ08cUX6+jRo5o6dapuuukm804QAAAAAOA69WGuXeHw4cN64IEHNGjQIB04cCBk38SJE3XHHXfo7rvvliRdeOGF+vLLL/XHP/5Rd955Z+xPDAAAg/jEOAAAFho/fnzILcsefPBBXXbZZdq4caN+8IMfKCUlRRdffLHefffd4DHZ2dn6zW9+oz179lSZaBcWFmr06NE6++yzlZKSoquvvlpffvllcP+qVavk8Xj08ccfq1evXmrQoIE+++yziDFWPGfHjh266aab1LRpU2VnZ+uxxx6rcuzmzZuVm5urs846S8nJyerataveeOON4P7i4mJlZ2frqaeeqlX9nHPOOdXuW7RokTp27BicqEtSw4YN9ZOf/ETLly+v9nllZWUhZX/++ecqLS1V7969Q4679tpr9cknn+jgwYO1ihUAAAAAYA/MtSOL5Vz73nvv1eDBg9WzZ8+Q/G+++UYffvihhg0bFpJ/0003ae/evTXWDwAAVmBhHACAOMvPz9eoUaM0adIk/fvf/9b555+v66+/XgUFBZKkf//73/r973+vVq1aBW97JgW+0+uaa67R+++/r7/97W96//33lZSUpB//+MfBxeAK99xzj+6++25t2LBBmZmZtYrrV7/6la688kqtXr1at912m+69914tW7YsuH/jxo3q3bu30tLStHjxYn3wwQfq16+ffvrTn+q1116TJCUlJalNmzb63ve+V6vfeeONNyotLU2dOnXSo48+GnIeW7du1cUXX1zlOTk5OdqxY0eV/FOnTunjjz/WrbfequHDhysnJ0eS1KZNG0mqMik/cuSIJGnPnj21ihUAAAAAYF/MtU+L1Vz7n//8p5YuXarp06dXOX7r1q2SpE6dOoXkd+zYUZLCztsBALAat1IHACDO9u/fryVLluiSSy6RJD333HPKzMzU22+/rWHDhql169ZKT09XUlJSyK3P5s+fr40bN2rbtm3KysqSJL388stq06aNXn/9dd14443BY6+55prgbcNr6+c//7nuuOMOSYFbjb/55pv6+9//rkGDBkkKfE/3D3/4Q/3tb38LPqdbt246evSoJkyYoBtuuEGNGjXSBx98UKvf97e//U2NGzfWiRMntGrVKk2dOlVffvml/t//+3+SpEOHDum8886r8rz09HT5fL6QvIyMDB08eFB+v18jRozQk08+GdzXunVrDRo0SGPHjtWLL76oiy++WJs3b9bEiRMlSSdPnqx9JQEAAAAAbIm5dkCs5tp79+7ViBEjtGDBAp111llVjj906JBSUlLUuHHjkPzk5GSlpKRUmbcDABAPfGIcAIA4a926dXCiLgUmn23atNHevXsjPu/tt9/WgAEDghN1SWratKkuu+wyffzxxyHHXn311Ybj+vGPfxySvvTSS4MxlZSU6P3339fw4cOrPG/o0KH64osvlJeXZ+j39e7dW507d1avXr00YcIEzZo1S88995z2798vKfCu/YSEqn+6hPsetw8++EAfffSRXnnlFX3++efq3LlzyC3SX3zxRZ1//vnq0qWLGjRooNzcXI0dO1aS1KRJE0NxAwAAAADsh7l2QCzm2iUlJbrxxhs1cuRIXXnllWF/T3XlVC4LAIB4YmEcAIA4S09Pr5LXpEkTnThxIuLzDh06pCVLlig5OTnk8cEHHwQnuBUifZ9YbeM6M6aCggKVlZUFb0t+porbx1XcmryuBg8erPLycv33v/+VJKWlpYV9h/nRo0er3D6uYtH7pptu0vLly5WUlKRHHnkkuP/ss8/WwoULVVRUpF27dmnv3r06//zz5fF4dO6550YVNwAAAAAg/phrh1eXufbw4cOVkpKiqVOnVltuWlqajh07ptLS0pD8U6dO6dixY7W+7TsAAGbiVuoAADjUWWedpdzc3JAF3wperzckXd27tuvK6/XK4/Fo3759VfYdOHBAUmDxORoVtzRv1KiRJKlDhw5asWJFleO2bdtW5TvMztSgQQP16NFD27dvr7KvcePGwU8BvPfee7r00kvVtGnTqOIGAAAAADgXc+2Airn2nj179PLLL0sKfLd5ZR6PR88//7x69uyp8vJyff7558rJyQnu3759u/x+vy666KKo4gYAIBb4xDgAAA7QoEGDKu9q79Onj/773/+qXbt2uvDCC0MeFe8kN0uTJk3Us2dPzZkzp8q++fPnq3PnzlFP1hcsWKDGjRurc+fOkqRBgwZpw4YN2rFjR/CYU6dO6fXXX9fgwYMlSX6/v0o5ZWVl2rBhgzp06FDt78rPz9czzzyjESNGRBUzAAAAAMA5mGvXPNfOzMzUpk2bqjzuuOMOdejQQZs2bdJ1112nCy+8UFlZWVqwYEHI73v11VfVtWtXtWrVKqq4AQCIBRbGAQBwgA4dOujAgQP6xz/+oQ8//FCSdNttt6m0tFTXXnut3nvvPX366adatGiRcnNzw94GLdYeffRRLV++XMOGDdN//vMfrV+/Xvfff7/mzZunJ554QlLgnegDBgyoMjGu7O2339a4ceP0wQcf6OOPP9Yjjzyi3/3ud/r9738ffEd+//791adPH914443617/+pf/+97+65ZZb1LBhw+D3r+3Zs0dXXHGFFi5cqE8//VSrVq3SDTfcoP379+uee+4J/r6//e1vevvtt/XZZ59p0aJF6tevn3JycjRy5EiTagsAAAAAYDfMtWueazds2FCXXXZZlUdGRoYaN26syy67LHh7+D/84Q969NFH9ec//1mfffaZ/vKXv+jxxx8P++l7AADigVupAwDgAAMGDNDw4cN12223KT09XXv27FFaWpref/993XvvvfrpT38qv9+v9u3ba/jw4ZbcDrxPnz5atWqVHnjgAf3oRz+Sx+NRz549tWLFCvXq1UtS4F3mn332mb755puIZbVt21br1q3TCy+8oJKSEnXs2FH/93//p1tvvTXkuIULF2rcuHHKzc2V3+/XoEGD9N577yk5OVlS4JZy5513nsaPH6+DBw+qVatWGjBggDZv3qyWLVsGy/H5fLrvvvtUUFCgVq1aaejQoZo4cWLY28IBAAAAANyJuXZATXPt2rr99tt17NgxTZ8+XWPGjFHHjh01f/58DRgwwFA5AACYxeMPd89RAAAAAAAAAAAAAABcglupAwBQz/zoRz9ScnJy2MeLL74Y7/AAAAAAAHAc5toAANgfnxgHAKCe+eqrr3Ts2LGw+zIzM4PfMwYAAAAAAGqHuTYAAPbHwjgAAAAAAAAAAAAAwNW4lToAAAAAAAAAAAAAwNVYGAcAAAAAAAAAAAAAuBoL4wAAAAAAAAAAAAAAV0uKdwBOU15erv3796tp06byeDzxDgcAAAAAYAN+v1/ffvutWrZsqYQE3oNuFHNtAAAAAEBlsZ5rszBu0P79+9WmTZt4hwEAAAAAsKG9e/eqdevW8Q7DcZhrAwAAAACqE6u5NgvjBjVt2lRS4AKkpaXFORoAAAAAgB0UFhaqTZs2wTkjjGGuDQAAAACoLNZzbRbGDaq4pVtaWhqTdQAAAABACG4DXjfMtQEAAAAA1YnVXJuFcacrK5M++CCw/cMfBn5GSicmWhsfUFe0bcAdnNCXidH98QEAUFuVx7SKMctoPiILV29G6tisY42Wgdgx85ragVvam9X91M7nYaRss9qsXcYst/RTAEC94PH7/f54B+EkhYWF8nq98vl89ngXe3Gx1KRJYLuoKPAzUjo11dr4gLqibQPu4IS+TIzujw8ALGC7uaLD2Kb+Ko9pFWOW0XxEFq7ejNSxWccaLQOxY+Y1tQO3tDer+6mdz8NI2Wa1WbuMWW7ppwAAW4r1XDEhBjEBAAAAAAAAAAAAAGBbLIwDAAAAAAAAAAAAAFyNhXEAAAAAAAAAAAAAgKuxMA4AAAAAAAAAAAAAcDUWxgEAAAAAAAAAAAAArsbCOAAAAAAAAAAAAADA1ZLiHQCi1KCB9Oijp7elmtOAE9C2AXdwQl8mxujZPT4AAGor3JhWl3xEFq7ejNSxWccaLQOxY+Y1tQO3tDer+6lZzIzNyjZrlzHLLf0UAFAvePx+vz/eQThJYWGhvF6vfD6f0tLS4h0OAAAAAMAGmCtGh/oDAAAAAFQW67kit1IHAAAAAAAAAAAAALgat1J3urIyaePGwHbnzior9+uTN1fqyLGTatitm7q3S1fi5k3B/UpMjF+sgBGV2rakyGnaNmBPTujLxOj++AAAqK3KY9p3Y1bZqdLQuXb7s5WY4Kn2eNQgXL1VV5dWHmu0DMSOmdfUDtzS3qzup3Y+DyNlm9VmY/H6Fgtu6acAgHqBW6kbZLvbuxUXS02aSJKWr92hP769TSsfzJUkdfzNP5ThbRRMq6hISk2NV6SAMWe0bRUVBX5GStO2AXtyQl8mRvfHBwAWsN1c0WFsU3+Vx7TUVC3dmqcZr20ImWufdfZZmpybo6vapTHG1UWYeg6bZ/WxRstA7Jh5Te3ALe3N6n5q5/MwUrZZbTYWr2+x4JZ+CgCwJW6ljmqNW7BZB3wnQvK+qZQGAAAAAAC1s3Rrnka9tLHKXPuAr0SjXtqo5Z8ciFNkAAAAAACjWBh3kXAf/T8zr6ycmwMAAAAAAFAbZeV+TVn8acS59h/f3mZlSAAAAACAKLAwXo+s33043iEAAAAAAOAI63cfVp6vpNr9fqnKJ8kBAAAAAPbFwng9cqiICTsAAAAAALXBHBoAAAAA3IWF8Xrk7CaN4h0CAAAAAACOwBwaAAAAANyFhXEX8dSwv2t2uiVxAAAAAADgdF2z05XpTa52ru2RlOFl8RwAAAAAnCIp3gEgSg0aSJMna8fBb1WamChJerL3LyRJpYmJ8nyXvvaSTLVv1DCOgQIGfde2g9tSzWkA9uOEvkyM0bN7fAAA1NYZY1pio4aanJujUS9tVFliYpW5tiT97rqLJT9jnGHh/nYIl2f1sUbLQOyYeU3twC3tzep+ahYzY7Oyzcbi9S0W3NJPAQD1gsfv9/vjHYSTFBYWyuv1yufzKS0tLd7hhFi6NU9TFn+qPF9JMC/Tm6zJuTm6qlNmHCMDAAAAAHez81zRCexcf8y1AQAAACA+Yj1X5BPjLnJVp0wNzMnQul2HdfDbErVomqzu7dKVmFDTTdYBAAAAAEA4zLUBAAAAwB1YGHe68nJp27bAdseOSpTUq+SA1EBSu46S/NInnwb3K4GvlYdDVGrbkiKnaduAPTmhLxOj++MDAKC2Ko9p341ZifKHzrUrFsWrOR41CFdv1dWllccaLQOxY+Y1tQO3tDer+6mdz8NI2Wa12Vi8vsWCW/opAKBe4FbqBtnu9m7FxVKTJoHtoqLAz0jp1FRr4wPqirYNuIMT+jIxuj8+ALCA7eaKDmOb+qs8plWMWUbzEVm4ejNSx2Yda7QMxI6Z19QO3NLerO6ndj4PI2Wb1WbtMma5pZ8CAGwp1nNF3pIFAAAAAAAAAAAAAHA1FsYBAAAAAAAAAAAAAK7GwjgAAAAAAAAAAAAAwNVYGAcAAAAAAAAAAAAAuBoL4wAAAAAAAAAAAAAAV2NhHAAAAAAAAAAAAADgaknxDgBRatBAuvfe09tSzWnACWjbgDs4oS8TY/TsHh8AALUVbkyrSz4iC1dvRurYrGONloHYMfOa2oFb2pvV/dQsZsZmZZu1y5jlln4KAKgXPH6/3x/vIJyksLBQXq9XPp9PaWlp8Q4HAAAAAGADzBWjQ/0BAAAAACqL9VyRW6kDAAAAAAAAAAAAAFyNW6k7XXm59NVXge22bQM/I6UTeC8EHIK2DbiDE/oyMbo/PgAAaqvymFYxZhnNR2Th6s1IHZt1rNEyEDtmXlM7cEt7s7qf2vk8jJRtVpu1y5jlln4KAKgXuJW6Qba7vVtxsdSkSWC7qCjwM1I6NdXa+IC6om0D7uCEvkyM7o8PACxgu7miw9im/iqPaRVjltF8RBau3ozUsVnHGi0DsWPmNbUDt7Q3q/upnc/DSNlmtVm7jFlu6acAAFviVuoAAAAAAAAAAAAAABjAwjgAAAAAAAAAAAAAwNVYGAcAAAAAAAAAAAAAuBoL4wAAAAAAAAAAAAAAV2NhHAAAAAAAAAAAAADgaiyMAwAAAAAAAAAAAABcLSmev9zv9+vFF1/U7NmztWbNmir7i4uLlZ2drXvuuUe/+93vgvlPPvmknnnmGR0/flzdu3fXc889p+9973uSpIKCAt15551au3atPB6Pxo4dq3vuuSf43HfffVf33HOPjhw5ohYtWujPf/6zOnfubP7JmiUpSRo9+vS2VHMacALaNuAOTujLxBg9u8cHAJAkvf322xo1alRI3vHjx3Xs2DF9++232rRpk0aNGqW8vDylpqbqqaee0sCBA4PHRjMXd4xwY1pd8hFZuHozUsdmHWu0DMSOmdfUDtzS3qzup2YxMzYr26xdxiy39FMAQL3g8fv9/nj84qVLl+q+++7T8ePHlZSUpO3bt1c55tFHH9XEiRP10EMPBRfGX331VU2fPl3vvvuuvF6v7rrrLh08eFCvvfaaJOmaa65Rjx499Ic//EF5eXn6wQ9+oFmzZik3N1e7d+9Wz5499c477+iSSy7Ryy+/rPvvv187duxQcnJyreIuLCyU1+uVz+dTWlpa7CoEAAAAAOBYTp0r3nnnnWrevLl++9vfqmPHjnrhhRc0YMAAvf/++xo8eLC2b9+ujIyMqObiteHU+gMAAAAAmCfWc8W4LYy/9tpraty4sVJSUnTnnXdWWRjfv3+/+vfvr06dOqlbt27BhfEf/OAH+u1vf6vBgwdLkvLz85WZmalvvvlG+fn56tOnj/bv36+k795x9vjjj+uDDz7Q66+/rokTJ+r48eN64okngr/nkksu0bRp04Ll1YTJOgAAAACgMifOFXfu3KlevXrp888/1yuvvKK3335br7/+enD/ddddpyuvvFLjxo2Lai5eG06sPwAAAACAuWI9V4zbd4zfcMMNuuaaa6rdP378eE2cOFFNmzYN5pWWlmr9+vXq3bt3MK958+bKzs7Wli1btGbNGnXv3j04EZekHj16aPPmzZKkNWvWhDy38v5wTpw4ocLCwpCHrfj90qFDgYffX3MacAraNuAOTujLxOj++AAAYU2fPl2//vWv5fV6I86Xo52Lh2PbuXZ1Y5bRfEQWrt6M1LFZxxotA7Fj5jW1A7e0N6v7qZ3Pw0jZZrVZu4xZbumnAIB6wZZf5PHyyy+roKBAt9xyi1auXBnMz8/PV1lZmZo3bx5yfIsWLVRQUKC8vDydc845YfdJqnF/OI888oimTJkS7SmZ59gxqUWLwHZRUeBnpHRqqrXxAXVF2wbcwQl9mRjdHx8AoIpDhw7plVde0RdffCEpMF++4oorQo5p0aKF1q5dG/VcPBzbzrUrj2kVY5bRfEQWrt6M1LFZxxotA7Fj5jW1A7e0N6v7qZ3Pw0jZZrVZu4xZbumnAIB6IW6fGK/Orl27NGnSJL3wwgvyeDwh+0pLSyVJle/+XlZWJo/Ho9LS0mr3VTw/0v5wJkyYIJ/PF3zs3bu3zucGAAAAAIAdvPjii7r++uvV4rt/TkeaL0c7Fw+HuTYAAAAAwGq2Whg/fvy4fvrTn2rGjBlq06ZNlf3NmjWT3+/XkSNHQvIPHTqkjIwMpaenKz8/P+w+STXuD6dRo0ZKS0sLeQAAAAAA4GTPP/+8hg4dGkxHmi9HOxcPh7k2AAAAAMBqtloYf++997R9+3aNHDlSZ511ls466yy9/PLLmjJligYOHKjU1FRdcMEFWr16dfA5eXl5+uabb3TppZeqS5cuWrt2rcrLy4P7V69erV69ekmSunTpEvLcyvsBAAAAAHC7zZs3a//+/erfv38wL9J8Odq5OAAAAAAAdmCrhfFrr71Wx48f19GjR4OPX/7yl5o8ebKWL18uSRo5cqSmTJmio0eP6uTJk5owYYJGjBihlJQUde/eXZmZmZoxY4bKy8u1c+dOPfvssxozZowkafjw4Zo7d662bNkiv9+vv/zlL2rcuLH69u0bz9MGAAAAAMAyS5cu1eWXX66kpKRg3tChQ/Xee+9pxYoVkqQlS5Zo27ZtGjJkiKTo5uIAAAAAANhBUs2H2Mu4ceO0b98+dejQQUlJSRo8eLCmT58uSfJ4PFq4cKFuv/12Pf7442rWrJlmzpypLl26SJK6du2qxx9/XNdee61KSkr0/e9/X//85z8jfu8ZAAAAAABusnbtWnXu3Dkkr3Xr1lqwYIFGjx6tw4cPq3379lq8eLFSU1MlRTcXBwAAAADADuK+MN6vXz9t37692v0vvPBCSDohIUEzZ87UzJkzwx5/7rnnatWqVdWWd/PNN+vmm2+uS6gAAAAAADje66+/HjZ/0KBB1c7Po52LAwAAAAAQb3FfGEeUkpKkX/3q9LZUcxpwAto24A5O6MvEGD27xwcAQG2FG9Pqko/IwtWbkTo261ijZSB2zLymduCW9mZ1PzWLmbFZ2WbtMma5pZ8CAOoFj9/v98c7CCcpLCyU1+uVz+dTWlpavMMBAAAAANgAc8XoUH8AAAAAgMpiPVdMiEFMAAAAAAAAAAAAAADYFvcrcTq/Xzp2LLCdkhL4GSnt8VgbH1BXtG3AHZzQl4nR/fEBAFBblce0ijHLaD4iC1dvRurYrGONloHYMfOa2oFb2pvV/dTO52GkbLParF3GLLf0UwBAvcDCuNMdOyY1aRLYLioK/IyUTk21Nj6grmjbgDs4oS8To/vjAwCgtiqPaRVjltF8RBau3ozUsVnHGi0DsWPmNbUDt7Q3q/upnc/DSNlmtVm7jFlu6acAgHqBW6kDAAAAAAAAAAAAAFyNhXEAAAAAAAAAAAAAgKuxMA4AAAAAAAAAAAAAcDUWxgEAAAAAAAAAAAAArsbCOAAAAAAAAAAAAADA1VgYBwAAAAAAAAAAAAC4WlK8A0CUEhOlG288vS3VnAacgLYNuIMT+jIxRs/u8QEAUFvhxrS65COycPVmpI7NOtZoGYgdM6+pHbilvVndT81iZmxWtlm7jFlu6acAgHrB4/f7/fEOwkkKCwvl9Xrl8/mUlpYW73AAAAAAADbAXDE61B8AAAAAoLJYzxW5lToAAAAAAAAAAAAAwNVYGAcAAAAAAAAAAAAAuBoL405XXCx5PIFHcXHNacApaNuAOzihLxOj++MDAKC2qhuzjOYjsnD1ZqSOzTrWaBmIHTOvqR24pb1Z3U/tfB5GyjarzdplzHJLPwUA1AssjAMAAAAAAAAAAAAAXI2FcQAAAAAAAAAAAACAq7EwDgAAAAAAAAAAAABwNRbGAQAAAAAAAAAAAACuxsI4AAAAAAAAAAAAAMDVWBgHAAAAAAAAAAAAALhaUrwDQJQSE6Vrrjm9LdWcBpyAtg24gxP6MjFGz+7xAQBQW+HGtLrkI7Jw9Wakjs061mgZiB0zr6kduKW9Wd1PzWJmbFa2WbuMWW7ppwCAesHj9/v98Q7CSQoLC+X1euXz+ZSWlhbvcAAAAAAANsBcMTrUHwAAAACgsljPFbmVOgAAAAAAAAAAAADA1VgYBwAAAAAAAAAAAAC4GgvjTldcLKWmBh7FxTWnAaegbQPu4IS+TIzujw8AgNqqbswymo/IwtWbkTo261ijZSB2zLymduCW9mZ1P7XzeRgp26w2a5cxyy39FABQLyTFOwDEwLFjxtKAU9C2AXdwQl8mxujZPT4AAGqrujHLaD4iC1dvRurYrGONloHYMfOa2oFb2pvV/dQsZsZmZZu1y5jlln4KAHA9PjEOAAAAAAAAAAAAAHA1FsYBAAAAAAAAAAAAAK7GwjgAAAAAAAAAAAAAwNVYGAcAAAAAAAAAAAAAuBoL4wAAAAAAAAAAAAAAV0uKdwCIUkKC1Lfv6W2p5jTgBLRtwB2c0JeJMXp2jw8AgNoKN6bVJR+Rhas3I3Vs1rFGy0DsmHlN7cAt7c3qfmoWM2Ozss3aZcxySz8FANQLHr/f7493EE5SWFgor9crn8+ntLS0eIcDAAAAALAB5orRof4AAAAAAJXFeq7I27IAAAAAAAAAAAAAAK7GwjgAAAAAAAAAAAAAwNVYGHe64mLp7LMDj+LimtOAU9C2AXdwQl8mRvfHBwBAbVU3ZhnNR2Th6s1IHZt1rNEyEDtmXlM7cEt7s7qf2vk8jJRtVpu1y5jlln4KAKgXkuIdAGIgP99YGnAK2jbgDk7oy8QYPbvHBwBAbVU3ZhnNR2Th6s1IHZt1rNEyEDtmXlM7cEt7s7qfmsXM2Kxss3YZs9zSTwEArscnxgEAAAAAAAAAAAAArhbXhXG/36958+apV69ewbxTp05p6tSpuvjii9WmTRv98Ic/1ObNm0OeN3/+fHXs2FGtW7dW//79tWvXruC+48ePa+TIkcrKylLr1q11//33y+/3B/dv2rRJPXv2VFZWlnJycrR8+XLTzxMAAAAAALtYt26dLr/8cmVlZally5ZauHChpJrny08++aTat2+vVq1a6frrr1dBQUFwX0FBgYYMGaK2bdsqKytLjz32mKXnBAAAAABATeK2ML506VJdcsklmjp1qo4cORLM//zzz1VaWqoPP/xQe/fu1bBhw5Sbm6tTp05JktasWaOJEydq2bJl+vrrrzVw4EANGTIk+Px77rlH5eXl+vLLL/XJJ59o5cqVeuaZZyRJ3377rXJzc/XQQw9pz549mj17toYMGaIDBw5Ye/IAAAAAAMTB9u3b9ZOf/ER/+MMftGfPHu3evVt9+vSpcb786quvat68eVq3bp2++uorZWRkaOTIkcFyb775ZnXq1El79uzRmjVrNGvWLC1evDhepwkAAAAAQBVxWxgvLi7WjBkz9Nxzz4XkX3TRRZo6dapSU1MlSXfccYeKi4v1xRdfSJJmzZql8ePHq23btpKk+++/X7t27dLHH3+soqIizZ07V48++qiSkpLk9Xo1YcIEzZkzR1Lgk+bdunXTgAEDJEl9+/bV5ZdfrldeecWq0wYAAAAAIG4mTZqkMWPGBOfFDRs2VIsWLWqcLz/55JOaPHmy0tPTlZiYqGnTpmnRokU6fPiwPv/8c61fv16TJk2Sx+NRy5YtNXbs2OBcHAAAAAAAO0iK1y++4YYbJEmrVq2KeNyxY8d07Ngxeb1eSYFPjN99993B/UlJSercubM2b96so0ePql27dkpPTw/u79Gjh7Zu3aqysjKtWbNGvXv3Dim/R48eVW7VfqYTJ07oxIkTwXRhYWFtTxEAAAAAANsoKSnRm2++qf/93/+tsi/SfLm0tFTr168P2d+8eXNlZ2dry5Yt2r17t7p3766kpKSQ586aNavaWJhrAwAAAACsFreF8dqaNGmS+vXrp1atWkmS8vLydM4554Qc06JFCxUUFKhRo0Zh95WWlsrn8ykvL09XXHFFlf1r166t9vc/8sgjmjJlSozOxgQJCVLXrqe3pZrTgBPQtgF3cEJfJsbo2T0+AICkwFeXNW7cWCtXrtQjjzyioqIiDRw4UH/6058izpfz8/NVVlam5s2bV9lfUFAQcZ5eHdvOtcONaXXJR2Th6s1IHZt1rNEyEDtmXlM7cEt7s7qfmsXM2Kxss3YZs9zSTwEA9YLH7/f74xnAqlWrdOedd2r79u0h+cXFxRo9erS2bNmiZcuW6eyzz5YU+IT4zp07g7dSl6Sf//zn6tGjh84++2zNmTNHK1asCO4rKSlR48aNdfjwYQ0ZMkS33HKLbrnlluD+//u//9Pbb7+tN954I2x84d7F3qZNG/l8PqWlpcWkDgAAAAAAzlZYWCiv12vrueJ//vMfDRo0SHfccYcefvhhnTp1Sr/61a/k9Xq1d+/eaufL//u//6usrCyVlpbK4/EE9/fs2VO//e1v9cknn2jnzp0ht07fvn27evToIZ/PFzYW5toAAAAAgJrEeq5ty7dlffnll+rWrZsaNGigf//738FFcUlKT09Xfn5+yPGHDh1SRkZGtfuSk5Pl9XojPrc6jRo1UlpaWsgDAAAAAACnad68uU6dOqXp06crOTlZTZs21YMPPqhFixZFnC83a9ZMfr9fR44cCbufuTYAAAAAwAlstzB+9OhRXXHFFfrNb36j5557TikpKSH7u3TpotWrVwfTJ0+e1IYNG9SzZ0917txZn332WchkffXq1erRo4cSEhKqPLdif69evcw9KQAAAAAA4iwrK0sNGzZUSUlJMC8hIUHJyckR58upqam64IILQvbn5eXpm2++0aWXXqouXbpo7dq1Ki8vr/JcAAAAAADswnYL43//+9914YUXasSIEWH3jxw5Uo899pi+/vprlZWVadq0aerfv7/atWunjIwMXXXVVZo4caJKS0uVn5+vhx9+WOPHj5ckDR06VO+9917wVutLlizRtm3bNGTIEKtOL/aOHZOyswOPY8dqTgNOQdsG3MEJfZkY3R8fAECSlJycrFtuuUX33HOPSktLdeLECU2ePFnDhg2rcb48cuRITZkyRUePHtXJkyc1YcIEjRgxQikpKerevbsyMzM1Y8YMlZeXa+fOnXr22Wc1ZsyYeJ5u3VQ3ZhnNR2Th6s1IHZt1rNEyEDtmXlM7cEt7s7qfmsXM2Kxss3YZs9zSTwEA9UJSvAOo7IsvvtCaNWuUnZ0dkj9p0iSNGDFC119/vXbs2KHu3burvLxc/fr1C/kes7/+9a8aPny4MjMzlZqaqnvvvVc/+clPJEmtW7fWggULNHr0aB0+fFjt27fX4sWLlZqaauEZxpjfL+3Zc3pbqjkNOAFtG3AHJ/RlYoye3eMDAATNmDFDo0aNUqtWrdS0aVPdcMMNmjZtmho2bBhxvjxu3Djt27dPHTp0UFJSkgYPHqzp06dLkjwejxYuXKjbb79djz/+uJo1a6aZM2eqS5cu8TzVugk3ptUlH5GFqzcjdWzWsUbLQOyYeU3twC3tzep+ahYzY7OyzdplzHJLPwUA1AtxXxjv16+ftm/fHkw/+uijevTRRyM+57777tN9990Xdl/z5s31xhtvVPvcQYMGhfw+AAAAAADqiyZNmujFF18Muy/SfDkhIUEzZ87UzJkzw+4/99xztWrVqliFCQAAAABAzNnuVuoAAAAAAAAAAAAAAMQSC+MAAAAAAAAAAAAAAFdjYRwAAAAAAAAAAAAA4GosjAMAAAAAAAAAAAAAXC0p3gEgSh6PlJNzeluqOQ04AW0bcAcn9GVijJ7d4wMAoLbCjWl1yUdk4erNSB2bdazRMhA7Zl5TO3BLe7O6n5rFzNisbLN2GbPc0k8BAPWCx+/3++MdhJMUFhbK6/XK5/MpLS0t3uEAAAAAAGyAuWJ0qD8AAAAAQGWxnityK3UAAAAAAAAAAAAAgKuxMA4AAAAAAAAAAAAAcDUWxp3u2DHpoosCj2PHak4DTkHbBtzBCX2ZGN0fHwAAtVXdmGU0H5GFqzcjdWzWsUbLQOyYeU3twC3tzep+aufzMFK2WW3WLmOWW/opAKBeSIp3AIiS3y99+unpbanmNOAEtG3AHZzQl4kxenaPDwCA2go3ptUlH5GFqzcjdWzWsUbLQOyYeU3twC3tzep+ahYzY7OyzdplzHJLPwUA1At8YhwAAAAAAAAAAAAA4GosjAMAAAAAAAAAAAAAXI2FcQAAAAAAAAAAAACAq7EwDgAAAAAAAAAAAABwNRbGAQAAAAAAAAAAAACulhTvABAlj0fKyjq9LdWcBpyAtg24gxP6MjFGz+7xAQBQW+HGtLrkI7Jw9Wakjs061mgZiB0zr6kduKW9Wd1PzWJmbFa2WbuMWW7ppwCAesHj9/v98Q7CSQoLC+X1euXz+ZSWlhbvcAAAAAAANsBcMTrUHwAAAACgsljPFbmVOgAAAAAAAAAAAADA1VgYBwAAAAAAAAAAAAC4GgvjTnf8uNStW+Bx/HjNacApaNuAOzihLxOj++MDAKC2qhuzjOYjsnD1ZqSOzTrWaBmIHTOvqR24pb1Z3U/tfB5GyjarzdplzHJLPwUA1At8x7hBtvves+JiqUmTwHZRUeBnpHRqqrXxAXVF2wbcwQl9mRjdHx8AWMB2c0WHsU39VR7TKsYso/mILFy9Galjs441WgZix8xragduaW9W91M7n4eRss1qs3YZs9zSTwEAtsR3jAMAAAAAAAAAAAAAYAAL4wAAAAAAAAAAAAAAV2NhHAAAAAAAAAAAAADgaiyMAwAAAAAAAAAAAABcjYVxAAAAAAAAAAAAAICrJcU7AMRA8+bG0oBT0LYBd3BCXybG6Nk9PgAAaqu6MctoPiILV29G6tisY42Wgdgx85ragVvam9X91CxmxmZlm7XLmOWWfgoAcD2P3+/3xzsIJyksLJTX65XP51NaWlq8wwEAAAAA2ABzxehQfwAAAACAymI9V+RW6gAAAAAAAAAAAAAAV2NhHAAAAAAAAAAAAADgaiyMO93x41K/foHH8eM1pwGnoG0D7uCEvkyM7o8PAIDaqm7MMpqPyMLVm5E6NutYo2Ugdsy8pnbglvZmdT81i5mxWdlm7TJmuaWfAgDqBb5j3CDbfe9ZcbHUpElgu6go8DNSOjXV2viAuqJtA+7ghL5MjO6PDwAsYLu5osPYpv4qj2kVY5bRfEQWrt6M1LFZxxotA7Fj5jW1A7e0N6v7qZ3Pw0jZZrVZu4xZbumnAABb4jvGAQAAAAAAAAAAAAAwgIVxAAAAAAAAAAAAAICrsTAOAAAAAAAAAAAAAHA1FsYBAAAAAAAAAAAAAK7GwjgAAAAAAAAAAAAAwNWS4h0AYiAlxVgacAraNuAOTujLxBg9u8cHAEBtVTdmGc1HZOHqzUgdm3Ws0TIQO2ZeUztwS3uzup+axczYrGyzdhmz3NJPAQCu5/H7/f54B+EkhYWF8nq98vl8SktLi3c4AAAAAAAbYK4YHeoPAAAAAFBZrOeKcb2Vut/v17x589SrV6+Q/E2bNqlnz57KyspSTk6Oli9fHrL/ySefVPv27dWqVStdf/31KigoCO4rKCjQkCFD1LZtW2VlZemxxx4Lee67776rSy+9VG3btlXXrl21ceNG804QAAAAAAAbueuuu+T1epWdnR187NmzR5K5c3EAAAAAAOItbgvjS5cu1SWXXKKpU6fqyJEjwfxvv/1Wubm5euihh7Rnzx7Nnj1bQ4YM0YEDByRJr776qubNm6d169bpq6++UkZGhkaOHBl8/s0336xOnTppz549WrNmjWbNmqXFixdLknbv3q1hw4bpxRdf1FdffaW7775b1113nUpKSqw9eQAAAAAA4mT8+PHavXt38JGVlWXqXBwAAAAAADuI28J4cXGxZsyYoeeeey4kf/78+erWrZsGDBggSerbt68uv/xyvfLKK5IC71CfPHmy0tPTlZiYqGnTpmnRokU6fPiwPv/8c61fv16TJk2Sx+NRy5YtNXbsWM2ZM0eS9Oc//1m/+MUvdMkll0iSfvnLXyo9PV3Lli2z8MxjrKRE+vGPA4+SkprTgFPQtgF3cEJfJkb3xwcACHHWWWdVyTNzLu4o1Y1ZRvMRWbh6M1LHZh1rtAzEjpnX1A7c0t6s7qd2Pg8jZZvVZu0yZrmlnwIA6oWkeP3iG264QZK0atWqkPw1a9aod+/eIXk9evTQ5s2bVVpaqvXr14fsb968ubKzs7Vlyxbt3r1b3bt3V1JSUshzZ82aFSz717/+ddiyBw8eHDbOEydO6MSJE8F0YWGh8ZM1U1mZtGTJ6W2p5jTgBLRtwB2c0JeJMXp2jw8AECLcwriZc/FwbDvXDjem1SUfkYWrNyN1bNaxRstA7Jh5Te3ALe3N6n5qFjNjs7LN2mXMcks/BQDUC3H9jvFw8vLydM4554TktWjRQgUFBcrPz1dZWZmaN28edn+k59ZUdnUeeeQReb3e4KNNmzbRnB4AAAAAAHE1YcIEtW3bVv3799c777wjydy5eDjMtQEAAAAAVrPdwnhpaan8fn9IXllZmTwej0pLSyUp4v7q9tVUdnUmTJggn88XfOzdu7fO5wYAAAAAQDw9/fTTOnDggHbt2qX77rtPN910kzZs2GDqXDwc5toAAAAAAKvZbmE8PT1d+fn5IXmHDh1SRkaGmjVrJr/fryNHjoTdH+m5NZVdnUaNGiktLS3kAQAAAACAEyUkBP4NkJiYqGuuuUa/+MUv9M9//tPUuXg4zLUBAAAAAFaz3cJ4ly5dtHr16pC81atXq1evXkpNTdUFF1wQsj8vL0/ffPONLr30UnXp0kVr165VeXl5lefWVDYAAAAAAPVNaWmpGjZsaOpcHAAAAAAAO7DdwvjQoUP13nvvacWKFZKkJUuWaNu2bRoyZIgkaeTIkZoyZYqOHj2qkydPasKECRoxYoRSUlLUvXt3ZWZmasaMGSovL9fOnTv17LPPasyYMZKk4cOHa+7cudqyZYv8fr/+8pe/qHHjxurbt2/czhcAAAAAAKssW7YsuID9zjvv6LXXXtMNN9xg6lwcAAAAAAA7SIp3AJW1bt1aCxYs0OjRo3X48GG1b99eixcvVmpqqiRp3Lhx2rdvnzp06KCkpCQNHjxY06dPlyR5PB4tXLhQt99+ux5//HE1a9ZMM2fOVJcuXSRJXbt21eOPP65rr71WJSUl+v73v69//vOfEb/3DAAAAAAAt3jiiSd08803KyUlRW3bttXrr7+unJwcSTJtLg4AAAAAgB14/H6/P95BOElhYaG8Xq98Ph/fgQYAAAAAkMRcMVrUHwAAAACgsljPFW13K3UAAAAAAAAAAAAAAGKJhXEAAAAAAAAAAAAAgKuxMO50JSXSkCGBR0lJzWnAKWjbgDs4oS8To/vjAwCgtqobs4zmI7Jw9Wakjs061mgZiB0zr6kduKW9Wd1P7XweRso2q83aZcxySz8FANQLfMe4Qbb73rPiYqlJk8B2UVHgZ6R0aqq18QF1RdsG3MEJfZkY3R8fAFjAdnNFh7FN/VUe0yrGLKP5iCxcvRmpY7OONVoGYsfMa2oHbmlvVvdTO5+HkbLNarN2GbPc0k8BALbEd4wDAAAAAAAAAAAAAGAAC+MAAAAAAAAAAAAAAFdjYRwAAAAAAAAAAAAA4GosjAMAAAAAAAAAAAAAXI2FcQAAAAAAAAAAAACAq7EwDgAAAAAAAAAAAABwNY/f7/fHOwgnKSwslNfrlc/nU1paWrzDkfx+6dixwHZKSuBnpLTHY218QF3RtgF3cEJfJkb3xwcAFrDdXNFhbFN/lce0ijHLaD4iC1dvRurYrGONloHYMfOa2oFb2pvV/dTO52GkbLParF3GLLf0UwCALcV6rsjCuEG2mawDAAAAAGyDuWJ0qD8AAAAAQGWxnityK3UAAAAAAAAAAAAAgKuxMO50J05It94aeJw4UXMacAraNuAOTujLxOj++AAAqK3qxiyj+YgsXL0ZqWOzjjVaBmLHzGtqB25pb1b3U7OYGZuVbdYuY5Zb+ikAoF7gVuoG2e72bsXFUpMmge2iosDPSOnUVGvjA+qKtg24gxP6MjG6Pz4AsIDt5ooOY5v6qzymVYxZRvMRWbh6M1LHZh1rtAzEjpnX1A7c0t6s7qd2Pg8jZZvVZu0yZrmlnwIAbIlbqQMAAAAAAAAAAAAAYAAL4wAAAAAAAAAAAAAAV2NhHAAAAAAAAAAAAADgaiyMAwAAAAAAAAAAAABcjYVxAAAAAAAAAAAAAICrsTAOAAAAAAAAAAAAAHC1pHgHgCilpEgHD57elmpOA05A2wbcwQl9mRijZ/f4AACorXBjWl3yEVm4ejNSx2Yda7QMxI6Z19QO3NLerO6nZjEzNivbrF3GLLf0UwBAveDx+/3+eAfhJIWFhfJ6vfL5fEpLS4t3OAAAAAAAG2CuGB3qDwAAAABQWaznitxKHQAAAAAAAAAAAADgaiyMO92JE9Kvfx14nDhRcxpwCto24A5O6MvE6P74AACorerGLKP5iCxcvRmpY7OONVoGYsfMa2oHbmlvVvdTO5+HkbLNarN2GbPc0k8BAPUCt1I3yHa3dysulpo0CWwXFQV+RkqnplobH1BXtG3AHZzQl4nR/fEBgAVsN1d0GNvUX+UxrWLMMpqPyMLVm5E6NutYo2Ugdsy8pnbglvZmdT+183kYKdusNmuXMcst/RQAYEvcSh0AAAAAAAAAAAAAAANYGAcAAAAAAAAAAAAAuBoL4wAAAAAAAAAAAAAAV2NhHAAAAAAAAAAAAADgaiyMAwAAAAAAAAAAAABcjYVxAAAAAAAAAAAAAICrJcU7AESpcWNp167T21LNacAJaNuAOzihLxNj9OweHwAAtRVuTKtLPiILV29G6tisY42Wgdgx85ragVvam9X91CxmxmZlm7XLmOWWfgoAqBc8fr/fH+8gnKSwsFBer1c+n09paWnxDgcAAAAAYAPMFaND/QEAAAAAKov1XJFbqQMAAAAAAAAAAAAAXI2Fcac7eVK6777A4+TJmtOAU9C2AXdwQl8mRvfHBwBAbVU3ZhnNR2Th6s1IHZt1rNEyEDtmXlM7cEt7s7qf2vk8jJRtVpu1y5jlln4KAKgXuJW6Qba7vVtxsdSkSWC7qCjwM1I6NdXa+IC6om0D7uCEvkyM7o8PACxgu7miw9im/iqPaRVjltF8RBau3ozUsVnHGi0DsWPmNbUDt7Q3q/upnc/DSNlmtVm7jFlu6acAAFviVuoAAAAAAAAAAAAAABjAwjgAAAAAAAAAAAAAwNVYGAcAAAAAoB4aNWqULrzwwmB606ZN6tmzp7KyspSTk6Ply5eHHP/kk0+qffv2atWqla6//noVFBQE9xUUFGjIkCFq27atsrKy9Nhjj1l2HgAAAAAA1IZtF8b37dun3NxctWrVSueee66mTZsW3MdkHQAAAACAutu7d6/mzZsXTH/77bfKzc3VQw89pD179mj27NkaMmSIDhw4IEl69dVXNW/ePK1bt05fffWVMjIyNHLkyODzb775ZnXq1El79uzRmjVrNGvWLC1evNjy8wIAAAAAoDq2XRi/5ZZblJOTo6+//lrr16/Xa6+9phdeeIHJOgAAAAAAUfrNb36j2267LZieP3++unXrpgEDBkiS+vbtq8svv1yvvPKKpMAb0CdPnqz09HQlJiZq2rRpWrRokQ4fPqzPP/9c69ev16RJk+TxeNSyZUuNHTtWc+bMicu5AQAAAAAQjm0Xxjdt2qSbb75ZHo9H6enpuvbaa7V+/Xom6wAAAAAAROGtt95SQUGBbrzxxmDemjVr1Lt375DjevTooc2bN6u0tFTr168P2d+8eXNlZ2dry5YtWrNmjbp3766kpKQqz63OiRMnVFhYGPIAAAAAAMBMSTUfEh833nijnnnmGT399NPKy8vTG2+8oVmzZmnu3Ll1nqzv3r077GR91qxZ1cZx4sQJnThxIpi23WS9cWNp69bT21LNacAJaNuAOzihLxNj9OweHwAgqKCgQGPHjtVbb70VvPOaJOXl5emKK64IObZFixZau3at8vPzVVZWpubNm1fZX1BQoLy8PJ1zzjlh91XnkUce0ZQpU2JwRjEWbkyrSz4iC1dvRurYrGONloHYMfOa2oFb2pvV/dQsZsZmZZu1y5jlln4KAKgXbLsw/vDDD6tbt25q1qyZjh8/rrvuukv9+vXT9OnTmayfKSFBuuii0Lya0oAT0LYBd3BCXybG6Nk9PgCAJMnv92v48OEaP368LrzwwpCF8dLSUvn9/pDjy8rK5PF4VFpaGny+x+MJu7+651ZnwoQJuvvuu4PpwsJCtWnTJqrzi4lwY1pd8hFZuHozUsdmHWu0DMSOmdfUDtzS3qzup2YxMzYr26xdxiy39FMAQL1gy1upl5WV6ZprrtH48ePl8/m0b98+ffzxx3rqqadqPVmvbn9dJus+ny/42Lt3b4zOEgAAAAAA60yfPl2nTp3SXXfdVWVfenq68vPzQ/IOHTqkjIwMNWvWTH6/X0eOHAm7P9Jzq9OoUSOlpaWFPAAAAAAAMFNMPzHeo0cPrV27NupyVqxYoZMnT2r8+PGSpMzMTD3++OO67rrr1Lt371pN1tPT06vsz8vL07p168I+tzqNGjVSo0aNoj4n05w8Kf3xj4HtiRMDPyOlGza0Nj6grmjbgDs4oS8To/vjAwCXq+1c/Omnn1ZxcbGaNWsmKfAp8ePHj+uss87ShAkTtHr16pBPca9evVo/+9nPlJqaqgsuuECrV6/WtddeKylw6/VvvvlGl156qRISEjRlyhSVl5crISEh+NxevXqZcLYmqzymVYxZRvMRWbh6M1LHZh1rtAzEjpnX1A7c0t6s7qd2Pg8jZZvVZu0yZrmlnwIA6gWPv/JHqA04deqUGjRoEExnZmYqLy8v6qDeeust/eEPf9CGDRuCef/973915ZVX6t5779VHH32kf/zjH8F9V199tX72s5/p1ltvVceOHfWnP/0pZLJ+/vnn6+DBg9qyZYuuu+465eXlBSfrM2bM0LZt2/TCCy/UKrbCwkJ5vV75fD57vKO9uFhq0iSwXVQU+BkpnZpqbXxAXdG2AXdwQl8mRvfHBwAWsHKuGKu5+KpVq3TnnXdq+/bt+vrrr3XxxRfrtdde0xVXXKElS5Zo9OjR+uSTT5SamqonnnhCL7/8spYvX66UlBSNHDlSzZo10xNPPCG/36/vf//7+tnPfqbf/va32r17t/r376+FCxeqS5cutYrFNnPtymNaxZhlNB+Rhas3I3Vs1rFGy0DsmHlN7cAt7c3qfmrn8zBStllt1i5jllv6KQDAlmI9V6z1rdT79u1bJa9Vq1Yh6Ui3JDeiT58+OnDggObPny9JKioq0qRJk3TjjTdq6NCheu+997RixQpJ0pIlS7Rt2zYNGTJEkjRy5EhNmTJFR48e1cmTJzVhwgSNGDFCKSkp6t69uzIzMzVjxgyVl5dr586devbZZzVmzJiYxA0AAAAAQCxZNRdv3bq1FixYoNGjR6tFixZ66KGHtHjxYqV+9w/rcePGqW/fvurQoYOys7PVuHFjTZ8+Pfj7Fy5cqGXLlumcc87RVVddpZkzZ9Z6URwAAAAAACvU+lbq27Ztq5IXxYfNI/J6vVq2bJnuvvtuTZgwQQkJCRo8eLAefvhhpaSkBCfrhw8fVvv27atM1vft26cOHTooKSlJgwcPrjJZv/322/X444+rWbNmTNYBAAAAALZl5ly8X79+2r59ezA9aNCgkPSZEhISNHPmTM2cOTPs/nPPPVerVq2KSVwAAAAAAJghqu8Yj9UnxMPp1KmT3nnnnbD7mKwDAAAAAOorM+fiAAAAAAC4VVQL436/XwsXLgxunzhxIiZBAQAAAACA8JiLA6gvysr9Svxue+3OAnW9KCWYBgAAAIyKamFckp5//vng9vHjx6MtDgAAAAAA1IC5OAC3W7o1TzNe26CV36Vvff4jnXX2F5p6ZbYGxjUyAAAAOFXUt1JfvHhxMJ2ZmRl1QAAAAAAAoHrMxQG43dKteRr10kYlnwy9I8YBX4nGLdisT+MUFwAAAJwt6k+Mn4nvOYuD5GRp3brT21LNacAJaNuAOzihLxNj9OweHwC4HHPxGAo3ptUlH5GFqzcjdWzWsUbLQOycUcdlDRtpyuJP5Zd0IqmBrrvlcem7bb+kkqQGGnbH0xre51wl7ytW9/YpSkzw2Ps6uaW9Wd1PzWJmbLF4HTLjPGLx+4zEwbgJALApj9/v99fmwAYNGujiiy8Opv1+vz755BOdPHkymNeyZUvt378/9lHaSGFhobxer3w+n9LS0uIdDgAAAADABsyaK9aXuThzbQAV1nxZoF/85cNaH5/pTdbk3Bxd1Ym7ZwAAALhNrOeKtf7E+Icf1v4PUgAAAAAAED3m4gDqm4Pflhg6/oCvRKNe2qjZwzqzOA4AAICIar0w3qVLlxqPqeWHzxFLJ09KTz0V2B43LvAzUrphQ2vjA+qKtg24gxP6MjG6Pz4AcDDm4harPKZVjFlG8xFZuHozUsdmHWu0DMTOGXV8zrXDgtkNyk7ptvWLJEnPd71OpxIbhM3zSHr49Y/1oyUvKsHjsd91ckt7s7qf2vk8jJRt1hhilzHLynMGACBKtb6Vem2sWbNGvXr1ilVxtmS727sVF0tNmgS2i4oCPyOlU1OtjQ+oK9o24A5O6MvE6P74AMAC8ZwrumEubpu5duUxrWLMMpqPyMLVm5E6NutYo2Ugds6o47LCb9XnmbU64CtR8skSbXviRklSx9/8Q8cbJqtxmDxJIfm2u05uaW9W91M7n4eRss0aQ+wyZll5zgCAeifWc8WEGMQUVDERLygoiGWxAAAAAACgGszFAbhJYoJHk3NzJEmeOMcCAAAAd6nVrdT79+8vjyfyn6LXXXedxo8fL0m6+OKLtX///qiDAwAAAACgvmIuDqC+uqpTpmYP66wZr22IdygAAABwkVotjD/wwAM1HtO6devgNt9vBgAAAABAdJiLA6jPruqUqYFZ/aQHA+lmqQ1Ucir8sR5JGd5GFkUGAAAAp6rVwviVV15pqNCa3tEOAAAAAAAiYy4OoL5LTDj9ujYl9yKNXLi9yu3VK9ITr+4YXEQHAAAAwqnVwrgk/etf/wqb37FjR5199tkxCwgAAAAAAAQwFweAgIEXZWh2SkqV26tneJM1OTdHA9ulxSkyAAAAOEWtF8YnT54sSdq2bZtatmwpr9er3bt36+GHH9Yvf/lL0wIEAAAAAKC+Yi4OAKdVvr36C7d1U9eL2gQ+WV5cHM/QAAAA4AC1XhhfuXKlJOkXv/iFRo0apcsvv1y///3vTQsMtZScLH13bZScHPhZUxpwAto24A5O6MvEGD27xwcADsZc3GLhxrS65COycPVmpI7NOtZoGYgdA9cjMaVxMK9HTiup4nbrdr5ObmlvVvdTs5gZWyxeh8w4j1j8PiNxMG4CAGzK4/f7/UaeUHky3rFjxyrvUm/ZsqX2798f00DtorCwUF6vVz6fT2lp3KIJAAAAAGD+XNHtc3Hm2gAAAACAymI9V6z1J8Yj2bt3r2655RZ5PB75/X4dPnw4FsUCAAAAAIBqMBcHAAAAAKD2ar0w/q9//UuSdOjQIW3evFmS9NVXX6ljx45q3ry5HnjgAVMCRA1OnZL+/OfA9siRgZ+R0g0aWBsfUFe0bcAdnNCXidH98QGAgzEXt1jlMa1izDKaj8jC1ZuROjbrWKNlIHbMvKZ24Jb2ZnU/tfN5GCnbrDZrlzHLLf0UAFAv1PpW6v379w+b/8ADD+jKK6+MaVB2ZrvbuxUXS02aBLaLigI/I6VTU62ND6gr2jbgDk7oy8To/vgAwAJmzRXry1zcNnPtymNaxZhlNB+Rhas3I3Vs1rFGy0DsmHlN7cAt7c3qfmrn8zBStllt1i5jllv6KQDAluJ2K/WVK1dG/csAAAAAAEDtMRcHAAAAACA2EuIdAAAAAAAAAAAAAAAAZmJhHAAAAAAAAAAAAADgaiyMAwAAAAAAAAAAAABcjYVxAAAAAAAAAAAAAICrsTAOAAAAAAAAAAAAAHC1pHgHgCg1aiS9+ebpbanmNOAEtG3AHZzQl4kxenaPDwCA2go3ptUlH5GFqzcjdWzWsUbLQOyYeU3twC3tzep+ahYzY7OyzdplzHJLPwUA1Asev9/vj3cQTlJYWCiv1yufz6e0tLR4hwMAAAAAsAHmitGh/gAAAAAAlcV6rsit1AEAAAAAAAAAAAAArsat1J3u1Cnpb38LbA8dGvgZKd2ggbXxAXVF2wbcwQl9mRjdHx8AALVVeUyrGLOM5iOycPVmpI7NOtZoGYgdM6+pHbilvVndT+18HkbKNqvN2mXMcks/BQDUC9xK3SDb3d6tuFhq0iSwXVQU+BkpnZpqbXxAXdG2AXdwQl8mRvfHBwAWsN1c0WFsU3+Vx7SKMctoPiILV29G6tisY42Wgdgx85ragVvam9X91M7nYaRss9qsXcYst/RTAIAtcSt1AAAAAAAAAAAAAAAMYGEcAAAAAAAAAAAAAOBqLIwDAAAAAAAAAAAAAFyNhXEAAAAAAAAAAAAAgKuxMA4AAAAAAAAAAAAAcDUWxgEAAAAAAAAAAAAArpYU7wAQpUaNpFdfPb0t1ZwGnIC2DbiDE/oyMUbP7vEBAFBb4ca0uuQjsnD1ZqSOzTrWaBmIHTOvqR24pb1Z3U/NYmZsVrZZu4xZbumnAIB6weP3+/3xDsJJCgsL5fV65fP5lJaWFu9wAAAAAAA2wFwxOtQfAAAAAKCyWM8VuZU6AAAAAAAAAAAAAMDVbL0wvm7dOl1++eXKyspSy5YttXDhQknSpk2b1LNnT2VlZSknJ0fLly8Ped6TTz6p9u3bq1WrVrr++utVUFAQ3FdQUKAhQ4aobdu2ysrK0mOPPWbpOcVcaan0978HHqWlNacBp6BtA+7ghL5MjO6PDwAQ9Oijj6pDhw5q27atLr74Yi1atCi4j7m2qh+zjOYjsnD1ZqSOzTrWaBmIHTOvqR24pb1Z3U/tfB5GyjarzdplzHJLPwUA1Au2vZX69u3bdcUVV2jevHkaMGCATp48qaNHj6px48bq2LGjXnjhBQ0YMEDvv/++Bg8erO3btysjI0Ovvvqqpk+frnfffVder1d33XWXDh48qNdee02SdM0116hHjx76wx/+oLy8PP3gBz/QrFmzlJubW6u4bHd7t+JiqUmTwHZRUeBnpHRqqrXxAXVF2wbcwQl9mRjdHx8AWMB2c8VqvP/++/rBD36gBg0a6F//+pcGDRqkr7/+Wg0bNmSuLVUd0yrGLKP5iCxcvRmpY7OONVoGYsfMa2oHbmlvVvdTO5+HkbLNarN2GbPc0k8BALZUb26lPmnSJI0ZM0YDBgyQJDVs2FAtWrTQ/Pnz1a1bt2B+3759dfnll+uVV16RFHgH++TJk5Wenq7ExERNmzZNixYt0uHDh/X5559r/fr1mjRpkjwej1q2bKmxY8dqzpw5cTtPAAAAAACs0rdvXzVo0ECSdPnllyslJUWHDh1irg0AAAAAcD1bLoyXlJTozTff1G233VZl35o1a9S7d++QvB49emjz5s0qLS3V+vXrQ/Y3b95c2dnZ2rJli9asWaPu3bsrKSmpynOrc+LECRUWFoY8AAAAAABwspKSEj355JPq1q2bLrzwQubaAAAAAADXs+XC+Oeff67GjRtr5cqVuuSSS3TuuefqjjvuUGFhofLy8nTOOeeEHN+iRQsVFBQoPz9fZWVlat68edj9kZ5bnUceeURerzf4aNOmTexOFAAAAAAAC3355Zdq06aNUlJStGDBAj377LOSxFwbAAAAAOB6tlwY//bbb4PvSF+3bp0+/vhjHTp0SOPGjVNpaakqfy16WVmZPB6PSktLJSni/ur2VWfChAny+XzBx969e2N0lgAAAAAAWOu8887T3r17dezYMY0dO1a9evXSF198wVwbAAAAAOB6tlwYb968uU6dOqXp06crOTlZTZs21YMPPqhFixYpPT1d+fn5IccfOnRIGRkZatasmfx+v44cORJ2f6TnVqdRo0ZKS0sLeQAAAAAA4GTJycn65S9/qWuvvVZz585lrg0AAAAAcD1bLoxnZWWpYcOGKikpCeYlJCQoOTlZXbp00erVq0OOX716tXr16qXU1FRdcMEFIfvz8vL0zTff6NJLL1WXLl20du1alZeXV3kuAAAAAAD1TaNGjdS4cWPm2gAAAAAA10uKdwDhJCcn65ZbbtE999yjZ599VmVlZZo8ebKGDRumoUOHavr06VqxYoWuuOIKLVmyRNu2bdOQIUMkSSNHjtSUKVPUp08fpaSkaMKECRoxYoRSUlLUvXt3ZWZmasaMGfrtb3+r3bt369lnn9XChQvjfMZRaNhQev7509tSzWnACWjbgDs4oS8TY/TsHh8AQJK0b98+/etf/9KQIUOUlJSkf/3rX3r99df1/vvvKyUlhbm2FH5Mq0s+IgtXb0bq2KxjjZaB2DHzmtqBW9qb1f3ULGbGZmWbtcuY5ZZ+CgCoFzz+yl8EZhNFRUUaNWqU3nnnHTVt2lQ33HCDpk2bpoYNG2rZsmUaN26cDh8+rPbt2+v//b//p4svvliSVF5ervvvv1/z5s1TUlKSBg8erCeffFKNGjWSJO3cuVO33367PvnkEzVr1kwPP/xwcKJfG4WFhfJ6vfL5fNzqDQAAAAAgyRlzxfz8fP385z/Xf//7XzVt2lTZ2dl6+OGH1bNnT0lirg0AAAAAsJVYzxVtuzBuV0zWAQAAAACVMVeMDvUHAAAAAKgs1nNFW95KHQaUlkrLlgW2Bw0K/IyUTuKSwyFo24A7OKEvE6P74wMAoLYqj2kVY5bRfEQWrt6M1LFZxxotA7Fj5jW1A7e0N6v7qZ3Pw0jZZrVZu4xZbumnAIB6gU+MG2S7d7EXF0tNmgS2i4oCPyOlU1OtjQ+oK9o24A5O6MvE6P74AMACtpsrOoxt6q/ymFYxZhnNR2Th6s1IHZt1rNEyEDtmXlM7cEt7s7qf2vk8jJRtVpu1y5jlln4KALClWM8VE2IQEwAAAAAAAAAAAAAAtsXCOAAAAAAAAAAAAADA1VgYBwAAAAAAAAAAAAC4GgvjAAAAAAAAAAAAAABXY2EcAAAAAAAAAAAAAOBqLIwDAAAAAAAAAAAAAFwtKd4BIEoNG0rPPHN6W6o5DTgBbRtwByf0ZWKMnt3jAwCgtsKNaXXJR2Th6s1IHZt1rNEyEDtmXlM7cEt7s7qfmsXM2Kxss3YZs9zSTwEA9YLH7/f74x2EkxQWFsrr9crn8yktLS3e4QAAAAAAbIC5YnSoPwAAAABAZbGeK3IrdQAAAAAAAAAAAACAq3ErdacrK5M++CCw/cMfBn5GSicmWhsfUFe0bcAdnNCXidH98QEAUFuVx7SKMctoPiILV29G6tisY42Wgdgx85ragVvam9X91M7nYaRss9qsXcYst/RTAEC9wK3UDbLd7d2Ki6UmTQLbRUWBn5HSqanWxgfUFW0bcAcn9GVidH98AGAB280VHcY29Vd5TKsYs4zmI7Jw9Wakjs061mgZiB0zr6kduKW9Wd1P7XweRso2q83aZcxySz8FANgSt1IHAAAAAAAAAAAAAMAAFsYBAAAAAAAAAAAAAK7GwjgAAAAAAAAAAAAAwNVYGAcAAAAAAAAAAAAAuBoL4wAAAAAAAAAAAAAAV2NhHAAAAAAAAAAAAADgaknxDgBRatBAevTR09tSzWnACWjbgDs4oS8TY/TsHh8AALUVbkyrSz4iC1dvRurYrGONloHYMfOa2oFb2pvV/dQsZsZmZZu1y5jlln4KAKgXPH6/3x/vIJyksLBQXq9XPp9PaWlp8Q4HAAAAAGADzBWjQ/0BAAAAACqL9VyRW6kDAAAAAAAAAAAAAFyNW6k7XVmZtHFjYLtz58DPSOnERGvjA+qKtg24gxP6MjG6Pz4AAGqr8phWMWYZzUdk4erNSB2bdazRMhA7Zl5TO3BLe7O6n9r5PIyUbVabtcuY5ZZ+CgCoF7iVukG2u71bcbHUpElgu6go8DNSOjXV2viAuqJtA+7ghL5MjO6PDwAsYLu5osPYpv4qj2kVY5bRfEQWrt6M1LFZxxotA7Fj5jW1A7e0N6v7qZ3Pw0jZZrVZu4xZbumnAABb4lbqAAAAAAAAAAAAAAAYwMI4AAAAAAAAAAAAAMDVWBgHAAAAAAAAAAAAALgaC+MAAAAAAAAAAAAAAFdjYRwAAAAAAAAAAAAA4GosjAMAAAAAAAAAAAAAXC0p3gEgSg0aSJMnn96Wak4DTkDbBtzBCX2ZGKNn9/gAAKitcGNaXfIRWbh6M1LHZh1rtAzEjpnX1A7c0t6s7qdmMTM2K9usXcYst/RTAEC94PH7/f54B+EkhYWF8nq98vl8SktLi3c4AAAAAAAbYK4YHeoPAAAAAFBZrOeK3EodAAAAAAAAAAAAAOBq3Erd6crLpW3bAtsdOwZ+Rkon8F4IOARtG3AHJ/RlYnR/fAAA1FblMa1izDKaj8jC1ZuROjbrWKNlIHbMvKZ24Jb2ZnU/tfN5GCnbrDZrlzHLLf0UAFAvcCt1g2x3e7fiYqlJk8B2UVHgZ6R0aqq18QF1RdsG3MEJfZkY3R8fAFjAdnNFh7FN/VUe0yrGLKP5iCxcvRmpY7OONVoGYsfMa2oHbmlvVvdTO5+HkbLNarN2GbPc0k8BALbErdQBAAAAAAAAAAAAADCAhXEAAAAAAAAAAAAAgKuxMA4AAAAAAAAAAAAAcDUWxgEAAAAAAAAAAAAArmb7hfFRo0bpwgsvDKY3bdqknj17KisrSzk5OVq+fHnI8U8++aTat2+vVq1a6frrr1dBQUFwX0FBgYYMGaK2bdsqKytLjz32mGXnAQAAAABAvK1YsUK9e/dW+/btdd5552nWrFnBfbt379bAgQOVlZWl9u3b66WXXgp57vz589WxY0e1bt1a/fv3165du4L7jh8/rpEjRyorK0utW7fW/fffL7/fb9l5AQAAAABQE1svjO/du1fz5s0Lpr/99lvl5ubqoYce0p49ezR79mwNGTJEBw4ckCS9+uqrmjdvntatW6evvvpKGRkZGjlyZPD5N998szp16qQ9e/ZozZo1mjVrlhYvXmz5eQEAAAAAEA9vvPGG5syZox07dmj58uWaMWOGli5dqrKyMuXm5mro0KHas2ePFi1apLFjx2rz5s2SpDVr1mjixIlatmyZvv76aw0cOFBDhgwJlnvPPfeovLxcX375pT755BOtXLlSzzzzTJzOEgAAAACAqpLiHUAkv/nNb3Tbbbfp3XfflRR4d3q3bt00YMAASVLfvn11+eWX65VXXtG4ceP05JNPavLkyUpPT5ckTZs2TZmZmTp8+LDy8/O1fv16LVq0SB6PRy1bttTYsWM1Z84c5ebmxu0co9aggXTvvae3pZrTgBPQtgF3cEJfJsbo2T0+AEDQU089Fdw+99xzddNNN2nFihVKSEhQUlKSbr31VklSTk6Ohg0bprlz5+qyyy7TrFmzNH78eLVt21aSdP/99+uxxx7Txx9/rPPOO09z587V3r17lZSUJK/XqwkTJmjatGkaM2ZMPE6z7sKNaXXJR2Th6s1IHZt1rNEyEDtmXlM7cEt7s7qfmsXM2Kxss3YZs9zSTwEA9YLHb9N7m7311luaOXOmJk+erDvvvFPbt2/Xbbfdposuukj3Vgyekh5++GHt2LFDf/nLX5SSkqL9+/erefPmwf3nn3++nnvuOe3evVt///vf9eabbwb3/ec//9GwYcNCbv9W2YkTJ3TixIlgurCwUG3atJHP51NaWlqMzxoAAAAA4ESFhYXyer2OmyvefPPNuvDCC1VaWqpDhw6FfMr7b3/7m5577jmtXLlS7dq109///nd17do1uH/gwIEaNmyYsrOz9etf/1pbt24N7tu3b5+ys7NVUlKixMTEKr+XuTYAAAAAoCaxnmvb8lbqBQUFGjt2rGbPnh2Sn5eXp3POOSckr0WLFiooKFB+fr7KyspCFsXP3B/puZE88sgj8nq9wUebNm2iODMAAAAAAOxh3bp1evPNN/XLX/6yxjlzpP3V7SstLZXP5wv7u5lrAwAAAACsZruFcb/fr+HDh2v8+PG68MILQ/aVlpaq8gfcy8rK5PF4VFpaGnx+dfur2xfJhAkT5PP5go+9e/fW9dTMUV4u7d4deJSX15wGnKJS2y0rLdPG9zfpnSUfas0Xh1RWWkbbBpzACeMUMbo/PgBAFQsWLNB1112nuXPnql27djXOmWuaj4fbJ6naObdt59rVjVlG8xFZuHozUsdmHWu0DMSOmdfUDtzS3qzup2YxMzYr26xdxiy39FMAQL1gu+8Ynz59uk6dOqW77rqryr709HTl5+eH5B06dEgZGRlq1qyZ/H6/jhw5EvyO8TP35+Xlad26dWGfG0mjRo3UqFGjKM7IZMePS+3aBbaLigI/I6VTU62ND6irM9r28rU79Me3t2nlg7mSpI6/+YcyvI2Cado2YGNcK1vNAAEAAElEQVROGKeI0f3xAQCCysrKNGbMGK1cuVLLli3TpZdeKinyfPvM/RXfMX7mfq/XG/a5ycnJ8nq9YeOw7Vy78phWMWYZzUdk4erNSB2bdazRMhA7Zl5TO3BLe7O6n9r5PIyUbVabtcuY5ZZ+CgCoF2z3ifGnn35aH3zwgZo1a6azzjpL1157rb744gudddZZ6tKli1avXh1y/OrVq9WrVy+lpqbqggsuCNmfl5enb775Rpdeeqm6dOmitWvXqvyMd6JVPBeAvY1bsFkHfCdC8r6plAYAAABQs/Hjx2vnzp1av359cFFcUsT5drj9J0+e1IYNG9SzZ0917txZn332mY4cORLy3B49eighwXb/dgAAAAAA1FO2m6Hm5eWpsLBQR48e1dGjR/Xmm2/q/PPP19GjRzV06FC99957WrFihSRpyZIl2rZtm4YMGSJJGjlypKZMmaKjR4/q5MmTmjBhgkaMGKGUlBR1795dmZmZmjFjhsrLy7Vz5049++yzGjNmTDxPF0At+GvIKysPdwQAAACAM5WUlGj27Nl6/vnnlVrpE1q5ubnav3+/XnrpJUnS+vXr9cYbb+h//ud/JAXm24899pi+/vprlZWVadq0aerfv7/atWunjIwMXXXVVZo4caJKS0uVn5+vhx9+WOPHj7f6FAEAAAAAqJbtbqUeSevWrbVgwQKNHj1ahw8fVvv27bV48eLghH7cuHHat2+fOnTooKSkJA0ePFjTp0+XFPhes4ULF+r222/X448/rmbNmmnmzJnq0qVLPE8JQAys331YPS5uEu8wAAAAAFvbuXOnysvLq9w57YILLtCyZcu0ePFijRgxQnfffbcyMjL08ssvq3Xr1pKk66+/Xjt27FD37t1VXl6ufv36ac6cOcEy/vrXv2r48OHKzMxUamqq7r33Xv3kJz+x8vQAAAAAAIjI9gvj/fr10/bt24PpQYMGhaTPlJCQoJkzZ2rmzJlh95977rlatWqVGWECiKNDRdxWHQAAAKhJTk5OyNeLVdalSxdt3Lix2v333Xef7rvvvrD7mjdvrjfeeCPqGAEAAAAAMIvtbqUOAEad3aRRvEMAAAAAAAAAAACAjbEwDsD2PDXs75qdbkkcAAAAAAAAAAAAcCbb30odNUhKkkaPPr0t1ZwGnOC7tr2noFhlCYmSpHnf/7EkqSwhUR5JL37/x7q8Q3NlNWwQx0ABROSEcYoYo2f3+AAAqK1wY1pd8hFZuHozUsdmHWu0DMSOmdfUDtzS3qzup2YxMzYr26xdxiy39FMAQL3g8fv9/ngH4SSFhYXyer3y+XxKS0uLdzhAvbB0a56mLP5Ueb6SYF6mN1mTc3N0VafMOEYGAAAABDBXjA71BwAAAACoLNZzRd6WBcD2ruqUqYE5GVq367AOfluiFk2T1b1duhITarrJOgAAAAAAAAAAAMDCuPP5/VJ+fmC7efPAz0hpDwuJcIhKbTvRI/VKK5fSGkrNv/tO8UOHgvtp24BNOWGcIkb3xwcAQG1VHtMqxiyj+YgsXL0ZqWOzjjVaBmLHzGtqB25pb1b3Uzufh5GyzWqzdhmz3NJPAQD1ArdSN8h2t3crLpaaNAlsFxUFfkZKp6ZaGx9QV7RtwB2c0JeJ0f3xAYAFbDdXdBjb1F/lMa1izDKaj8jC1ZuROjbrWKNlIHbMvKZ24Jb2ZnU/tfN5GCnbrDZrlzHLLf0UAGBLsZ4rJsQgJgAAAAAAAAAAAAAAbIuFcQAAAAAAAAAAAACAq7EwDgAAAAAAAAAAAABwNRbGAQAAAAAAAAAAAACuxsI4AAAAAAAAAAAAAMDVWBgHAAAAAAAAAAAAALhaUrwDQJSSkqRf/er0tlRzGnAC2jbgDk7oy8QYPbvHBwBAbYUb0+qSj8jC1ZuROjbrWKNlIHbMvKZ24Jb2ZnU/NYuZsVnZZu0yZrmlnwIA6gWP3+/3xzsIJyksLJTX65XP51NaWlq8wwEAAAAA2ABzxehQfwAAAACAymI9V+RW6gAAAAAAAAAAAAAAV+N+JU7n90vHjgW2U1ICPyOlPR5r4wPqirYNuIMT+jIxuj8+AABqq/KYVjFmGc1HZOHqzUgdm3Ws0TIQO2ZeUztwS3uzup/a+TyMlG1Wm7XLmOWWfgoAqBdYGHe6Y8ekJk0C20VFgZ+R0qmp1sYH1BVtG3AHJ/RlYnR/fAAA1FblMa1izDKaj8jC1ZuROjbrWKNlIHbMvKZ24Jb2ZnU/tfN5GCnbrDZrlzHLLf0UAFAvcCt1AAAAAAAAAAAAAICrsTAOAAAAAAAAAAAAAHA1FsYBAAAAAABQr5SV+4Pba3cWhKQB1E+8LgAA4H4sjAMAAAAAAKDeWLo1TwMeXxVM3/r8R+ozY4WWbs2LX1AA4qq614XlnxyIX1AAACDmWBgHAAAAAABAvbB0a55GvbRRB3wnQvIP+Eo06qWNLIIB9VCk14VxCzbHJygAAGAKFsYBAAAAAADgemXlfk1Z/KnC3Ry5Iu+Pb2+zMiQAcVab1wUAAOAeSfEOAFFKTJRuvPH0tlRzGnAC2jbgDk7oy8QYPbvHBwBAbYUb0+qSj8jC1ZuROq7jsR/t9SnPVyJJKk9I0FsX9A5uS4FFsP3fnlLBVdfpe00a1vz7EDtmXX+7iMX52YEF/dSSczbwulD2XV7Pdt/T92oTm5Vt1i5jllv6KQCgXvD4/X7e/GZAYWGhvF6vfD6f0tLS4h0OAAAAAMAGmCtGh/qDFd7YvK9Wt0V+6ueXafBlrcwPCEDc8boAAIC9xXquyK3UAQAAAAAA4HotmibH9DgAzsfrAgAA9QsL4wAAAAAAAHC97u3SlelNlqea/R5Jmd5kdW+XbmVYAOKI1wUAAOoXFsadrrhY8ngCj+LimtOAU9C2AXdwQl8mRvfHBwBAbVU3ZhnNR2Th6s1IHVdzbNm3RcH8tVu+Ulm5P+TYxOPHNDk3R5KUcrJEu2dcq90zrlXjkyXBRbGpV2YrMTGhdrEhdmJw/W19nWJxfnZg1nWy+pwNvC40PlmiNRMHBF4XahOblW3WLmOWW/opAKBeYGEcAAAAAAAAjrZ0a54GPL4qmL71+Y/UZ8YKLf/kQMhxV3XK1OxhnXWOt1FIfoY3WbOHddbAizKsCBeQpMCbN76zdmdBSBrWifS68NTPL4tPUAAAwBRJ8Q4AAAAAAAAAqKulW/M06qWNSj55IiT/gK9E4xZs1qeVjr+qU6YGZvWTHgykX7itm7pe1EaJCXyCEdZZujVPM17boJXfpW99/iOddfYXmnpltgbGNbL6qdrXhePH4hkWAACIMT4xDgAAAAAAAEcqK/dryuJPFe5ztpE+e5uYcPobhXuc+72QNGC2ijdzHPCFfzMH4oPXBQAA3I+FcQAAAAAAADjS+t2HlecrqXY/N6aG3dT1zRwAAACIHgvjAAAAAAAAcKRDRSdqPgiwEd7MAQAAED8sjAMAAAAAAMCRzm7SKN4hAIbwZg4AAID4SYp3AIhSYqJ0zTWnt6Wa04AT0LYBd3BCXybG6Nk9PgAAaivcmFaXfEQWrt6M1PEZeV3PO1uZ3mQd8JWoPCFBK87tKkkqT0gI/vzPBd31g3Oby1PXa8p1Nl8sroedr9MZsTX3pgSzq2uzK87tqu+3PUvNbHweMb1OVl87M2Ozss3aZcxySz8FANQLHr/fzx16DCgsLJTX65XP51NaWlq8wwEAAAAA2ABzxehQf4jG0q15GvXSRkmht6H2fPdz9rDOuqpTpuVxAeGUlfvVZ8YKHfCVhL1tukdShjdZ//7tFUpM8IQ5AgAAoP6I9VyRW6kDAAAAAADAsa7qlKnZwzorw5sckp/hTWZRHLaTmODR5NwcSaffvFGhIj05N4dFcQAAABNwK3UAAAAAAAA42lWdMjUwJ0Prdh3WwW9L1KJpsrq3S2dxEbZU8WaOKYs/VZ6vJJif4U3W5Nwc3swBAABgEj4x7nTFxVJqauBRXFxzGnAK2jbgDk7oy8To/vgAAKit6sYso/mILFy9Ganjao5NPH5MvS5pq8G9O6hXRnJgUTwW15TrbL5YXA87X6cwsV3VKVP/vquHvnz6Ju14aoheGXqx/v3bK3RVuzRHnUe1+XbuY2bGZmWbtcuY5ZZ+CgCoF2y7ML5ixQr17t1b7du313nnnadZs2YF9+3evVsDBw5UVlaW2rdvr5deeinkufPnz1fHjh3VunVr9e/fX7t27QruO378uEaOHKmsrCy1bt1a999/vxz/NevHjgUetU0DTkHbBtzBCX2ZGKNn9/gAAEF+v1/z5s1Tr169QvI3bdqknj17KisrSzk5OVq+fHnI/ieffFLt27dXq1atdP3116ugoCC4r6CgQEOGDFHbtm2VlZWlxx57zJJzMUV1Y5bRfEQWrt6M1LFZxxotA7Fj5jW1gzCxJSZ4lHj8mJJKjqvHud87fYcDh51Htfl27mNmxmZlm7XLmOWWfgoAcD3bLoy/8cYbmjNnjnbs2KHly5drxowZWrp0qcrKypSbm6uhQ4dqz549WrRokcaOHavNmzdLktasWaOJEydq2bJl+vrrrzVw4EANGTIkWO4999yj8vJyffnll/rkk0+0cuVKPfPMM3E6SwAAAAAArLN06VJdcsklmjp1qo4cORLM//bbb5Wbm6uHHnpIe/bs0ezZszVkyBAdOHBAkvTqq69q3rx5Wrdunb766itlZGRo5MiRwefffPPN6tSpk/bs2aM1a9Zo1qxZWrx4seXnBwAAAABAdWy7MP7UU0/pggsukCSde+65uummm7RixQq99957SkpK0q233ipJysnJ0bBhwzR37lxJ0qxZszR+/Hi1bdtWknT//fdr165d+vjjj1VUVKS5c+fq0UcfVVJSkrxeryZMmKA5c+bE5RwBAAAAALBScXGxZsyYoeeeey4kf/78+erWrZsGDBggSerbt68uv/xyvfLKK5ICnxafPHmy0tPTlZiYqGnTpmnRokU6fPiwPv/8c61fv16TJk2Sx+NRy5YtNXbsWObaAAAAAABbse3CeGWHDh2S1+vVmjVr1Lt375B9PXr0CPnE+Jn7k5KS1LlzZ23evFkbNmxQu3btlJ6eHvLcrVu3qqysLOzvPXHihAoLC0MeAAAAAAA40Q033KBrrrmmSn6kuXZpaanWr18fsr958+bKzs7Wli1btGbNGnXv3l1JSUlVnlsd5toAAAAAAKs5YmF83bp1evPNN/XLX/5SeXl5Ouecc0L2t2jRIvjdZpH2V7evtLRUPp8v7O9+5JFH5PV6g482bdrE8MwAAAAAAIi/SHPp/Px8lZWVqXnz5mH31zRPD4e5NgAAAADAarZfGF+wYIGuu+46zZ07V+3atVNpaan8fn/IMWVlZfJ4PJIUcX91+yQFn1/ZhAkT5PP5go+9e/fG6tQAAAAAALCFmubSkgzPtaubZ0vMtQEAAAAA1kuq+ZD4KCsr05gxY7Ry5UotW7ZMl156qSQpPT1d+fn5IcceOnRIGRkZIfsrvmP8zP1erzfsc5OTk+X1esPG0ahRIzVq1CiWpxZbCQlS376nt6Wa04AT0LYBd3BCXybG6Nk9PgBAjSLNtZs1aya/368jR46EfDVZxf68vDytW7cu7HOrY9u5drgxrS75iCxcvRmpY7OONVoGYsfMa2oHbmlvVvdTs5gZm5Vt1i5jllv6KQCgXvD4K7+t2ybGjBmjL774Qq+99ppSU1OD+a+88or+9Kc/af369cG8UaNG6ZxzztGDDz6oq6++Wj/+8Y911113SZJOnjypFi1aaNOmTWrcuLGysrJ04MABNWvWLFje7NmztWrVqlrFVVhYKK/XK5/Pp7S0tNidMAAAAADAsZw2V1y1apXuvPNObd++XZI0Y8YMffTRR/rHP/4RPObqq6/Wz372M916663q2LGj/vSnP+naa6+VFLj1+vnnn6+DBw9qy5Ytuu6665SXl6eE7/7JPWPGDG3btk0vvPBCreJxWv0BAAAAAMwX67miLd+WVVJSotmzZ+v5558PWRSXpNzcXO3fv18vvfSSJGn9+vV644039D//8z+SpJEjR+qxxx7T119/rbKyMk2bNk39+/dXu3btlJGRoauuukoTJ05UaWmp8vPz9fDDD2v8+PFWnyIAAAAAALYxdOhQvffee1qxYoUkacmSJdq2bZuGDBkiKTDXnjJlio4ePaqTJ09qwoQJGjFihFJSUtS9e3dlZmZqxowZKi8v186dO/Xss89qzJgx8TwlAAAAAABC2PJW6jt37lR5ebl69eoVkn/BBRdo2bJlWrx4sUaMGKG7775bGRkZevnll9W6dWtJ0vXXX68dO3aoe/fuKi8vV79+/TRnzpxgGX/96181fPhwZWZmKjU1Vffee69+8pOfWHl6AAAAAADYSuvWrbVgwQKNHj1ahw8fVvv27bV48eLgm9XHjRunffv2qUOHDkpKStLgwYM1ffp0SZLH49HChQt1++236/HHH1ezZs00c+ZMdenSJZ6nBAAAAABACNveSt2ubHd7t+JiKTs7sL17d+BnpHSlT+ADtkXbBtzBCX2ZGKNn9/gAwAK2mys6jG3qr/KYVjFmGc1HZOHqzUgdm3Ws0TIQO2ZeUztwS3uzup+axczYrGyzdhmz3NJPAQC2FOu5oi0/MQ6D8vONpQGnoG0D7uCEvkyM0bN7fAAA1FZ1Y5bRfEQWrt6M1LFZxxotA7Fj5jW1A7e0N6v7qVnMjM3KNmuXMcst/RQA4Hq2/I5xAAAAAAAAAAAAAABihYVxAAAAAAAAAAAAAICrsTAOAAAAAAAAAAAAAHA1FsYBAAAAAAAAAAAAAK7GwjgAAAAAAAAAAAAAwNWS4h0AopSQIHXtenpbqjkNOAFtG3AHJ/RlYoye3eMDAKC2wo1pdclHZOHqzUgdm3Ws0TIQO2ZeUztwS3uzup+axczYrGyzdhmz3NJPAQD1gsfv9/vjHYSTFBYWyuv1yufzKS0tLd7hAAAAAABsgLlidKg/AAAAAEBlsZ4r8rYsAAAAAAAAAAAAAICrsTAOAAAAAAAAAAAAAHA1Fsad7tgxKTs78Dh2rOY04BS0bcAdnNCXidH98QEAUFvVjVlG8xFZuHozUsdmHWu0DMSOmdfUDtzS3qzup2YxMzYr26xdxiy39FMAQL2QFO8AECW/X9qz5/S2VHMacALaNuAOTujLxBg9u8cHAEBthRvT6pKPyMLVm5E6NutYo2Ugdsy8pnbglvZmdT81i5mxWdlm7TJmuaWfAgDqBT4xDgAAAAAAAAAAAABwNRbGAQAAAAAAAAAAAACuxsI4AACwTFn56Vulrd1ZEJIGAAAAAAAAAMAsfMc4AACwxPJPDuiPb2/Tyu/Stz7/kTK8jYJpAAAAAAAAAADMwsI4AACwxLgFm1X58+Hf+E7EJRYAAAAAAAAAQP3CwrjTeTxSTs7pbanmNOAEtG3AHTwe+XNytCu/WOXfddXPv9dWkuT3SP7v0kmJHmX5pcQ4xWj715tKMZaV+3Wi/QUqLfdr267D6pqdrsR4xuiEOgQAoDbCjWl1yUdk4erNSB2bdazRMhA7Zl5TO3BLe7O6n5rFzNisbLN2GbPc0k8BAPWCx+/38+WeBhQWFsrr9crn8yktLS3e4QAAYHtrvizQL/7yYY3HzR/RU73O+54FETnb0q15mrL4U+X5SoJ5md5kTc7N0VWdMuMYGQDUb8wVo0P9wS7Kyv1at+uwDn5bohZNk9W9XboSE1i8AeAcvI4BANwk1nNFPjEOAABMdfDbkpoPMnBcfbZ0a55GvbSxyi3pD/hKNOqljZo9rDOL4wAAAHXEGxABOB2vYwAARJYQ7wAAAIC7tWiaHNPj6quycr+mLP60yqK4pGDelMWfqqycmwEBAADnKSv3a82XBXpj8z6t+bLA8r9pKt6AeOZiknT6DYhLt+ZZGg8AGGWn17F4v6YDAFAdFsad7tgx6aKLAo9jx2pOA05B2wbc4dgx9bzucq14/tdqfKpEyadK9M5zo/XOc6OVfEZ6xfO/Vvdz4rQw7oTXm2PHdOKCjpr72O0h9XZmPS57brTmPna71n/6dVzis30dAgBQG9WNWUbzEVmlelu6NU9XTlui7/XorI4DfqDbnl2lPjNWBBZxwtWxketRi2PLioqDb0Cs/HdWRV6HK3vJz3U2T4yvqe2uUyzOzw7Muk5Wn7OZsVnZZg28jknS9Nc2Bl7HYl3P0b6mAwBgIW6l7nR+v/Tpp6e3pZrTgBPQtgF38Pvl+fRTnSvJ45c8kjoUfCWFSSteX3nmhNcbv18pOz5TBwXqTQqtxzPTb8bjlvROqEMAAGoj3JhWl3xEdka9Ld+ap1ELtyv5ZEnI3zcVn3D8808v1MDKdWzketTi2PW7CoKfsPT4q/6dJb907sE90kFxnc0S42tqu+sUi/OzA7Ouk9XnbGZsVrZZA69jfknf+ErkMaOeo31NBwDAQnxiHAAAWOKpn1+mc7yNQvIqpxG9s5tQpwAAwDn++Pa2iF8V88e3t5kew6GiE6b/DgAwk11ex+zwmg4AQCQsjAMAAEsMvChD797dL5h+4bZuIWnUTk0frO+anW5JHAAAALFwwFf9Yo6/hv2xwhsLATidXV7H7PCaDgBAJCyMAwAAyyQmnF7W7XHu90LSqL3KtXZmmjoFAAAwpmt2ujK9ydW+AZG/rgDYXW1exzK4YxsAACyMAwAAOAm3pAcAAIitxASPJufmSIr8BkQAsKvavI5NvLqjpTEBAGBHLIwDAAA4CLekBwAAbpLhbWSLTzhe1SlTs4d1rvKGwwxvsp76+WWWxAAA0Yj0OjZ7WGcNvCjD9Bjs8poOAEB1kuIdAKLk8UhZWae3pZrTgBPQtgF3cEJfdmCMiYmn0z3Oax7Ij2eMTqhDAABqI9yYVpd8RHZGvU24pqPueG275JG+TmshSfJ7Tn/CccI1HaXnK9WxgetR5pdOtWqj8nK/tuw6rK45KYGvnglz7FWdMjUwu79K/hI4/oXbu6trTmsllhznOpvNSB9zYn+MxfnZgVnXyepzNjM2K9uskdexBI907Jg59RztazoAABby+P1+f7yDcJLCwkJ5vV75fD6lpaXFOxwAAAAAgA0wV4wO9Ve/Ld2apymLP1WerySYl+lN1uTcHF3VKdN25QIIVVbu17pdh3Xw2xK1aJqs7u3SAwuxqJd47QUAxFKs54osjBvEZB0AAFjNaf9oclq8ABALzBWjQ/0h1n8/LN2ap1EvbVTlf3pVlDh7WGcWaIAYYBEU4TAnBADESqznitxKHQAAwMZq848mO/3TgX+MAQCAukhM8KjXed+LSVll5X5NWfxplUVxSfIrsDg+ZfGnGpiTwUINEIXq3oBywFeiUS9t5A0o9VgsX9MBAIilhHgHgCgdPy516xZ4HD9ecxpwCto24A5O6Ms2jrHiH02H8316Y+5v9Mbc36jRqRM6ku9T5sC+8nW6TO+s36krH3pbKX16Kfvq/rr12ffVZ8YKLd2aZ12g39WRr9NlGv/8mojx8poNALC16sZ9o/mILFy9GanjGo49fllnHc73SZIanToR8neJFFgcP5zv0/HLOkf3+xA7Mbz+trxOsTg/OzgjtrLiY8E3oFTuZxV5ba/qJ78dz9nM62Flm7XLmOWWfgoAqBf4xLjTlZdL69ef3pZqTgNOQNsG3MEJfblSjGXlfiV+l16745C6ZqcH01bGeOYnnRL8fl164Avpu21JgfQBafzLm+SvSH+33+pPaJSVlilx/Xp5JXl+5JenUjxnxrvmi4Pq3qktn84CANhTuL9d6pKPyMLVm4E6rvjbQ/ru77WL2gT+tvju2CaSEgYE/gYJ93dUxXaTLZtr9fu4zhYw0sec2B9jcX52cEZs63fmB+8SFa6fefx+5ez7XNon+52zmdfDyjZrlzHLLf0UAFAv8IlxAACA7yz/5IAGPL4qmL71+Y9C0lZat+twyO3Iq1PdLUKlwC1Cy8rDHRE7S7fmGaqj219Yb/0n2gEAgGOd+bfM2p0FWvLf/VX+XuNvC8B6h4pO1Ol5lfu02fMVAACAM7EwDgAATFPTPz3s9k+RcQs264Av9B883/jq9g+faB38tuZF8Uj8kvJ8JVq363BsAgqj4lbvleusJhWfaOcf2AAAIJLKb8C79fmPNPrlTVX+9qj422L5JweCeRneRqru/jSe7/bDXew2t3C7s5sY70Ph+nSfGStC+q4b0TYBALAPFsYBAIApwv3T48x0uE9nx/vTPpE+fS3J0n9gtGiaHJNyol1gr86Zt3o3yspPtAMAAPupzSKRkTfgVTz7j29vC+ZNvLqjJFVZHPdU2g93qG7BlTdimqdrdroyvckR34Bypur69AFficYt2GxGiLZA2wQAwF5YGAcAADFX3T89zvz0dbhPZ8fjk8RGFmZfWrPbsoXc7u0i/6OptmK1wF5ZbW/1Xh0rPtEOAADspzafGK3LG/D8UsjflgMvytDsYZ11TqVPhmd4kzV7WGcNvCijjmcAu4m04Frd3KKs3K81Xxbojc37tObLun2CNxZlRMtIDLGONzHBo8m5OZKqfwPKmb+7uj7t5rfJLv/kQMS26fZPygMAYEdJ8Q4AgHFl5X6t23VYB78tUYumyereLl2JCdUvnVQ+vktWM23Yc6TWzwcQG0b7bix+R039PdqYwv2+j3Yf1u9e21LjPz0i7f/da1vUNLmBep77PcN1VFMdnJnenV+s1//9mVbVsuzpSz/T7PUH9IvubZXdPDUm17G6a1Dxj6ZRL22M+I8mj8LXZeAWoYHyzBCrT6L/Z8ehuIxDdhsb7RYP7MGKccMOv9NJ8QCITsUCZvLJ8J8Y/fS79Prd0b0Br8JVnTI1MKuf9GAg/cJt3dT1ojaB15Hi4lqXU1buV+J322t3FqjrRSlKTPCEfY2SFPXrlpHXvli8Tpp1HlaoacHVI+nBRZ+oaXID5RedUIumyTpSfELT3toW0sYyvcmanJujgTkZtaqL5Z8e0JTFn4Yt46pOmWHjDNeGqjun2rS3SOdROYalW/OqjTfcOdc2toEXtdHsYZ0147UNIcdleJP1YP8LpCcC6ZfW7I7Yp6tbHK+ufUfbRxSD61Ebf3x7m/xh3upc0Tb/+Pb/Z+/O45uq8v+Pv9MWWlpoABFatrbCgCAuA7KNiqAw8nUGEBVnFNcvXxnFBVzni8sgLiP4VUdlfur3O4jrCK6ouMA4gtvAgICoKKKsIhSFAi2ttND2/v6oBJomadKkyTm5r+fj0Udv7j3J/XzuOecmJye5WaNhYT2SGeL9uozXgfVz4zFyY85AY3Frf3LlxPi+ffs0ceJELViwQFVVVbrgggs0ffp0eTyWVnibNpHdhtVCDWYCDb4ClU/xSId/MDjU/ROKto0kEmnfjdU+QvX3aGMKZ3+SVNQsO6LbkrRn3wGNnbk04mMUTkz+t5vt3x9RjNtLKvSXf37rux1NPdZXB8N75freaDo8hnbedO1vdWjC2+MX48FXNFNG9Gy0F7T+30RvSD1L0l8XrdcrK7fG9XnItOdG0+KBGeLxvGHCPm2KB/VLmrF2sHFGpOtRi/8E5uGvDQ6u253pVcvMJtpRWnviPNDriGCvLQ60OkJNUg+1udQUj6+O+h91RM2T7EFh1On81YWa/soKvfzz/i598hO1PPJbjTw+V298VljrHNUys4kkac9PB3zrYvF6tiGTndHsLxZ5NEgkfezndf4fovBvF45qXr+Pnbk05K63F5friudWqmVmk1p5BzoW/mUOf4wrn1upxy7sXes4BWtDU0b01PCC7Aa3t2B5+Mdw8AMp/pPPwXIO1d6C5fHP6wfrwMNHqNpx9NRlfVXkNNG0uSt04s9lp81fKzU9NH4I1qebp6fp4DUegrXvQMcikj7SMrOJMvaX660o6qPevtCmjQ5UOTXfFP8574Bts7iizjkrYnF6zgp5vvE7brGIgdeB9XPjMXJjzkBjcXN/8jiOk8xXrAlowoQJ2r9/vx5//HGVlZVp6NChuvjii3XNNdfUe9+SkhJ5vV4VFxcrOzvwIAxoLMEGMwdfPgcafAUq7y/Y/QHERqR9N5b78Hdwn+MHFej/PtzY4JjC3V+0IjlG8YrJX0PrMZJ2EeoTnIl6IVtV7ejk6Qu1vbg86DH3eKRwXmnG83nItOdG0+KBGeLxvGHCPm2KJxyMFRlrI7Ql64t0/t/+XW+52ZcPkKSwyh7u4NVyPv7jaTH7YGAsXl/G4vVsoMeIxXkykvxMPf++vmqrUb9P7d8OY1Gn0cQgSSdPXxjRFRiibW/R5DH78gEa2OWIiB8j2jgao4+F2zYf/v0JGnVChzCiTJx4vy6z8XVgvLnxGLkxZ6Cx2NafYj1WdN1vjJeWlurpp5/Wfffdp7S0NHm9Xk2ePFmzZs1KdGhASOH8HtPUeV/5fiMqkt9kC3R/ALERad+N9T6C7fNvH9WdFA83pob85mNDhXuM4hmTv4bUY6TtIjXFo4FdjtCoEzpoYJfal5cf3itXH//xNM2+fIAe/v0Jmn35AH38x9Ma/QVsfb8p6JE0/pQC33Io8XoeMu250bR4YIZ4PG+YsE+b4kF4GGujPuH+DMuPe8vVr6C1cr0Z9b6GOKgxrpYTq9eXsXg96/8YsThPRpqfqedf/6sYJZojqbC4XMs27opZnUYTw7KNkf8sQTTtraF5eFTz4d5+Ba0b9BjRxtEYfSzctmlaG/YX79dlvA6snxuPkRtzBhoL/cmFE+MrVqxQQUGBWrc+dPnR/v37a/Xq1aqqqqpTvqKiQiUlJbX+gESobzBz+MAnnPL13R9AbETadxtjH4H2Geq1TX0xNeTNFX8pnvonS8ONJ1YxRSPSeox1uwg1cd6YDl7qPcdb+82cHG+GHruwtyaf2TPg9kDi8Txk2nOjafHADPF43jBhnzbFg/Aw1kZ9IpkkCvUBvEAOvvaI5QcDY/n6MhavZyOZ7Gys188mnn8j/RBFvPy4tzymddrQGML9QEo0sUWbh/8HWxp6LGLxgYBY9rH62ubhHwYwWbxfl/E6sH5uPEZuzBloLPQnF06MFxYWql27drXWtW3bVpWVlSouLq5T/t5775XX6/X9derUKV6hhmffPmnw4Jq/ffvqvw1rRfLp+kjKN3Q/jY62jSQRad9tzH3E6nEj2V/6gQrNef6/Nef5/1b6gQpl/Hx70VtTa90+uL0h8UQaU30x1ne7oTFGVc7gc+LwXrn6+NqB+mzRn7X8n3frhYuO18fXDtTwq8+XBg/W8C4t9fG1A/XR21NjegwbwrTnRtPigRni8bxhwj5jsR/6glmSZqwd7Dk10vWo4/BJokCvrzIOVOjVF2/RgHHnSPv2+T6Al5fpqVU215uhx8/uUfu1x8Gr5QSqjwbW6S9+91tfbJG8HgwlFq9nI5nsbKzXz41y/o2kng5bl1pR7vsQRSRji8bWtkVGreMUrA2lH6jQL37320Zpb21bZET9bWT/9haLPPzX53gz9L/n9vCNH3bu2B3TmAOJVX0E3M/P7TP1tCGaOqxAUt22eXCyfOqwAqWeNqThzyFxeM4Kp78fPG5RnXsj2F8k5ZKRG4+RG3MGGgv9SUpLdADxVllZKf+fVT/46XWPp+5n+CZPnqzrr7/ed7ukpMScAbskVVdLH3xwaFmq/zasFOklmBo6+DHmEk60bSSJeFw+rbH6bbDHjWR/KY6jAVtW+5ZzvOk1t7dIM2Yerz+/s6bW9obEE2lM9cUoyXc71XHkHHY7mhijKmf4OTFVjrzLFkuS2uS3kuTUiidVUqcvPlEnxe4YNoRpz42mxQMzJOKym6Zd6tO0eBCepBlrB3rObch61HHwW+BXPrdSqX6vvzw//++98XNpo3zHcnivXA3La6HUKTVln7n0RJ14TCel7vtJOvy1x8Gr5QSqjwbWaRtJKYMcX4zhvh4MJRavZyM59zXW6+dGOf9GUk9+6w5+iGL6KytiUk/ROPj73v0KWtf6plWwNpTiOGqz4t81yzFqb4fHINV8K3l7cXmDLtPuX9exyOPw9bX69M912jaraQMiDR5zILGqj4D7Oqx9/rpHOz12YbM6bTPHm6EpI3rq1wXZ0T2HxOE5K9zjefC4NfjcG8H+IimXjNx4jNyYM9BY6E8u/MZ469attXPnzlrrduzYoYyMDHm93jrl09PTlZ2dXesPSIRIL8HUkN9ks+ESToBt4nH5tIb091BX2q4vpoZernDWJSfqn9cP9t0edkxOrdsNjSeamILtL9TtYPeJpB6T5bJ6DZHInE17bjQtHpghEecH085JpsWD8DDWRjgOTmC286bXWp/jzdDDvz8h4H0O/4mY/kfF7ydjJCnHmx6z15fRvp49/DFicZ5syOtnk8+/w3vl1hpbzLrkROVkx/cS6wf3dfCS4OHUU85hfSEW7c0/hkh/luDwx4mkvYWbh3/ZQH36xPyGje0iiTmc2OrLI9y+4N82n7qs76GrXFgg0vqPx/5MPQ/FixuPkRtzBhoL/cmFE+O9e/fW2rVrtXv3ocvyLF68WP3791dKiusOBywSajDjP/Cpr7y/QPcHEBuR9t1Y78Pfwe2Xn1IgTwNjasj+JGlg1zZ1HvPw2w2NJ9KY6nP4G7UP//6EOm/c+mtIPcajXZgsUTmb9txoWjwwQyLOD6adk0yLB+FhrI1wBZskGnZMTuKCCuKW/+ghKbrXl7F4PRvJZGdjvX624fx7eFwDu7bRHSPDz69lZpOwyx4sc/A+B/n/1n049XSwjR2+HM3R9Y9BOvSBlBxv7W9+Bcu5Ie0tnDwClQ2kIWO7aD8Q0JA8Ih3/HRTvD/hEK9L6j8f+TD4PxYMbj5EbcwYaC/3JhRPjOTk5Gj58uG655RZVVlZq586duueeezRp0qREhwbUK9hgJtDAJ1R5/3NasPsDiI1I+24s9xGsv08+s2dUMYW7v/omlQ/38O9PiOoYhRtT3WNyKManLusb8lvtVw/pqpzs2NRjPNqFiaKt52iZ9txoWjwwQyLOD6adk0yLB/VjrI1I2DJJNOyYnIDfcM/1ZugPgwqU63eOapXZpN7J0lAiOffF4jwZ7DGizcMUwfLL9Wbo0Qt6a/blA/Tw70/Q7MsHaMVtw/R4BMfi8Qt7a8Vtw2o9RqBvAYe6SsJjF/au9YGQSNtboDyCfRN5eK9cffzH08LKOVR7iyaPQGWDCVV3gY5FJH2kVWYTeYO070jysKkvRKu+802sP9jE68D6ufEYuTFnoLG4vT95HP8fAXOBnTt3aty4cVq8eLGysrJ044036uqrrw7rviUlJfJ6vSouLjbjUm9lZVLz5jXLpaU1/0PdzsqKb3xoFFXVjpZt3KUf95arbYuay1qEeiPBv3yfvFZasXl32PdPCNo2klCkfTcW+6ivv0cbU737a5uu1OwWNYXD6MtVzTKjPkb1xWRCjKHiDfh4pp8TI4wv1sewIUx7bjQtHpghHs8bJuzTpnhCMW6smABJMdb2f047+Jwa6XqEFui4RXKMG6tskPVVe0t9rxeXfr655jeRUzwBz1GSYv56NtRjxOI82Vh5RKQR6zTa4ynFoE6DtKFo21ss6iSi4xODPCKp02CxRV2nZWXR5xFMLM5D4Yrzc1bQ495IOdv0OjBR3HiM3Jgz0Fhs6U+xHiu6cmI8GsYM1g8y/Y1yoKFo20BysKEvE2PyxwcAcWDcWNEyxhw/Jsbjw7KJceo5DhqzTk2QLO0t3v3U5DwieewkmRiPKA4b+ykAwEixHiumxSAmJFpmZmS3AVvQtoHkYENfJsbomR4fAADhCvacFel6hBbouEVyjBurbKSPgdhpzDo1QbK0t3j308bSmLHFs82a8pyVLP0UAJD0+MZ4hIz5FDsAAAAAwBiMFaPD8QMAAAAA+Iv1WDElBjEBAAAAAAAAAAAAAGAsJsYBAAAAAAAAAAAAAEmNiXHblZdLv/lNzV95ef23AVvQtoHkYENfJsbkjw8AgHAFe86KdD1CC3TcIjnGjVU20sdA7DRmnZogWdpbvPupyXlE8tiN1WZNec5Kln4KAHAFfmM8Qsb97llZmdS8ec1yaWnN/1C3s7LiGx/QULRtIDnY0JeJMfnjA4A4MG6saBljjp//c9rB56xI1yO0QMctkmPcWGUjfQzETmPWqQmSpb3Fu5+anEckj91YbdaU56xk6acAACPxG+MAAAAAAAAAAAAAAESAiXEAAAAAAAAAAAAAQFJjYhwAAAAAAAAAAAAAkNSYGAcAAAAAAAAAAAAAJDUmxgEAAAAAAAAAAAAASS0t0QHYxnEcSVJJSUmCI/lZWdmhZf+YAt2uqmr8mIBYoG0DycGGvkyM0TM9PgCIg4NjxINjRkTGmLG2/3PaweesSNcjtEDHLZJj3FhlI30MxE5j1qkJkqW9xbufNpbGjC2ebdaU56xk6acAACPFeqztcRi1R+T7779Xp06dEh0GAAAAAMBAW7ZsUceOHRMdhnUYawMAAAAAgonVWJuJ8QhVV1dr27ZtatGihTweT6LDCaikpESdOnXSli1blJ2dnehwIOrEVNSLeagTM1EvZqJezEOdmIl6MU+y1onjONq7d6/at2+vlBR+tSxSjLXRmKg7u1F/9qLu7Eb92Yu6sxv1Zy/qrnHEeqzNpdQjlJKSYs2n/7Ozs+l8hqFOzES9mIc6MRP1YibqxTzUiZmoF/MkY514vd5Eh2AtxtqIB+rObtSfvag7u1F/9qLu7Eb92Yu6i71YjrX5GDsAAAAAAAAAAAAAIKkxMQ4AAAAAAAAAAAAASGpMjCeh9PR0TZkyRenp6YkOBT+jTsxEvZiHOjET9WIm6sU81ImZqBfzUCewFW3XXtSd3ag/e1F3dqP+7EXd2Y36sxd1ZweP4zhOooMAAAAAAAAAAAAAAKCx8I1xAAAAAAAAAAAAAEBSY2IcAAAAAAAAAAAAAJDUmBgHAAAAAAAAAAAAACQ1JsYBAAAAAAAAAAAAAEmNifEks2/fPo0fP155eXnq2LGjbr75ZjmOk+iwXGXhwoU66aST1LVrV3Xp0kUzZszwbevVq5fatWun/Px85efna+DAgQmM1D2uvvpqeb1e33HPz8/X5s2bJUmffvqpBgwYoLy8PPXs2VPvvvtugqN1j3feeadWneTn56tdu3Zq0aKFJKl58+bq0KGDb9uYMWMSHHHychxHzzzzTJ1zUn3946GHHlLXrl3VoUMHjR49WkVFRfEMO+kFqpcDBw7ozjvv1LHHHqtOnTrplFNO0apVq3zbly9frtTU1Fr96oEHHkhA9MkpWF+p73xFX2lcgepl3LhxdZ5jsrKydM0110iSXn75ZaWnp9fa/sILLyQqhaQT6vXwpk2bNGzYMOXl5alr16567rnnat139uzZ6tGjhzp27KghQ4Zo48aN8Q4fCIixtl2iOQ/BDFdeeaWOPvpo323G7nZYtmyZBg0apLy8PLVv316vvvqqJOrPBlu3btWIESPUoUMHHXXUUbrrrrt826g/8/A+jt0a8n6PxFjJBMH63kFlZWU68sgjNW3atFrr6XuGcZBUrrzySmfcuHHOgQMHnD179jgnnnii88gjjyQ6LFe59tprna+//tpxHMdZv36906FDB+edd95xHMdxjjnmGGfhwoWJDM+VrrrqKudPf/pTnfUlJSVOhw4dnHfffddxHMd5//33Ha/X6xQWFsY7RPzsD3/4g3Prrbc6juM4WVlZzoYNGxIcUfJ75513nF69ejldunRxunfv7ltfX/944YUXnF/+8pdOUVGRU1lZ6VxxxRXO2WefnZAcklGwelm9erVz++23O6WlpY7jOM7jjz/udOzY0dm/f7/jOI7zySefOJ07d05IzMkuWJ04TujzFX2lcYWql8Pt3bvXycnJ8b1Ge+mll5xBgwbFK0zXCfZ6uLKy0unVq5fz5JNPOo7jOF9++aXTqlUr59NPP3Ucx3EWL17s5OfnO5s3b3Ycx3Huuecep0+fPolIAaiDsbZdGnoeghm+++47JzMz0/fcztjdDmvWrHFyc3N99VRRUeH88MMP1J8lTjvtNOfmm292qqurnaKiIuf44493nnzySerPQLyPY7eGvt/DWCnxwnn/Yfr06U5qaqpz7733+tbR98zDxHgS2bt3r5OZmekUFRX51r3yyivOCSeckMCocN111zk33XST4zg1E+MrV65McETuc9VVVzkPPvhgnfX/+7//65x11lm11o0YMcJ56KGH4hUaDrN+/Xqnbdu2zp49exzHqZlo2rVrV4KjSn4vv/yy89ZbbzmLFi2q9aKuvv4xcOBA57XXXvNt27Fjh5OWllbrOQgNF6xeAmnVqpXz5ZdfOo5TMzF+3HHHxSNE1wlVJ6HOV/SVxhVuX7nzzjudyy67zHf7pZdeckaOHBmPEOEcej28YMGCOmOTa665xpk0aZLjOI5z/vnn13odduDAAad169bOqlWr4hov4I+xtv3CPQ/BDOecc45z1VVX+Z7bGbvb4eyzz3b+/Oc/11lP/dmhVatWzhdffOG7feuttzpXXXUV9Wcg3sexW0Pf72GslHj11d3WrVudbt26OWeffXatiXH6nnm4lHoSWbFihQoKCtS6dWvfuv79+2v16tWqqqpKYGTutmPHDnm9Xt/tli1bJi4YFwt03JcsWaKTTjqp1rr+/fvXuUwN4mPatGm66qqrfP0lJSWlVt9B4zjnnHN05pln1lkfqn9UVlZq+fLltba3adNG+fn5+uKLLxo9ZjcIVi/+fvrpJ/300088z8RBqDoJdr6irzS+cPpKaWmpZsyYodtvv73WevpK/Bx8PVzfay//7WlpaerduzevzZBwjLXtF+55CIn31ltvqaioSOeee65vHfVmvvLycr355pu67LLL6myj/uxw7rnn6q9//av279+vzZs36/XXX9e5555L/RmI93Hs1tD3exgrJV59dTdp0iTdcsstvp8JlXhfyFRMjCeRwsJCtWvXrta6tm3bqrKyUsXFxQmKyt2WLVumN998UxdccIEkyePxaPDgwTrqqKN03nnn6ZtvvklwhO4xefJkde7cWUOGDNE//vEPScH7DL/xEX87duzQCy+8oCuuuMK3zuPxqEuXLurWrZvGjRunbdu2JTBC9wnVP3bu3Kmqqiq1adMm4HbEz6233qrBgwerQ4cOvnXLly9XXl6ejjvuOE2dOlUVFRUJjNAdgp2v6CtmePLJJ3XyySeroKCg1vrXXntNnTt3Vp8+fTRjxgx+K7iRHP56uL7XXrw2g6kYa9stkvMQEquoqEjXXnutHnvssVrrqTfzffPNN2rWrJkWLVqk4447TkcddZT+8Ic/qKSkhPqzxD333KP58+erVatWKigo0JAhQzR48GDqzyK8j5Nc/N/voS+a7fnnn1dRUZEuvvjiWuvpe2ZiYjyJVFZW1nlD7+Cn1z0eTyJCcrU5c+Zo5MiRevrpp31vxH722WfavHmzvvzyS/3yl7/U0KFDVVpamuBIk98jjzyi7du3a+PGjbrpppt03nnnacWKFUH7DP0l/p599lmNHj1abdu29a3bvXu3Nm7cqE8++USZmZkaMWIEkxZxFKp/VFZWShL9J4HKysp0ySWX6IMPPtCzzz7rW9+nTx+VlZX5PuG/cOFCTZ48OYGRukOw8xV9xQwzZ87UtddeW2vdOeeco+LiYn333Xd66qmn9Pjjj2vGjBkJijB5+b8eru+1F6/NYCrG2vaK9DyExHEcR+PGjdOkSZN09NFH19pGvZlv7969vm/FLVu2TJ999pl27NihiRMnUn8WqKqq0plnnqlJkyapuLhYW7du1WeffaaHH36Y+rMI7+Mkh2Dv99AXzbVx40bdeuuteuqpp+rUB33PTEyMJ5HWrVtr586dtdbt2LFDGRkZXI44jqqqqjRhwgRNnTpVCxYs0MiRI33bUlJqulyzZs00efJkZWVlaenSpYkK1TUOHvfU1FSdeeaZOv/88/Xaa68F7TM5OTmJCNPVnnzySY0dO7bWuoP15vV69fDDD2vt2rXasGFDIsJzpVD9o1WrVnIcR7t37w64HY1r/fr16tu3r5o0aaKPP/5YRx55pG/b4S+qCwoKdN999+mll15KRJiuEux8RV9JvOXLl6uoqEinnnpqrfWH95Vjjz1Wf/rTn+grMRTs9XB9r714bQZTMda2T0PPQ0icadOm6cCBA7r66qvrbKPezNemTRsdOHBA06ZNU0ZGhlq0aKE77rhDb7zxBvVngYULF2r//v2aNGmS0tLSlJubqwcffFD33Xcf9WcR3sexX6j3e+iLZtq3b5/OPvtsTZ8+XZ06daqznb5nJibGk0jv3r21du3aWp1s8eLF6t+/v+8NWzS+SZMmacOGDVq+fLmOP/74kGUrKyvVtGnTOEWGgw4e9z59+mjx4sW1ti1evFgDBw5MUGTutGrVKm3btk1DhgwJWqa6ulrV1dX0lzgK1T+ysrLUvXv3WtsLCwv1ww8/1HveQ3T27Nmj0047Tdddd51mzpypzMzMkOV5nom/w89X9JXEe+6553T22WfX+0ls+kpsBXs9XN9rL//t+/fv14oVKzRgwID4BA4EwVjbPg09DyFxHnnkEX300Udq1aqVWrZsqd/+9rf69ttv1bJlS+rNAnl5eWratKnKy8t961JSUpSRkUH9WWD//v1KS0urta5Jkybav38/9WcR3sexW33v9zBWMtN7772nr7/+WuPHj1fLli3VsmVLPf/885o6daqGDRtG3zOVg6QycuRI54orrnAOHDjg7Nixwzn22GOduXPnJjos19i3b5+TmprqbNu2rc62H374wVmxYoXjOI5TWVnp3HPPPU63bt2cffv2xTtM15k/f75TVVXlOI7jLFiwwGnVqpXz5ZdfOlu2bHFatmzpvPfee47jOM5bb73l5OXlOaWlpYkM13Xuvfde56yzzqq1bt26dc7atWsdx3Gc8vJyZ8KECc6gQYMSEZ5rLFq0yOnevbvvdn3948EHH3ROPPFEZ/fu3U5FRYVzySWXOJMmTUpI7MnMv17+7//+z/n1r38dtPy///1vp6ioyHEcxyksLHROOukk509/+lOjx+km/nVS3/mKvhIf/vVyUPfu3Z3XXnutzvoPPvjAdz779ttvne7duzuzZs1q9DjdINTr4bKyMic3N9d59tlnHcdxnE8++cTJzc11tmzZ4jiO47z66qtOfn6+s2XLFqeystK57bbb6rxGABKFsbY9ojkPwRyHP7czdrfDhAkTnMsvv9w5cOCAU15e7px99tnOzTffTP1ZYM+ePU779u2d559/3nEcx9m7d6/z29/+1rniiiuoP4PxPo7dIn2/h7GSOYK9/3DQJZdc4tx7772+2/Q986TVP3UOmzzxxBMaN26ccnNzlZWVpRtvvFFnnXVWosNyjQ0bNqi6urrOpya7d++uv/3tb7r44otVVFSkjIwM9e3bVwsWLFBGRkaConWPv/zlL7rooouUmZmpzp07a+7cuerZs6ekmt+cmzBhgnbt2qWuXbtq3rx5ysrKSnDE7rJ06VL17t271rpdu3bp/PPP1759+5Senq7TTz9dL7/8coIidKeOHTuG7B8TJ07U1q1b1a1bN6WlpWnUqFGaNm1agqNOft9++62WLFmi/Pz8WutvvfVWXX755fr88881evRopaWlqVmzZrrkkkt08803JyZYl6jvfEVfSZw9e/Zo7dq1dZ5jpJrLRY4ZM0bp6enKzs7W9ddfr8suuywBUSafUK+HFyxYoHnz5unyyy/X9ddfr5ycHD3//PPq2LGjJGn06NFat26d+vXrp+rqag0ePFizZs1KRBpAHYy17RHNeQhmqm9sAjNMnz5dV155pTp06KAWLVronHPO0V133aWmTZtSf4bzer1asGCBrr/+ek2ePFkpKSkaNWqU7rnnHmVmZlJ/luB9HLvV934PYyV70ffM43Ecv199BwAAAAAAAAAAAAAgifBjWAAAAAAAAAAAAACApMbEOAAAAAAAAAAAAAAgqTExDgAAAAAAAAAAAABIakyMAwAAAAAAAAAAAACSGhPjAAAAAAAAAAAAAICkxsQ4AAAAAAAAAAAAACCpMTEOAEASu+WWW/Tkk0/WWf/+++/r5JNPjuixZs6cqUsvvTTiGG677TbdcccdEd3nn//8pwYPHhzxvgAAAAAAiAfG2wAA2IeJcQAAksymTZu0bt06rVu3Tlu2bNHmzZt9t7du3Vrv/QcPHqz3338/4v3m5+dr06ZNYZW97rrr1KZNm1p/Ho9H33zzTcT7BQAAAAAgHhhvAwBgt7REBwAAAGLriiuu0M6dO32316xZozfffFOS1KdPH/3v//5vokLz+ctf/qK//OUvvtubNm1Snz591KVLlwRGBQAAAABAcIy3AQCwGxPjAAAkmfnz50uquXzbJ598oqZNm+rUU0/VCSecoMrKSpWWlmrfvn1B7793716VlJREvN+G3k+SHnvsMZ1//vlKTU1t0P0BAAAAAGhsjLcBALAbE+MAACShSy+9VOvXr9d5552niooKjR07VhdffLE6d+6s22+/Xfv27VNBQUHA+65fvz7iS6zt2bNHu3bt0jfffKPjjjsuovv++9//1pNPPqnPP/+8Thw33nijjj76aP3Xf/1XRI8JAAAAAEBjYLwNAIC9mBgHACDJrFu3Tu+99542bNigJk2aSKoZuBcUFGjXrl06//zz9f777+u2226rc98PPvhATZo00Zw5c3TjjTeGvc/XX39dbdq00ezZs3XuueeGfb+PP/5Y5513np577jnl5OTU2paZmamjjz5anTp1CvvxAAAAAABoLIy3AQCwW0qiAwAAALHVvHlzlZeX17rM2o8//qiMjAyVlZVp3bp12rp1a8D7HvwtMsdx9Pbbb4e1v+rqaj3yyCOaPXu2PvnkE33xxRf13ufAgQN65JFHNHr0aM2aNUu//vWv65TJzc3Vf/3Xf+mMM84IKw4AAAAAABoT420AAOzGN8YBAEgyOTk5+tOf/qS+fftqyJAh2r9/vz766CM98cQT+uCDD/Q///M/Ki4ultfrrXW/Z599Vjt37tTYsWPVs2dPjRo1Sv/+97/VoUOHkPu75557dPTRR2vo0KH6f//v/+l3v/udli5dqhYtWgQsv2nTJg0ePFgFBQVavHixfvGLX8QsdwAAAAAAGgvjbQAA7MbEOAAASeiaa67R73//e61evVpNmjTRo48+6hs4jxo1qs6l3ebNm6c77rhD77//vjwej3r37q277rpLp5xyil577bWgv2P2f//3f3rxxRf18ccfS5JGjBihFStWaNCgQXr99dfVuXPnOvfJz8/XvHnz1KtXL1VXVzdC9gAAAAAANA7G2wAA2ItLqQMAkKTef/99HThwQCeffHKdT5NnZGQoNzdXklRcXKw777xTc+fOrfX7YpdeeqluvfVWrVy5MuDjb9y4UTNnztRbb71V69Pwd9xxh84++2x9/fXXQWM79thj9cEHH+jUU08NuL19+/YaPnx42LkCAAAAABAvjLcBALAT3xgHACBJLV26VDk5OQF/T2zAgAF66aWXJEler1effPJJwMcYN25c0McvKCjQsmXLAm67/fbbGxDxIT179lTPnj2jegwAAAAAABoD420AAOzEN8YBAAAAAAAAAAAAAEmNb4wDAJDE7rzzTt1///1Bt3/66ae+S7wlwr///W+1bNky6PavvvpK7du3j19AAAAAAACEgfE2AAD28TiO4yQ6CAAAYL5du3aptLRUnTt3juh+27dvlyTl5OQ0RlgAAAAAAFiN8TYAAPHBxDgAAAAAAAAAAAAAIKnxG+MAAAAAAAAAAAAAgKTGxDgAAAAAAAAAAAAAIKkxMQ4AAAAAAAAAAAAASGpMjAMAAAAAAAAAAAAAkhoT4wAAAAAAAAAAAACApMbEOAAAAAAAAAAAAAAgqTExDgAAAAAAAAAAAABIakyMAwAAAAAAAAAAAACSGhPjAAAAAAAAAAAAAICkxsQ4AAAAAAAAAAAAACCpMTEOAAAAAAAAAAAAAEhqTIwDAAAAAAAAAAAAAJIaE+MAAAAAAAAAAAAAgKTGxDgAAAAAAAAAAAAAIKkxMQ4AAAAAAAAAAAAASGpMjAMAEEcTJ07UiSeemOgwAAAAAABIGoy1AQBAOJgYBwAgjjp06KAuXbpEfL/CwkLNnDmzESIyR35+vjweT62/wYMH1yqzf/9+/fd//7fat2+vZs2a6eSTT9aKFSuCPmZlZaW6deumE044IeD28vJy3XrrrTrnnHNimAkAAAAAIJ4YawcXz7H2unXrdN5556l169bKzs7WoEGD9K9//asRsgIAoGGYGAcAII5uvvlmvfDCCxHf74UXXtDdd9/dCBGZ5bbbbtPGjRt9f3PmzKm1/YorrtDcuXP19NNPa9myZerUqZOGDRumwsLCgI/39NNP69tvv62zfs+ePXr44YfVrVs3TZ8+XVVVVY2SDwAAAACg8THWDi1eY+2LL75YHTp00D/+8Q8tWrRIeXl5GjZsmL755ptGyQsAgEilJToAAAAQP9XV1b5PiJuoe/fuys/PD7htzZo1euqpp7RixQr98pe/lFQzGP/FL36hxx57THfeeWet8rt27dJtt92mM844Q9u3b6+17bXXXtM999yjm266SZ9//rn27t3bKPkAAAAAAJIfY+0aTzzxhHr06OG7/dRTT2nx4sWaM2eO/vSnP8U2KQAAGoBvjAMAEEeTJk2qdcmyO+64QyeccIJWrlypX/3qV8rMzNSxxx6rf/7zn74y+fn5uu6667R58+Y6A+2SkhJNmDBBRx55pDIzM/Uf//EfWr9+vW/7+++/L4/Ho88++0wDBw5UkyZNtHbt2pAxHrzPwUugtWjRQvn5+XrggQfqlF21apVGjBihli1bKiMjQyeeeKJef/113/aysjLl5+fr4YcfDuv4tGvXLui2N954Qz169PAN1CWpadOmOuuss/Tuu+/WKX/jjTdq1KhRGjBgQJ1tI0eO1Pfff6+bbrpJqampYcUGAAAAADATY+3Q4jXWPnxSXJJSU1PVpUsX/fDDD2HFCQBAY2NiHACABNu5c6euvPJK3Xrrrfr444/1i1/8QqNHj1ZRUZEk6eOPP9btt9+uDh06+C57JtX8pteZZ56pDz74QH//+9/1wQcfKC0tTb/5zW/qXBr8hhtu0PXXX68VK1YoNzc3rLguueQSnX766Vq8eLEuu+wy3XjjjVqwYIFv+8qVK3XSSScpOztb8+bN00cffaTBgwfr7LPP1iuvvCJJSktLU6dOnXTEEUeEtc9zzz1X2dnZ6tWrl+67775aeaxevVrHHntsnfv07NlT69atq7Xutdde0/z58zVt2rSA+2ndurWaNm0aVkwAAAAAAPsw1j4kXmNtf/v379cXX3yhY445JqzyAAA0Ni6lDgBAgm3btk1vv/22jjvuOEnSzJkzlZubq3feeUcXXnihOnbsqNatWystLa3Wpc9mz56tlStXas2aNcrLy5MkPf/88+rUqZPmzp2rc88911f2zDPP1JgxYyKK6/e//73+8Ic/SJKOPfZYvfnmm3rppZd0xhlnSJJuuukmnXLKKfr73//uu0/fvn21Z88eTZ48Weecc47S09P10UcfhbW/v//972rWrJkqKir0/vvv684779T69ev1v//7v5KkHTt2qEuXLnXu17p1axUXF/tub9myRZdffrnmzJmjli1bRpQzAAAAACA5MNaukcix9u23366UlBSNHTs2rPIAADQ2vjEOAECCdezY0TdQl2oGn506ddKWLVtC3u+dd97R0KFDfQN1SWrRooVOOOEEffbZZ7XK/sd//EfEcf3mN7+pdfv444/3xVReXq4PPvhA48aNq3O/sWPH6ttvv1VhYWFE+zvppJPUu3dvDRw4UJMnT9aMGTM0c+ZMbdu2TVLNp/ZTUuq+dDn8knfl5eU699xzNX78eJ1++ukR7R8AAAAAkDwYa9dIxFi7oqJCf/jDH/TUU09p3rx58nq9EcUMAEBjYWIcAIAEa926dZ11zZs3V0VFRcj77dixQ2+//bYyMjJq/X300Ue+Ae5BoX5PLNy4Do+pqKhIVVVV6tSpU537Hbx83O7duyPe5+FGjRql6upqff7555Kk7OzsWp9WP2jPnj2+y8eNGzdOmZmZuvPOO6PaNwAAAADAboy1A2vssfa6des0YMAAffHFF1q+fLl69+4dVbwAAMQSl1IHAMBSLVu21IgRI3TvvffW2eb/aexAn/6Ohtfrlcfj0datW+ts2759uyTpyCOPjGof+/fvlySlp6dLkrp166aFCxfWKbdmzRr16tVLmzdv1vPPPy+p5vfW/Hk8Hj355JO69NJLo4oLAAAAAJC8GGvXaMhY+8svv9SQIUM0btw43X333UpNTY0qVgAAYo2JcQAALNCkSZM6n2o/+eST9cgjj6igoMA3oI2X5s2ba8CAAZo1a5bOOeecWttmz56t3r17Rz1YnzNnjpo1a+b7dPkZZ5yh//mf/9G6devUtWtXSdKBAwc0d+5c3XDDDcrNzdWnn35a53Eef/xxLVq0SC+88II6d+4cVUwAAAAAgOTBWDu2Y+0LLrhA48aNC/ihAgAATMCl1AEAsEC3bt20fft2vfzyy/r3v/8tSbrssstUWVmp3/72t3rvvff01Vdf6Y033tCIESMCXgYt1u677z69++67uvDCC/Wvf/1Ly5cv180336xnnnlGf/nLXyTVfBJ96NChmjNnTsjHeueddzRx4kR99NFH+uyzz3Tvvffqv//7v3X77bf7PpE/ZMgQnXzyyTr33HP14Ycf6vPPP9fFF1+spk2baty4cWratKlOOOGEOn85OTlq1qyZTjjhhICX0gMAAAAAuBNj7diNtdeuXavPP/9cw4YN06ZNm2r91fe77gAAxAvfGAcAwAJDhw7VuHHjdNlll6l169bavHmzsrOz9cEHH+jGG2/U2WefLcdx1LVrV40bN04tWrRo9JhOPvlkvf/++7rtttv061//Wh6PRwMGDNDChQs1cOBASTWfMl+7dq1++OGHkI/VuXNnLVu2TE899ZTKy8vVo0cPPf7443Uue/7qq69q4sSJGjFihBzH0RlnnKH33ntPGRkZjZUmAAAAACBJMdauEYux9sFYTj/99DrbjjjiCO3cuTPsxwIAoLF4HMdxEh0EAAAAAAAAAAAAAACNhUupAwDgMr/+9a+VkZER8O/ZZ59NdHgAAAAAAFiHsTYAAObjG+MAALjMd999p59++ingttzcXN/vjAEAAAAAgPAw1gYAwHxMjAMAAAAAAAAAAAAAkhqXUgcAAAAAAAAAAAAAJDUmxgEAAAAAAAAAAAAASS0t0QHYprq6Wtu2bVOLFi3k8XgSHQ4AAAAAwACO42jv3r1q3769UlL4DHqkGGsDAAAAAPzFeqzNxHiEtm3bpk6dOiU6DAAAAACAgbZs2aKOHTsmOgzrMNYGAAAAAAQTq7E2E+MRatGihaSaCsjOzk5cIAcOSE8+WbN82WVSkybB1wcra5poc7IlT8AfbRwIzeY+EkmcJsYfiJtzsiUfAAlRUlKiTp06+caMiExCx9rhnN9jVcZGNh6f+vYVz5woE7qMaUzL3bT6StZ6R3BubhfkXrPsptzdmjdguFiPtT2O4zgxeSSXKCkpkdfrVXFxcWInxgEAAAAAxmCsGB2OHwAAAADAX6zHivzwGQAAAAAAAAAAAAAgqXEpdVtVVUkffVSzfMopUmpq8PXBypom2pxsyRPwRxsHQrO5j0QSp4nxB+LmnGzJBwAQmXDO77EqYyMbj099+4pnTpQJXcY0puVuWn0la70jODe3C3KvWXZT7m7NG3AZLqUeIWMu71ZWJjVvXrNcWiplZQVfH6ysaaLNyZY8AX+0cSA0m/tIJHGaGH8gbs7JlnwAJIQxY0VLJfT4hXN+j1UZG9l4fOrbVzxzokzoMqYxLXfT6itZ6x3BubldkHvNsptyd2vegOG4lDoAAAAAAAAAAAAAABFgYhwAAAAAAAAAAAAAkNSYGAcAAAAAAAAAAAAAJDUmxgEAAAAAAAAAAAAASY2JcQAAAAAAAAAAAABAUmNiHAAAAAAAAAAAAACQ1NISHQAaqEkT6b77Di2HWh+srGmizcmWPAF/tHEgNJv7SCRxmhh/IG7OyZZ8AACRCef8HqsyNrLx+NS3r3jmRJnQZUxjWu6m1Vey1juCc3O7IPdDy41ZxiRuzRtwGY/jOE6ig7BJSUmJvF6viouLlZ2dnehwAAAAAAAGYKwYHY4fAAAAAMBfrMeKfGM8yVRVO1q2cZd+3Fuuti0y1K+gtVJTPIkOCwAAAAAAJCnb3ouwLV4AAAAAscHEuK2qqqSVK2uWe/eWUlM1f3Wh7nr9Cx3xzZeSpNXtuqhdqyxNObO7hu8vrFXWSAFyCro+3HWADWjjQGg295FI4jQx/kDcnJMt+QAAIhPO+T1WZWxUT15B34sY0VPDe+WG/Tjxijmm8VIm+jKmMS130+orWesdwbm5XZB7zbKbcndr3oDLcCn1CBlzebeyMql585rl0lLN31iiK59bqYz95Vrzl3MlST2ue1nlTTPUbH+5vvp5nUpLpaysBAVdD7+cfHEGWh/uOsAGtHEgNJv7SCRxmhh/IG7OyZZ8ACSEMWNFSyX0+IVzfo9VGRuFyGv+6sKg70VI0mMX9j402RzP4xNkXzGPlzLRlzGNabmbVl/JWu8Izs3tgtxrlt2Uu1vzBgwX67FiSgxiQoJVVTuaOu8rBfqEA596AAAAAAAAsRbOexFT532lqmoz3pmwLV6Y6/A2snRDEW0GAADAIkyMJ4Hlm3apsLg86HZengMAAAAAgFhatrH+9yIKi8u1bOOu+AUVgm3xwkzzVxdq6IPv+25f+uQnOnn6Qs1fXZi4oAAAABA2JsaTwI7SikSHAAAAAAAAXOTHvcEnmRtSrrHZFi/Mc/BS/NuLa78Pt724XFc+t5LJcQAAAAswMZ4EjmyenugQAAAAAACAi7RtkRHTco3NtnhhFi7FDwAAkByYGE8CJ+a3Vq43Q54g24OtBwAAAAAAaIh+BfW/F5HrzVC/gtbxDCso2+KFWbgUPwAAQHJgYjwJpKZ4NGVET0l1J8GZFAcAAAAAALEWznsRU0b0VGqKGe9M2BYvzMKl+AEAAJJDWqIDQAM1aSJNmeJbHt4rV49d2Fv3zP1MD510viSpMjVVOd4M3TG8l5R9qKyx/HIKuT7cdYANaONAaDb3kUjiNDH+QNycky35AAAiE875PVZlbBQir1DvRUwZ0VPDe+WG9Tjxijnm8VIm+jKmCRLz4ZfYr0xNrdV+DucrF6vcTauvZK13BOfmdkHuh5Ybs4xJ3Jo34DIex3H48ZsIlJSUyOv1qri4WNnZ2YkOp46qakfLNu7Sj3vL1bZFzSXA+LQzAAAAADQu08eKpuP42c229yJsixeJV1Xt6OTpC7W9uDzg74x7JOV4M/TxH0+jLQEAAMRQrMeKfGM8yaSmeDSwyxGJDgMAAAAAALiEbe9F2BYvEu/gpfivfG6lPFKtyXEuxQ8AAGAPJsZtVV0trVlTs9yjh5SSEnx9sLKmiTYnW/IE/NHGgdBs7iORxGli/IG4OSdb8gEARCac83usytjIxuNT377imRNlQpcxTYiYD16K/87XVytrw7eSpHVtOimnZWbdS/HHKnfT6itZ6x3BubldkHvNsptyd2vegMtwKfUIGXN5t7IyqXnzmuXSUikrK/j6YGVNE21OtuQJ+KONA6HZ3EciidPE+ANxc0625AMgIYwZK1oqoccvnPN7rMrYyMbjU9++4pkTZUKXMU0YMVftLVVqdgtJ0tLPN+vEYzrV/aZ4rHI3rb6Std4RnJvbBbnXLLspd7fmDRiOS6kDAAAAAAAAQAIcPgne/6gjJC6fDgAAYA2u4QAAAAAAAAAAAAAASGpMjAMAAAAAAAAAAAAAkhoT4wAAAAAAAAAAAACApMbEOAAAAAAAAAAAAAAgqTExDgAAAAAAAAAAAABIammJDgAN1KSJdOONh5ZDrQ9W1jTR5mRLnoA/2jgQms19JJI4TYw/EDfnZEs+AIDIhHN+j1UZG9l4fOrbVzxzokzoMqYxLXfT6itZ6x3BubldkPuh5cYsYxK35g24jMdxHCfRQdikpKREXq9XxcXFys7OTnQ4AAAAAAADMFaMDscPAAAAAOAv1mNFLqUOAAAAAAAAAAAAAEhqXErdVtXV0nff1Sx37iylpARfH6ysaaLNyZY8AX+0cSA0m/tIJHGaGH8gbs7JlnwAAJEJ5/weqzI2svH41LeveOZEmdBlTGNa7qbVV7LWO4Jzc7sg95plN+Xu1rwBl+FS6hEy5vJuZWVS8+Y1y6WlUlZW8PXBypom2pxsyRPwRxsHQrO5j0QSp4nxB+LmnGzJB0BCGDNWtFRCj1845/dYlbGRjcenvn3FMyfKhC5jGtNyN62+krXeEZyb2wW51yy7KXe35g0YjkupAwAAAAAAAAAAAAAQASbGAQAAAAAAAAAAAABJjYlxAAAAAAAAAAAAAEBSY2IcAAAAAAAAAAAAAJDUmBgHAAAAAAAAAAAAACQ1JsYBAAAAAAAAAAAAAEktLdEBBPLOO+/oyiuvrLVu3759+umnn7R37159+umnuvLKK1VYWKisrCw9/PDDGjZsmK/sQw89pL/+9a/at2+f+vXrp5kzZ+qII46QJBUVFemKK67Q0qVL5fF4dO211+qGG26Ia34xkZYmTZhwaDnU+mBlTRNtTrbkCfijjQOh2dxHIonTxPgDcXNOtuQDACHcd999mjlzpsrLy+X1enXPPfdo5MiRkqTmzZvL6/WqSZMmkqS+ffvqpZde8t03acfa4ZzfY1XGRjYen/r2Fc+cKBO6jGlMy920+krWekdwbm4X5H5ouTHLmMSteQMu43Ecx0l0EOG44oor1KZNG/3xj39Ujx499NRTT2no0KH64IMPNGrUKH399dfKycnRiy++qGnTpumf//ynvF6vrr76av3444965ZVXJElnnnmm+vfvrz/96U8qLCzUr371K82YMUMjRowIK46SkhJ5vV4VFxcrOzu7MVMGAAAAAFjClrHiBx98oF/96ldq0qSJPvzwQ51xxhn6/vvvdcQRR6h58+b64osvVFBQUOd+jLUBAAAAAPEW67GiFRPjGzZs0MCBA/XNN9/ohRde0DvvvKO5c+f6to8cOVKnn366Jk6cqF/96lf64x//qFGjRkmSdu7cqdzcXP3www/auXOnTj75ZG3btk1pP39S58EHH9RHH31U6/FCYbAOAAAAAPBn61jxiCOO0L/+9S8dffTRat68ubZs2aJWrVrVKcdYGwAAAAAQb7EeK1pxHYdp06bpqquuktfr1ZIlS3TSSSfV2t6/f3+tWrVKlZWVWr58ea3tbdq0UX5+vr744gtt2rRJ/fr18w3UD953xowZQfddUVGhiooK3+2SkpIYZhYFx5F27qxZbtNG8niCrw9W1jTR5mRLnoA/2jgQms19JJI4TYw/EDfnZEs+ABCG8vJyPf744+rbt6+OPvpoSVJKSoq8Xm+dskk/1g7n/B6rMjay8fjUt6945kSZ0GVMY1ruptVXstY7gnNzuyD3mmU35e7WvAGXMX5ifMeOHXrhhRf07bffSpIKCwt12mmn1SrTtm1bLV26VDt37lRVVZXatGlTZ3tRUZEKCwvVrl27gNuCuffeezV16tQYZRNDP/0ktW1bs1xaKmVlBV8frKxpos3JljwBf7RxIDSb+0gkcZoYfyBuzsmWfAAghPXr12vw4MHaunWr+vXrp+eff963zePxqEuXLmrSpIlOOeUU3XXXXWrfvn3yj7XDOb/HqoyNbDw+9e0rnjlRJnQZ05iWu2n1laz1juDc3C7IvWbZTbm7NW/AZVISHUB9nn32WY0ePVptfz6RVFZWyv/q71VVVfJ4PKqsrJSkkNuDbQtm8uTJKi4u9v1t2bIlFmkBAAAAABB3Xbp00ZYtW/TTTz/p2muv1cCBA30fRN+9e7c2btyoTz75RJmZmRoxYoQcx2GsDQAAAABICsZPjD/55JMaO3as73br1q218+BlKH62Y8cO5eTkqFWrVnIcR7t37w64PdR9g0lPT1d2dnatPwAAAAAAbJaRkaELLrhAv/3tb/X0009LqrmUuiR5vV49/PDDWrt2rTZs2MBYGwAAAACQFIyeGF+1apW2bdumIUOG+Nb16dNHixcvrlVu8eLFGjhwoLKystS9e/da2wsLC/XDDz/o+OOPV58+fbR06VJVV1fXuS8AAAAAAG6Tnp6uZs2a1VlfXV2t6upqNW3alLE2AAAAACApGD0xPn/+fA0aNEhpaYd+Cn3s2LF67733tHDhQknS22+/rTVr1mjMmDGSpPHjx2vq1Knas2eP9u/fr8mTJ+vyyy9XZmam+vXrp9zcXE2fPl3V1dXasGGDHn30UV1zzTUJyQ8AAAAAgHjZunWrZs+e7bs0+ocffqi5c+dqzJgxWr9+vb755htJUkVFhSZOnKi+ffuqU6dOkhhrAwAAAADsZ/TE+NKlS9W7d+9a6zp27Kg5c+ZowoQJatu2re6++27NmzdPWVlZkqSJEyfq1FNPVbdu3ZSfn69mzZpp2rRpkiSPx6NXX31VCxYsULt27TR8+HDdf//96tOnT9xzAwAAAAAgntLT0/XEE0+offv26tKli6ZOnaq5c+eqW7du2rVrl84880x16NBBPXr00P79+/Xyyy/77stYGwAAAABgu7T6iyTO3LlzA64/44wz9PXXXwfclpKSovvvv1/3339/wO1HHXWU3n///ViFCAAAAACAFdq0aaN//vOfAbf17dtX69atC3pfxtoAAAAAANsZPTGOENLSpEsuObQcan2wsqaJNidb8gT80caB0GzuI5HEaWL8gbg5J1vyAQBEJpzze6zK2MjG41PfvuKZE2VClzGNabmbVl/JWu8Izs3tgtwPLTdmGZO4NW/AZTyO4ziJDsImJSUl8nq9Ki4uVnZ2dqLDAQAAAAAYgLFidDh+AAAAAAB/sR4rGv0b4wAAAAAAAAAAAAAARIvrONjKcaSffqpZzsyUPJ7g64OVNU20OdmSJ+CPNg6EZnMfiSROE+MPxM052ZIPACAy4ZzfY1XGRjYen/r2Fc+cKBO6jGlMy920+krWekdwbm4X5F6z7Kbc3Zo34DJ8Y9xWP/0kNW9e83fwJBtsfbCypok2J1vyBPzRxoHQbO4jkcRpYvyBuDknW/IBAEQmnPN7rMrYyMbjU9++4pkTZezqE6blblp9JWu9Izg3twtyd1/ubs0bcBkmxgEAAAAAAAAAAAAASY2JcQAAAAAAAAAAAABAUmNiHAAAAAAAAAAAAACQ1JgYBwAAAAAAAAAAAAAkNSbGAQAAAAAAAAAAAABJjYlxAAAAAAAAAAAAAEBSS0t0AGig1FTp3HMPLYdaH6ysaaLNyZY8AX+0cSA0m/tIJHGaGH8gbs7JlnwAAJEJ5/weqzI2svH41LeveOZEmdBlTGNa7qbVV7LWO4Jzc7sg90PLjVnGJG7NG3AZj+M4TqKDsElJSYm8Xq+Ki4uVnZ2d6HAAAAAAAAZgrBgdjh8AAAAAwF+sx4pcSh0AAAAAAAAAAAAAkNSYGAcAAAAAAAAAAAAAJDUmxm1VViZ5PDV/ZWWh1wcra5poc7IlT8AfbRwIzeY+EkmcJsYfiJtzsiUfAEBkwjm/x6qMjWw8PvXtK545UcauPmFa7qbVV7LWO4Jzc7sgd/fl7ta8AZdhYhwAAAAAAAAAAAAAkNSYGAcAAAAAAAAAAAAAJDUmxgEAAAAAAAAAAAAASY2JcQAAAAAAAAAAAABAUmNiHAAAAAAAAAAAAACQ1JgYBwAAAAAAAAAAAAAktbREB4AGSk2Vzjzz0HKo9cHKmibanGzJE/BHGwdCs7mPRBKnifEH4uacbMkHABCZcM7vsSpjIxuPT337imdOlAldxjSm5W5afSVrvSM4N7cLcj+03JhlTOLWvAGX8TiO4yQ6CJuUlJTI6/WquLhY2dnZiQ4HAAAAAGAAxorR4fgBAAAAAPzFeqzIpdQBAAAAAAAAAAAAAEmNiXEAAAAAAAAAAAAAQFJjYtxWZWVSVlbNX1lZ6PXBypom2pxsyRPwRxsHQrO5j0QSp4nxB+LmnGzJBwAQmXDO77EqYyMbj099+4pnTpSxq0+Ylrtp9ZWs9Y7g3NwuyN19ubs1b8Bl0hIdAKLw00/hrw9W1jTR5mRLnoA/2jgQms19JJI4TYw/EDfnZEs+AIDIhHN+j1UZG9l4fOrbVzxzooxdTMvdtPpK1npHcG5uF+QenzImcWvegIvwjXEAAAAAAAAAAAAAQFJjYhwAAAAAAAAAAAAAkNSYGAcAAAAAAAAAAAAAJDUmxgEAAAAAAAAAAAAASY2JcQAAAAAAAAAAAABAUktLdABooJQU6dRTDy2HWh+srGmizcmWPAF/tHEgNJv7SCRxmhh/IG7OyZZ8AACRCef8HqsyNrLx+NS3r3jmRJnQZUxjWu6m1Vey1juCc3O7IPdDy41ZxiRuzRtwGY/jOE6ig7BJSUmJvF6viouLlZ2dnehwAAAAAAAGYKwYHY4fAAAAAMBfrMeKfFwFAAAAAAAAAAAAAJDUmBgHAAAAAAAAAAAAACQ1JsZtVVYmHXlkzV9ZWej1wcqaJtqcbMkT8EcbB0KzuY9EEqeJ8Qfi5pxsyQcAEJlwzu+xKmMjG49PffuKZ06UsatPmJa7afWVrPWO4NzcLsjdfbm7NW/AZdISHQCisHNn+OuDlTVNtDnZkifgjzYOhGZzH4kkThPjD8TNOdmSDwAgMuGc32NVxkY2Hp/69hXPnChjF9NyN62+krXeEZyb2wW5x6eMSdyaN+AiRn9jfNmyZRo0aJDy8vLUvn17vfrqq5KkTz/9VAMGDFBeXp569uypd999t9b9HnroIXXt2lUdOnTQ6NGjVVRU5NtWVFSkMWPGqHPnzsrLy9MDDzwQ15wAAAAAAEiU++67T926dVPnzp117LHH6o033vBtY6wNAAAAAEhmxk6Mf/311zrrrLP0pz/9SZs3b9amTZt08skna+/evRoxYoTuvvtubd68WY899pjGjBmj7du3S5JefPFFPfPMM1q2bJm+++475eTkaPz48b7Hveiii9SrVy9t3rxZS5Ys0YwZMzRv3rxEpQkAAAAAQNz0799fX375pb777jv9v//3//S73/1ORUVFjLUBAAAAAEnP2InxW2+9Vddcc42GDh0qSWratKnatm2r2bNnq2/fvr71p556qgYNGqQXXnhBUs0n2KdMmaLWrVsrNTVVd911l9544w3t2rVL33zzjZYvX65bb71VHo9H7du317XXXqtZs2YlLE8AAAAAAOLl1FNPVZMmTSRJgwYNUmZmpnbs2MFYGwAAAACQ9IycGC8vL9ebb76pyy67rM62JUuW6KSTTqq1rn///lq1apUqKyu1fPnyWtvbtGmj/Px8ffHFF1qyZIn69euntLS0OvcNpqKiQiUlJbX+AAAAAACwWXl5uR566CH17dtXRx99NGNtAAAAAEDSM3Ji/JtvvlGzZs20aNEiHXfccTrqqKP0hz/8QSUlJSosLFS7du1qlW/btq2Kioq0c+dOVVVVqU2bNgG3h7pvMPfee6+8Xq/vr1OnTrFLFAAAAACAOFq/fr06deqkzMxMzZkzR48++qgkMdYGAAAAACS9tPqLxN/evXt9n0hftmyZDhw4oEsuuUQTJ05UZWWlHMepVb6qqkoej0eVlZWSJMdx5PF4Am4Pdt9gJk+erOuvv953u6SkxIwBe0qKdOKJh5ZDrQ9W1jTR5mRLnoA/2jgQms19JJI4TYw/EDfnZEs+ABBCly5dtGXLFpWXl+vVV1/VwIED9fHHH7t7rB3O+T1WZWxk4/Gpb1/xzIkyocuYxrTcTauvZK13BOfmdkHuh5Ybs4xJ3Jo34DIex3/0aoC1a9fquOOOU2lpqe+3zz7//HMNGTJEp59+ugYMGFBrAH3XXXfp+++/14MPPqgWLVpo586dat26tW97ly5d9Nxzz+nTTz/V/Pnz9cYbb/i2ffTRR/qv//ovrV27NqzYSkpK5PV6VVxcrOzs7BhlDAAAAACwma1jxXHjxik3N1fffPMNY20AAAAAgFFiPVY08uMqeXl5atq0qcrLy33rUlJSlJGRoT59+mjx4sW1yi9evFgDBw5UVlaWunfvXmt7YWGhfvjhBx1//PHq06ePli5dqurq6jr3BQAAAADAbdLT09WsWTPG2gAAAACApGfkxHhGRoYuvvhi3XDDDaqsrFRFRYWmTJmiCy+8UGPHjtV7772nhQsXSpLefvttrVmzRmPGjJEkjR8/XlOnTtWePXu0f/9+TZ48WZdffrkyMzPVr18/5ebmavr06aqurtaGDRv06KOP6pprrklkugAAAAAANLqtW7dq9uzZvkujf/jhh5o7d67GjBnDWBsAAAAAkPSMnBiXpOnTp2vfvn3q0KGDjjnmGHXt2lV33XWXOnbsqDlz5mjChAlq27at7r77bs2bN09ZWVmSpIkTJ+rUU09Vt27dlJ+fr2bNmmnatGmSJI/Ho1dffVULFixQu3btNHz4cN1///3q06dPIlNtmJ9+kvLza/5++in0+mBlTRNtTrbkCfijjQOh2dxHIonTxPgDcXNOtuQDAEGkp6friSeeUPv27dWlSxdNnTpVc+fOVbdu3dw91g7n/B6rMjay8fjUt6945kQZu/qEabmbVl/JWu8Izs3tgtzdl7tb8wZcxsjfGDeZMb97VlYmNW9es1xaKv38ZkXA9cHKmibanGzJE/BHGwdCs7mPRBKnifEH4uacbMkHQEIYM1a0VEKPXzjn91iVsZGNx6e+fcUzJ8qELmMa03I3rb6Std4RnJvbBbnXLLspd7fmDRjOFb8xDgAAAAAAAAAAAABArDAxDgAAAAAAAAAAAABIakyMAwAAAAAAAAAAAACSGhPjAAAAAAAAAAAAAICkxsQ4AAAAAAAAAAAAACCppSU6ADSQxyP17HloOdT6YGVNE21OtuQJ+KONA6HZ3EciidPE+ANxc0625AMAiEw45/dYlbGRjcenvn3FMyfKhC5jGtNyN62+krXeEZyb2wW5H1puzDImcWvegMt4HMdxEh2ETUpKSuT1elVcXKzs7OxEhwMAAAAAMABjxehw/AAAAAAA/mI9VuRS6gAAAAAAAAAAAACApMbEOAAAAAAAAAAAAAAgqTExbquffpKOOabm76efQq8PVtY00eZkS56AP9o4EJrNfSSSOE2MPxA352RLPgCAyIRzfo9VGRvZeHzq21c8c6KMXX3CtNxNq69krXcE5+Z2Qe7uy92teQMuk5boANBAjiN99dWh5VDrg5U1TbQ52ZIn4I82DoRmcx+JJE4T4w/EzTnZkg8AIDLhnN9jVcZGNh6f+vYVz5woE7qMaUzL3bT6StZ6R3Bubhfkfmi5McuYxK15Ay7DN8YBAAAAAAAAAAAAAEmNiXEAAAAAAAAAAAAAQFJjYhwAAAAAAAAAAAAAkNSYGAcAAAAAAAAAAAAAJDUmxgEAAAAAAAAAAAAASS0t0QGggTweKS/v0HKo9cHKmibanGzJE/BHGwdCs7mPRBKnifEH4uacbMkHABCZcM7vsSpjIxuPT337imdOlAldxjSm5W5afSVrvSM4N7cLcj+03JhlTOLWvAGX8TiO4yQ6CJuUlJTI6/WquLhY2dnZiQ4HAAAAAGAAxorR4fgBAAAAAPzFeqzIpdQBAAAAAAAAAAAAAEmNiXEAAAAAAAAAAAAAQFJjYtxW+/ZJffvW/O3bF3p9sLKmiTYnW/IE/NHGgdBs7iORxGli/IG4OSdb8gEARCac83usytjIxuNT377imRNl7OoTpuVuWn0la70jODe3C3J3X+5uzRtwGX5jPELG/O5ZWZnUvHnNcmmplJUVfH2wsqaJNidb8gT80caB0GzuI5HEaWL8gbg5J1vyAZAQxowVLZXQ4xfO+T1WZWxk4/Gpb1/xzIkyocuYxrTcTauvZK13BOfmdkHuNctuyt2teQOG4zfGAQAAAAAAAAAAAACIABPjAAAAAAAAAAAAAICkxsQ4AAAAAAAAAAAAACCpMTEOAAAAAAAAAAAAAEhqTIwDAAAAAAAAAAAAAJJaWqIDQBTatAl/fbCypok2J1vyBPzRxoHQbO4jkcRpYvyBuDknW/IBAEQmnPN7rMrYyMbjU9++4pkTZexiWu6m1Vey1juCc3O7IPf4lDGJW/MGXMTjOI6T6CBsUlJSIq/Xq+LiYmVnZyc6HAAAAACAARgrRofjBwAAAADwF+uxIpdSBwAAAAAAAAAAAAAkNSbGAQAAAAAAAAAAAABJjYlxW+3bJw0eXPO3b1/o9cHKmibanGzJE/BHGwdCs7mPRBKnifEH4uacbMkHABCZcM7vsSpjIxuPT337imdOlLGrT5iWu2n1laz1juDc3C7I3X25uzVvwGX4jfEIGfO7Z2VlUvPmNculpVJWVvD1wcqaJtqcbMkT8EcbB0KzuY9EEqeJ8Qfi5pxsyQdAQhgzVrRUQo9fOOf3WJWxkY3Hp759xTMnyoQuYxrTcjetvpK13hGcm9sFudcsuyl3t+YNGI7fGAcAAAAAAAAAAAAAIAJMjAMAAAAAAAAAAAAAkhoT4wAAAAAAAAAAAACApMbEOIxXVe34lpduKKp1GwAAAAAAAAAAAADqw8Q4jDZ/daGGPvi+7/alT36ik6cv1Ltfbk9cUAAAAAAAAAAAAACskpboABCFzMzw1wcra5rD4py/ulBXPrdSGfsr9FOTdN/67cXlmjhnlT5v1kxpHk/Q+wNWCbff0sbhVjb3kUjiNDH+QNycky35AAAiE875PVZlbGTj8alvX/HMiTJ2MS130+orWesdwbm5XZB7fMqYxK15Ay7icRyH61JHoKSkRF6vV8XFxcrOzk50OEmrqtrRydMXqrC4POB2j6Qcb4Y+/uNpSk3xBCwDAAAAAPFiy1hx4cKFuv322/XDDz/IcRxNmjRJ11xzjSSpV69e2rFjh5o1ayZJys3N1ZIlS3z3nT17tu68807t3btXv/jFLzRr1iwVFBRIkvbt26eJEydqwYIFqqqq0gUXXKDp06fL4/9h5iBsOX4AAAAAgPiJ9VjRyEupX3311fJ6vcrPz/f9bd68WZL06aefasCAAcrLy1PPnj317rvv1rrvQw89pK5du6pDhw4aPXq0ioqKfNuKioo0ZswYde7cWXl5eXrggQfimhfCt2zjrqCT4pLkSCosLteyjbviFxQAAAAAWO7111/XrFmztG7dOr377ruaPn265s+f79s+Z84cbdq0SZs2bao1Kb5kyRLdcsstWrBggb7//nsNGzZMY8aM8W2/4YYbVF1drfXr1+vLL7/UokWL9Ne//jWuuQEAAAAAEIqRE+OSNGnSJN9gfNOmTcrLy9PevXs1YsQI3X333dq8ebMee+wxjRkzRtu31/ze9IsvvqhnnnlGy5Yt03fffaecnByNHz/e95gXXXSRevXqpc2bN2vJkiWaMWOG5s2bl6gUEcKPe4NPijekHAAAAABAevjhh9W9e3dJ0lFHHaXzzjtPCxcu9G1v2bJlwPvNmDFDkyZNUufOnSVJN998szZu3KjPPvtMpaWlevrpp3XfffcpLS1NXq9XkydP1qxZsxo9HwAAAAAAwmXsxHigwfjs2bPVt29fDR06VJJ06qmnatCgQXrhhRck1XxbfMqUKWrdurVSU1N111136Y033tCuXbv0zTffaPny5br11lvl8XjUvn17XXvttfYO1MvLpd/8puavvDz0+mBlTXNYnO2aHlqdXrlfs166Q7NeukPplftrrRt03aX25Qn4C7ff0sbhVjb3kUjiNDH+QNycky35AEAEduzYIa/X67sdbGJ8yZIlOumkk3y309LS1Lt3b61atUorVqxQQUGBWrdu7dvev39/rV69WlVVVQEfr6KiQiUlJbX+Eiac83usytjIxuNT377imRNl7OoTpuVuWn0la70jODe3C3J3X+5uzRtwGSN/Y/zqq69Wnz59dNlll9Vaf9lll+mYY47RjTfe6Ft3zz33aN26dfrb3/6mzMxMbdu2TW3atPFt/8UvfqGZM2dq06ZNeumll/Tmm2/6tv3rX//ShRdeqI0bNwaNpaKiQhUVFb7bJSUl6tSpU+J/96ysTGrevGa5tFTKygq+PlhZ0xwWZ1XJXp3816XaXlyujP3lWvOXcyVJPa57WfuaZihzf7m++nmddXkC/sLtt7RxuJXNfSSSOE2MPxA352RLPgASwsbfyF62bJnOOOMMrVy5UgUFBTr22GNVUlKi1NRUnXjiibr77rvVrVs3SVJGRoa+/fZbderUyXf/sWPHqk+fPmrfvr3+9re/6b333vNtO3DggJo2baqioqJaE+YH3XHHHZo6dWqd9Qk5fuGc32NVxkY2Hp/69hXPnCgTuoxpTMvdtPpK1npHcG5uF+Res+ym3N2aN2A4V/zGuCRNnjxZnTt31pAhQ/SPf/xDklRYWKh27drVKte2bVsVFRVp586dqqqqqjUpfvj2UPcN5d5775XX6/X9Hf4mABpPaopHU0b0lCR5/Lb53wYAAAAARGbOnDkaOXKknn76aRUUFEiSPvvsM23evFlffvmlfvnLX2ro0KEqLS2VJFVWVsr/c/VVVVXyeDxBt0mSxxN4BDd58mQVFxf7/rZs2RLrFAEAAAAAqMXIifFHHnlE27dv18aNG3XTTTfpvPPO04oVK+odiEuKeKAebJB+EIP1xBneK1ePXdhb7bzptdbneDP08O9PSExQAAAAAGCxqqoqTZgwQVOnTtWCBQs0cuRI37aUlJq3CJo1a6bJkycrKytLS5culSS1bt1aO3furPVYO3bsUE5OTtBtGRkZtS7Tfrj09HRlZ2fX+gMAAAAAoDGlJTqAQA4OxlNTU3XmmWfq/PPP12uvvRZyIN6qVSs5jqPdu3fXukzbwe2FhYVatmxZwPuGkp6ervT09JBl0HiG98rVsLzB0h01t5+6rK9OPKaTUvf9lMiwAAAAAMBKkyZN0oYNG7R8+XJl1XNZx8rKSjVt2lSS1KdPHy1evFi9e/eWJO3fv18rVqzQzJkz1axZM61du1a7d+9Wq1atJEmLFy9W//79feN7AAAAAAASzYoR6sHB+MGB+OEWL16sgQMHKisrS927d6+1vbCwUD/88IOOP/549enTR0uXLlV1dXWd+8JsqSmHvtXf/6gjat0GAAAAAISnvLxcjz32mJ588sk6k+I//vijVq5cKanmW+V//vOflZKSor59+0qSxo8frwceeEDff/+9qqqqdNddd2nIkCEqKChQTk6Ohg8frltuuUWVlZXauXOn7rnnHk2aNCneKQIAAAAAEJSRE+MLFizwTWD/4x//0CuvvKJzzjlHY8eO1XvvvaeFCxdKkt5++22tWbNGY8aMkVQzUJ86dar27Nmj/fv3a/Lkybr88suVmZmpfv36KTc3V9OnT1d1dbU2bNigRx99VNdcc03C8gQAAAAAIF42bNig6upqDRw4UPn5+b6/M844Q+Xl5br44ouVm5urrl27atWqVVqwYIEyMjIkSaNHj9aECRPUr18/dejQQd9++61mzZrle+wnnnhC27ZtU25urk488USNHz9eZ511VoIyBQAAAACgLiMvpf6Xv/xFF110kTIzM9W5c2fNnTtXPXv2lCTNmTNHEyZM0K5du9S1a1fNmzfP90n3iRMnauvWrerWrZvS0tI0atQoTZs2TZLk8Xj06quv6j//8z/14IMPqlWrVrr//vvVp0+fhOUJAAAAAEC89OzZs9ZV1PytXr065P1vuukm3XTTTQG3tWnTRq+//npU8QEAAAAA0Jg8juM4iQ7CJiUlJfJ6vSouLlZ2dnaiwwEAAAAAGICxYnQ4fgAAAAAAf7EeKxp5KXUAAAAAAAAAAAAAAGKFiXEAAAAAAAAAAAAAQFJjYtxW5eXSmDE1f+XlodcHK2uaaHOyJU/AH20cCM3mPhJJnCbGH4ibc7IlHwBAZMI5v8eqjI1sPD717SueOVHGrj5hWu6m1Vey1juCc3O7IHf35e7WvAGX4TfGI2TM756VlUnNm9csl5ZKWVnB1wcra5poc7IlT8AfbRwIzeY+EkmcJsYfiJtzsiUfAAlhzFjRUgk9fuGc32NVxkY2Hp/69hXPnCgTuoxpTMvdtPpK1npHcG5uF+Res+ym3N2aN2A4fmMcAAAAAAAAAAAAAIAIMDEOAAAAAAAAAAAAAEhqTIwDAAAAAAAAAAAAAJIaE+MAAAAAAAAAAAAAgKTGxDgAAAAAAAAAAAAAIKkxMQ4AAAAAAAAAAAAASGoex3GcRAdhk5KSEnm9XhUXFys7OztxgTiO9NNPNcuZmZLHE3x9sLKmiTYnW/IE/NHGgdBs7iORxGli/IG4OSdb8gGQEMaMFS2V0OMXzvk9VmVsZOPxqW9f8cyJMqHLmMa03E2rr2StdwTn5nZB7jXLbsrdrXkDhov1WJGJ8QjxZgcAAAAAwB9jxehw/AAAAAAA/mI9VuRS6gAAAAAAAAAAAACApMbEuK0qKqRLL635q6gIvT5YWdNEm5MteQL+aONAaDb3kUjiNDH+QNycky35AAAiE875PVZlbGTj8alvX/HMiTJ29QnTcjetvpK13hGcm9sFubsvd7fmDbgMl1KPkDGXdysrk5o3r1kuLZWysoKvD1bWNNHmZEuegD/aOBCazX0kkjhNjD8QN+dkSz4AEsKYsaKlEnr8wjm/x6qMjWw8PvXtK545USZ0GdOYlrtp9ZWs9Y7g3NwuyL1m2U25uzVvwHBcSh0AAAAAAAAAAAAAgAgwMQ4AAAAAAAAAAAAASGpMjAMAAAAAAAAAAAAAkhoT4wAAAAAAAAAAAACApMbEOAAAAAAAAAAAAAAgqTExDgAAAAAAAAAAAABIammJDgANlJkp/fjjoeVQ64OVNU20OdmSJ+CPNg6EZnMfiSROE+MPxM052ZIPACAy4ZzfY1XGRjYen/r2Fc+cKBO6jGlMy920+krWekdwbm4X5H5ouTHLmMSteQMu43Ecx0l0EDYpKSmR1+tVcXGxsrOzEx0OAAAAAMAAjBWjw/EDAAAAAPiL9ViRS6kDAAAAAAAAAAAAAJIaE+O2qqiQrrqq5q+iIvT6YGVNE21OtuQJ+KONA6HZ3EciidPE+ANxc0625AMAiEw45/dYlbGRjcenvn3FMyfK2NUnTMvdtPpK1npHcG5uF+TuvtzdmjfgMlxKPULGXN6trExq3rxmubRUysoKvj5YWdNEm5MteQL+aONAaDb3kUjiNDH+QNycky35AEgIY8aKlkro8Qvn/B6rMjay8fjUt6945kSZ0GVMY1ruptVXstY7gnNzuyD3mmU35e7WvAHDcSl1AAAAAAAAAAAAAAAiwMQ4AAAAAAAAAAAAACCpMTEOAAAAAAAAAAAAAEhqTIwDAAAAAAAAAAAAAJIaE+MAAAAAAAAAAAAAgKTGxDgAAAAAAAAAAAAAIKmlJToANFCzZtLGjYeWQ60PVtY00eZkS56AP9o4EJrNfSSSOE2MPxA352RLPgCAyIRzfo9VGRvZeHzq21c8c6JM6DKmMS130+orWesdwbm5XZD7oeXGLGMSt+YNuIzHcRwn0UHYpKSkRF6vV8XFxcrOzk50OAAAAAAAAzBWjA7HDwAAAADgL9ZjRS6lDgAAAAAAAAAAAABIakyM22r/fummm2r+9u8PvT5YWdNEm5MteQL+aONAaDb3kUjiNDH+QNycky35AAAiE875PVZlbGTj8alvX/HMiTJ29QnTcjetvpK13hGcm9sFubsvd7fmDbgMl1KPkDGXdysrk5o3r1kuLZWysoKvD1bWNNHmZEuegD/aOBCazX0kkjhNjD8QN+dkSz4AEsKYsaKlEnr8wjm/x6qMjWw8PvXtK545USZ0GdOYlrtp9ZWs9Y7g3NwuyL1m2U25uzVvwHBcSh0AAAAAAAAAAAAAgAgwMQ4AAAAAAAAAAAAASGrGT4xfeeWVOvroo323P/30Uw0YMEB5eXnq2bOn3n333VrlH3roIXXt2lUdOnTQ6NGjVVRU5NtWVFSkMWPGqHPnzsrLy9MDDzwQtzwAAAAAAEi0hQsX6qSTTlLXrl3VpUsXzZgxw7dt06ZNGjZsmPLy8tS1a1c999xzte47e/Zs9ejRQx07dtSQIUO0ceNG37Z9+/Zp/PjxysvLU8eOHXXzzTeLX24DAAAAAJjE6InxLVu26JlnnvHd3rt3r0aMGKG7775bmzdv1mOPPaYxY8Zo+/btkqQXX3xRzzzzjJYtW6bvvvtOOTk5Gj9+vO/+F110kXr16qXNmzdryZIlmjFjhubNmxf3vAAAAAAASITXX39ds2bN0rp16/Tuu+9q+vTpmj9/vqqqqjRixAiNHTtWmzdv1htvvKFrr71Wq1atkiQtWbJEt9xyixYsWKDvv/9ew4YN05gxY3yPe8MNN6i6ulrr16/Xl19+qUWLFumvf/1rgrIEAAAAAKAuoyfGr7vuOl122WW+27Nnz1bfvn01dOhQSdKpp56qQYMG6YUXXpBU823xKVOmqHXr1kpNTdVdd92lN954Q7t27dI333yj5cuX69Zbb5XH41H79u117bXXatasWQnJDQAAAACAeHv44YfVvXt3SdJRRx2l8847TwsXLtR7772ntLQ0XXrppZKknj176sILL9TTTz8tSZoxY4YmTZqkzp07S5Juvvlmbdy4UZ999plKS0v19NNP67777lNaWpq8Xq8mT57MeBsAAAAAYBRjJ8bfeustFRUV6dxzz/WtW7JkiU466aRa5fr3769Vq1apsrJSy5cvr7W9TZs2ys/P1xdffKElS5aoX79+SktLq3PfUCoqKlRSUlLrDwAAAACAZLBjxw55vd6Q422p7ng8LS1NvXv31qpVq7RixQoVFBSodevWte67evVqVVVVBdwvY20AAAAAQLyl1V8k/oqKinTttdfqrbfe8l0mXZIKCwt12mmn1Srbtm1bLV26VDt37lRVVZXatGlTZ3tRUZEKCwvVrl27gNtCuffeezV16tQoM2oEzZpJq1cfWg61PlhZ00Sbky15Av5o40BoNveRSOI0Mf5A3JyTLfkAQJiWLVumN998U3feeaemT5+uDh061Np++Jg51Jg6PT094LbKykoVFxfXmjA/yKixdjjn91iVsZGNx6e+fcUzJ8qELmMa03I3rb6Std4RnJvbBbkfWm7MMiZxa96Ayxg3Me44jsaNG6dJkybp6KOPrjUxXllZKcdxapWvqqqSx+NRZWWl7/4ejyfg9mD3DWXy5Mm6/vrrfbdLSkrUqVOnBucXMykp0jHHhLc+WFnTRJuTLXkC/mjjQGg295FI4jQx/kDcnJMt+QBAGObMmaNJkybp6aefVkFBQb1j5vrG44G2SQo65jZqrB3O+T1WZWxk4/Gpb1/xzIkyocuYxrTcTauvZK13BOfmdkHu8SljErfmDbhMXC+l3r9//3rLTJs2TQcOHNDVV19dZ1vr1q21c+fOWut27NihnJwctWrVSo7jaPfu3QG3h7pvKOnp6crOzq71BwAAAACAKcIZax9UVVWlCRMmaOrUqVqwYIFGjhwpKfR4u77twbZlZGTI6/UGjIOxNgAAAAAg3hr1G+MHDhxQkyZNfLe/++67eu/zyCOPqKysTK1atZJU86n0ffv2qWXLlpo8ebIWL15c61Plixcv1u9+9ztlZWWpe/fuWrx4sX77299KqrnU2w8//KDjjz9eKSkpmjp1qqqrq5WSkuK778CBA2OZcvzs3y/9+c81y7fcIjVtGnx9sLKmiTYnW/IE/NHGgdBs7iORxGli/IG4OSdb8gGQ9Boy1j5o0qRJ2rBhg5YvX66srCzf+j59+uh//ud/apU9fMzcp08fLV68WL1795Yk7d+/XytWrNDMmTPVrFkzrV27Vrt37/aN5RcvXqz+/fv7xt9GC+f8HqsyNrLx+NS3r3jmRJnQZUxjWu6m1Vey1juCc3O7IPeaZTfl7ta8AbdxYmTQoEF11h155JG1bufm5kb8uIsWLXK6d+/uOI7jbNmyxWnZsqXz3nvvOY7jOG+99ZaTl5fnlJaWOo7jOA8++KBz4oknOrt373YqKiqcSy65xJk0aZLjOI5TXV3tHH/88c6f//xnp6qqylm/fr3TuXNnZ/ny5RHFU1xc7EhyiouLI84lpkpLHUeq+fs5/6Drg5U1TbQ52ZIn4I82DoRmcx+JJE4T4w/EzTnZkg+AhGissWIsx9r79u1zUlNTnW3bttXZVlZW5uTm5jrPPvus4ziO88knnzi5ubnOli1bHMdxnFdffdXJz893tmzZ4lRWVjq33Xabc9ZZZ/nuP3LkSOeKK65wDhw44OzYscM59thjnblz54abZmLH2uGc32NVxkY2Hp/69hXPnChjV58wLXfT6itZ6x3BubldkLv7cndr3oDhYj1WjNk3xtesWRNo0j1WDy9J6tixo+bMmaMJEyZo165d6tq1q+bNm+f7lPvEiRO1detWdevWTWlpaRo1apSmTZsmqeZ3zV599VX953/+px588EG1atVK999/v/r06RPTGAEgFqqqHaX+vLx0Q5FOPCbTdxsAAADuEcux9oYNG1RdXV3nymndu3fXggULNG/ePF1++eW6/vrrlZOTo+eff14dO3aUJI0ePVrr1q1Tv379VF1drcGDB2vWrFm+x3jiiSc0btw45ebmKisrSzfeeKPOOuusBsUJAAAAAEBjaNRLqXs8nqgfY/Dgwfr66699t88444xatw+XkpKi+++/X/fff3/A7UcddZTef//9qGMCgMY0f3Whpr+yQot+vn3pk5+o5ZHf6s7T8zUsoZEBAADABA0da/fs2VPV1dVBt/fp00crV64Muv2mm27STTfdFHBbmzZt9PrrrzcoLgAAAAAA4qFRJ8Ydx9Grr77qW66oqGjM3QGA9d79cruufPVrZeyvfb7cXlyuiXNW6asExQUAAABzMNYGAAAAACByjToxLklPPvmkb3nfvn2NvTsAsNqf31kjR3W/ARTbH6YAAACA7RhrAwAAAAAQmUa/lPq8efN8t3NzcxtzdwBgve3FFVLTjIDbmBwHAACAxFgbAAAAAICGSInnzmLxm+MAAAAAAOAQxtoAAAAAANQvZt8Y3717t3r37u277TiO9uzZE6uHh7+MDGnZskPLodYHK2uaaHOyJU/A389t9/Pv96hiSc1lMCvSmmjkxQ/6lg9fd/dZvXQcbRxuYvPzQCRxmhh/IG7OyZZ8ACQVxtpxEM75PVZlbGTj8alvX/HMiTKhy5jGtNxNq69krXcE5+Z2Qe6HlhuzjEncmjfgMh7HcWJydd4VK1YEXN+nTx/fcvv27bVt27ZY7C5hSkpK5PV6VVxcrOzs7ESHAyCJVFU7Onn6Qm0vLg942XSPpBxvhj7+42lKTeFbQQAAACZprLEiY20AAAAAgFvFeqwYs2+MHz4oDyZGc/AAkJRSUzyaMqKnrnxupTyq/ZviB6fBp4zoyaQ4AACAizDWBgAAAAAgNmI2MR6OV199NZ67S27790sPP1yzPHGi1LRp8PXBypom2pxsyRPwd1jbHT5xoh67sLfumfuZ/mPhi5KkJ08cqTatW+iO4V11xjvPSe+INg53sfl5IJI4TYw/EDfnZEs+AFyHsXaUwjm/x6qMjWw8PvXtK545USZ0GdOYlrtp9ZWs9Y7g3NwuyL1m2U25uzVvwGVidin1SBQVFemII46I925jwpjLu5WVSc2b1yyXlkpZWcHXBytrmmhzsiVPwF+Atlu1t1Sp2S0kSUs/36wTj+mk1H0/0cbhTjY/D0QSp4nxB+LmnGzJB0BCmDBWZKzdQOGc32NVxkY2Hp/69hXPnCgTuoxpTMvdtPpK1npHcG5uF+Res+ym3N2aN2A4Iy+lPmTIEHk8oS/tO3LkSE2aNEmSdOyxx1r/+2cA0JgOv1x6/6OOkLh8OgAAgOsw1gYAAAAAIHZiMjF+22231VumY8eOvmV+/wwAAAAAgNAYawMAAAAAEDsxmRg//fTTIypf3yfeAQAAAABwO8baAAAAAADETkwmxiXpww8/DLi+R48eOvLII2O1GwAAAAAAXIOxNgAAAAAAsRGzifEpU6ZIktasWaP27dvL6/Vq06ZNuueee3TBBRfEajcAAAAAALgGY20AAAAAAGIjZhPjixYtkiSdf/75uvLKKzVo0CDdfvvtsXp4AAAAAABch7E2AAAAAACxEbOJccRZRob08xskysgIvT5YWdNEm5MteQL+aONAaDb3kUjiNDH+QNycky35AAAiE875PVZlbGTj8alvX/HMiTKhy5jGtNxNq69krXcE5+Z2Qe6HlhuzjEncmjfgMh7HcZxYPqD/p9h79OihU045RRdffLE8Ho8cx9GSJUtUXl4ey93GTUlJibxer4qLi5WdnZ3ocAAAAAAABmjssSJjbQAAAACA28R6rBizb4x/+OGHkqQdO3Zo1apVkqTvvvtOPXr0UJs2bXTbbbfFalcAAAAAALgCY20AAAAAAGIjZt8YHzJkSMD1t912m04//fRY7MIIxnyK/cAB6f/+r2Z5/HipSZPg64OVNU20OdmSJ+CPNg6EZnMfiSROE+MPxM052ZIPgIRorLEiY+04COf8HqsyNrLx+NS3r3jmRJnQZUxjWu6m1Vey1juCc3O7IPeaZTfl7ta8AcPFeqwY80upJztjJsbLyqTmzWuWS0ulrKzg64OVNU20OdmSJ+CPNg6EZnMfiSROE+MPxM052ZIPgIQwZqxoqYQev3DO77EqYyMbj099+4pnTpQJXcY0puVuWn0la70jODe3C3KvWXZT7m7NGzBcrMeKKTGICQAAAAAAAAAAAAAAYzExDgAAAAAAAAAAAABIakyMAwAAAAAAAAAAAACSGhPjAAAAAAAAAAAAAICkxsQ4AAAAAAAAAAAAACCpMTEOAAAAAAAAAAAAAEhqaYkOAA2Uni69+eah5VDrg5U1TbQ52ZIn4I82DoRmcx+JJE4T4w/EzTnZkg8AIDLhnN9jVcZGNh6f+vYVz5woE7qMaUzL3bT6StZ6R3Bubhfkfmi5McuYxK15Ay7jcRzHSXQQNikpKZHX61VxcbGys7MTHQ4AAAAAwACMFaPD8QMAAAAA+Iv1WJFLqQMAAAAAAAAAAAAAkhqXUrfVgQPS3/9eszx2rNSkSfD1wcqaJtqcbMkT8EcbB0KzuY9EEqeJ8Qfi5pxsyQcAEJlwzu+xKmMjG49PffuKZ06UCV3GNKblblp9JWu9Izg3twtyr1l2U+5uzRtwGS6lHiFjLu9WViY1b16zXFoqZWUFXx+srGmizcmWPAF/tHEgNJv7SCRxmhh/IG7OyZZ8ACSEMWNFSyX0+IVzfo9VGRvZeHzq21c8c6JM6DKmMS130+orWesdwbm5XZB7zbKbcndr3oDhuJQ6AAAAAAAAAAAAAAARYGIcAAAAAAAAAAAAAJDUmBgHAAAAAAAAAAAAACQ1JsYBAAAAAAAAAAAAAEmNiXEAAAAAAAAAAAAAQFJjYhwAAAAAAAAAAAAAkNTSEh0AGig9XXrxxUPLodYHK2uaaHOyJU/AH20cCM3mPhJJnCbGH4ibc7IlHwBAZMI5v8eqjI1sPD717SueOVEmdBnTmJa7afWVrPWO4NzcLsj90HJjljGJW/MGXMbjOI6T6CBsUlJSIq/Xq+LiYmVnZyc6HAAAAACAARgrRofjBwAAAADwF+uxorGXUr/vvvvUrVs3de7cWccee6zeeOMN37ZPP/1UAwYMUF5ennr27Kl333231n0feughde3aVR06dNDo0aNVVFTk21ZUVKQxY8aoc+fOysvL0wMPPBC3nAAAAAAASDTHcfTMM89o4MCBtdY3b95cHTp0UH5+vvLz8zVmzJha2xlrAwAAAABsZuyl1Pv376/rrrtOTZo00YcffqgzzjhD33//vZo2baoRI0boqaee0tChQ/XBBx9o1KhR+vrrr5WTk6MXX3xRzzzzjJYtWyav16urr75a48eP1yuvvCJJuuiii9S/f3+9+OKLKiws1K9+9St169ZNI0aMSHDGEaqslObOrVkePVpKSwu+PlhZ00Sbky15Av5o40BoNveRSOI0Mf5A3JyTLfkAQAjz58/XTTfdpH379iktwHns448/VkFBQZ31ST3WDuf8HqsyNrLx+NS3r3jmRJnQZUxjWu6m1Vey1juCc3O7IPeaZTfl7ta8AZex5lLqRxxxhP71r3/pww8/1DvvvKO5B08skkaOHKnTTz9dEydO1K9+9Sv98Y9/1KhRoyRJO3fuVG5urn744Qft3LlTJ598srZt2+Z7A+DBBx/URx99VOvxQjHm8m5lZVLz5jXLpaVSVlbw9cHKmibanGzJE/BHGwdCs7mPRBKnifEH4uacbMkHQEIYM1asxyuvvKJmzZopMzNTV1xxhb7++mvftubNm2vLli1q1apVnfsl9Vg7nPN7rMrYyMbjU9++4pkTZUKXMY1puZtWX8la7wjOze2C3GuW3ZS7W/MGDOeaS6kfVF5eroceekh9+/bV0UcfrSVLluikk06qVaZ///5atWqVKisrtXz58lrb27Rpo/z8fH3xxRdasmSJ+vXrV+tT8QfvG0xFRYVKSkpq/QEAAAAAYKNzzjlHZ555ZsBtKSkp8nq9ddYz1gYAAAAAJANjJ8bXr1+vTp06KTMzU3PmzNGjjz4qSSosLFS7du1qlW3btq2Kioq0c+dOVVVVqU2bNgG3h7pvMPfee6+8Xq/vr1OnTjHKEAAAAAAAc3g8HnXp0kXdunXTuHHjtG3bNklirA0AAAAASArGTox36dJFW7Zs0U8//aRrr71WAwcO1LfffqvKykr5X/29qqpKHo9HlZWVkhRye7BtwUyePFnFxcW+vy1btsQoQwAAAAAAzLF7925t3LhRn3zyiTIzMzVixAg5jsNYG0giVdWH+urSDUW1bsPdaBsAAMANjJ0YPygjI0MXXHCBfvvb3+rpp59W69attXPnzlplduzYoZycHLVq1UqO42j37t0Bt4e6bzDp6enKzs6u9QcAAAAAQLJJSal5i8Dr9erhhx/W2rVrtWHDBsbaQJKYv7pQQx9833f70ic/0cnTF2r+6sLEBQUj0DYARIoP0wCwlfET4welp6erWbNm6tOnjxYvXlxr2+LFizVw4EBlZWWpe/futbYXFhbqhx9+0PHHH68+ffpo6dKlqq6urnNfAAAAAABQo7q6WtXV1WratCljbSAJzF9dqCufW6ntxRW11m8vLteVz61kAtTFaBsAIsWHaQDYzMiJ8a1bt2r27Nm+y7V9+OGHmjt3rsaMGaOxY8fqvffe08KFCyVJb7/9ttasWaMxY8ZIksaPH6+pU6dqz5492r9/vyZPnqzLL79cmZmZ6tevn3JzczV9+nRVV1drw4YNevTRR3XNNdckLFcAAAAAABJt/fr1+uabbyRJFRUVmjhxovr27ev77W/G2oC9qqodTZ33lQJ9l+/guqnzvuLbfi5E2wAQKT5MA8B2aYkOIJD09HQ98cQTmjhxolq0aKH8/HzNnTtX3bp1kyTNmTNHEyZM0K5du9S1a1fNmzdPWVlZkqSJEydq69at6tatm9LS0jRq1ChNmzZNkuTxePTqq6/qP//zP/Xggw+qVatWuv/++9WnT5+E5dpgTZtKTz55aDnU+mBlTRNtTrbkCfijjQOh2dxHIonTxPgDcXNOtuQDAA2wa9cunX/++dq3b5/S09N1+umn6+WXX/ZtT+qxdjjn91iVsZGNx6e+fcUzJwPKLNu4S4XF5ZKkA6lpuvHMSb5lqWYCtLC4XMs27tLALkfYWeexYlruydo2YA/T+kQ8kfuh5Z8d/mEa/3OGI8mjmg/TDOuZo9QUj325u7nOARfxOI7DR/4iUFJSIq/Xq+LiYn4DDQAAAAAgibFitDh+QON5fdVWTZyzqt5yD//+BI06oUPjBwRj0DYARGLJ+iKd/7d/11tu9uUDaj5MAwAxEOuxopGXUgcAAAAAAAAQvbYtMmJaDsmDtgEgEj/uLY9pOQBIBCMvpY4wVFZKCxbULJ9xhpSWFnx9sLKmiTYnW/IE/NHGgdBs7iORxGli/IG4OSdb8gEARCac83usytjIxuNT377imZMBZfoVtFauN0Pbi8uVUl2lQRtXSpI+LOitqpRUeSTleDPUr6B1/GM2jWm5J2vbgD1M6xPxRO41y4fFfPiHZFIDnDMO8pWzLXc31zngIlxKPULGXN6trExq3rxmubRU+vk31gOuD1bWNNHmZEuegD/aOBCazX0kkjhNjD8QN+dkSz4AEsKYsaKlEnr8wjm/x6qMjWw8PvXtK545GVJm/upCXfncSjXbX66v/nKuJKnHdS+rvGnN5MVjF/bW8F658Y/ZNKblnqxtA/YwrU/EE7nXLB8Wc1W1o5OnL9T24nJl7C/XmsPOGfuaZvg+TPPxH0+r+Y1x23J3c50DBuNS6gAAAAAAAADCNrxXrh67sLfaedNrrc/xZtSe+ITr0DYAhCs1xaMpI3pKkjx+2w7enjKiZ82kOAAYims4AAAAAAAAAElueK9cDcsbLN1Rc/upy/rqxGM6MYEB2gaAsB38MM30V1bUWp/jzdCUET35MA0A4zExDgAAAAAAALjA4ROd/Y86QmLiEz+jbQAIFx+mAWAzJsYBAAAAAAAAAAAQFj5MA8BW/MY4AAAAAAAAAAAAACCpMTEOAAAAAAAAAAAAAEhqXErdVk2bSn/966HlUOuDlTVNtDnZkifgjzYOhGZzH4kkThPjD8TNOdmSDwAgMuGc32NVxkY2Hp/69hXPnCgTuoxpTMvdtPpK1npHcG5uF+R+aLkxy5jErXkDLuNxHMdJdBA2KSkpkdfrVXFxsbKzsxMdDgAAAADAAIwVo8PxAwAAAAD4i/VYkUupAwAAAAAAAAAAAACSGpdSt1VVlfTRRzXLp5wipaYGXx+srGmizcmWPAF/tHEgNJv7SCRxmhh/IG7OyZZ8AACRCef8HqsyNrLx+NS3r3jmRJnQZUxjWu5hPE7VgUp9/eJb2r1vv1IHnap+XY9UaooncXnZWO8Izs3tgtxrlt2Uu1vzBlyGS6lHyJjLu5WVSc2b1yyXlkpZWcHXBytrmmhzsiVPwB9tHAjN5j4SSZwmxh+Im3OyJR8ACWHMWNFSCT1+4ZzfY1XGRjYen/r2Fc+cKBO6jGlMy72ex5m/ulDTX1mhRXeMkCT1uO5ltTyypaaM6KnhvXITk5eN9Y7g3NwuyL1m2U25uzVvwHBcSh2QVFV96PMcSzcU1boNAAAAAABgAt6/QGOZv7pQVz63UtuLK2qt315criufW6n5qwsTFBkAAIC5mBiHdeavLtTQB9/33b70yU908vSFevfL7YkLCgAAAAAA4DDB3r9gwhLRqqp2NHXeVwr0MYuD66bO+4oPYgAAAPhhYhxWeffL7UE/DTtxzqrEBAUAAAAAAHAYvs2LxrRs4y4VFpcH3e5IKiwu17KNu+IXFAAAgAWYGIdV/vzOmpCfhgUAAAAAAEgkvs2Lxvbj3uCT4g0pBwAA4BZMjMMq/p+0PhzDSQAAAAAAkGh8mxeNrW2LjJiWAwAAcAsmxgEAAAAAAIAY4du8aGz9Clor15shT5DtHkm53gz1K2gdz7DgUodf/WLphiKuhgEAMFpaogNAAzVpIt1336HlUOuDlTVNPTltLipTZVWqJKkyNVV/HnyZb/nwdWP7d1aeyXkC/sLtt7b0ZSDWbO4jkcRpYvyBuDknW/IBAEQmnPN7rMrYyMbjU9++Gjmnw7+lG+j9izrl4nmMTStjGtNyD/I4qSkeTRnRU1c+t1JVfm3s4GT5lBE9lZriiW3MyVrvCK6e+py/ulD3zP1M//FzG3zymZVq0/pbTRnRU8N75Yb9OEZyc59wa+5uzRtwGY/jOHyEKwIlJSXyer0qLi5WdnZ2osNxlapqRydPX6jtxeUBL5vukZTjzdDHfzzt0At/AAAAAIgDxorR4fghmfD+BeJl/upCTZ33Va1L9+d6M+pOSgKNYP7qQl353Mo657mDZ7XHLuxNOwQARC3WY0W+MQ5rHP5pWI9q/6Z4wE/DAgAAAAAAxBnvXyBehvfK1bCeOVq2cZd+3Fuuti1qLp9O20Jjq6p2NHXeVwE//OOo5lw3dd5XGtYzh/YIADAKE+O2qqqSVq6sWe7dWzp4Oa5A64OVNU0YOQ3v3VuPXdhbd73+hY745ktJ0up2XdSuVZamnNldw/d9L33yvdl5Av7C7be29GUg1mzuI5HEaWL8gbg5J1vyAQBEJpzze6zK2MjG41PfvuKQ0/BeucHfv/D/Nm88j7FpZUxjWu5hPE6qU62BuzbU3MjvLQWahKTe0VBB6nPZxl2+KxWkVFep1w/rJdWc56pTUuVIKiwu17KNuzSwyxF2tgs39wm35u7WvAGX4VLqETLm8m5lZVLz5jXLpaVSVlbw9cHKmiaCnKr2lio1u4Ukaennm3XiMZ2Uuu8nO/IE/IXbb23py0Cs2dxHIonTxPgDcXNOtuQDICGMGStaKqHHL5zze6zK2MjG41PfvuKYU8D3L/wnLuN5jE0rYxrTcjetvpK13hFckPp8fdVWTZyzSpLUbH+51vzlXElSj+te1r6mGb67P/z7EzTqhA52tgs39wm35u7WvAHDcSl1QKo1iOx/1BGBPw0LAAAAAACQQLx/ASAZtW2RUX+hCMoBABAvKYkOAAAAAAAAAAAA2KFfQWvlejMU7KM+Hkm53prfvAcAwCRMjAMAAAAAAAAAgLCkpng0ZURPSaozOX7w9pQRPev+dAQAAAnGxDgAAAAAAAAAAAjb8F65euzC3mrnTa+1Pseboccu7K3hvXITFBkAAMHxG+MAAAAAAAAAACAiw3vlaljeYOmOmttPXdZXJx7TiW+KAwCMxcQ4AAAAAAAAAACI2OGT4P2POkJiUhwAYDAmxm3VpIk0Zcqh5VDrg5U1TbQ52ZIn4I82DoRmcx+JJE4T4w/EzTnZkg8AIDLhnN9jVcZGNh6f+vYVz5woE7qMaUzL3bT6StZ6R3Bubhfkfmi5McuYxK15Ay7jcRzHSXQQNikpKZHX61VxcbGys7MTHQ4AAAAAwACMFaPD8QMAAAAA+Iv1WDElBjEBAAAAAAAAAAAAAGAsLqVuq+pqac2amuUePaSUlODrg5U1TbQ52ZIn4I82DoRmcx+JJE4T4w/EzTnZkg8AIDLhnN9jVcZGNh6f+vYVz5woE7qMaUzL3bT6StZ6R3BubhfkXrPsptzdmjfgMlxKPULGXN6trExq3rxmubRUysoKvj5YWdNEm5MteQL+aONAaDb3kUjiNDH+QNycky35AEgIY8aKlkro8Qvn/B6rMjay8fjUt6945kSZ0GVMY1ruptVXstY7gnNzuyD3mmU35e7WvAHDcSl1AAAAAAAAAAAAAAAiwMQ4AAAAAAAAAAAAACCpMTEOAAAAAAAAAAAAAEhqTIwDAAAAAAAAAAAAAJKasRPjCxcu1EknnaSuXbuqS5cumjFjhm/bpk2bNGzYMOXl5alr16567rnnat139uzZ6tGjhzp27KghQ4Zo48aNvm379u3T+PHjlZeXp44dO+rmm2+W4zhxywsAAAAAgERyHEfPPPOMBg4cWGv9p59+qgEDBigvL089e/bUu+++W2v7Qw89pK5du6pDhw4aPXq0ioqKfNuKioo0ZswYde7cWXl5eXrggQfikgsAAAAAAOEydmL89ddf16xZs7Ru3Tq9++67mj59uubPn6+qqiqNGDFCY8eO1ebNm/XGG2/o2muv1apVqyRJS5Ys0S233KIFCxbo+++/17BhwzRmzBjf495www2qrq7W+vXr9eWXX2rRokX661//mqAsAQAAAACIn/nz5+u4447TnXfeqd27d/vW7927VyNGjNDdd9+tzZs367HHHtOYMWO0fft2SdKLL76oZ555RsuWLdN3332nnJwcjR8/3nf/iy66SL169dLmzZu1ZMkSzZgxQ/PmzYt7fgAAAAAABJOW6ACCefjhh33LRx11lM477zwtXLhQKSkpSktL06WXXipJ6tmzpy688EI9/fTTOuGEEzRjxgxNmjRJnTt3liTdfPPNeuCBB/TZZ5+pS5cuevrpp7VlyxalpaXJ6/Vq8uTJuuuuu3TNNdckIs2Ga9JEuvHGQ8uh1gcra5poc7IlT8AfbRwIzeY+EkmcJsYfiJtzsiUfAAihrKxM06dPV2Zmpq644grf+tmzZ6tv374aOnSoJOnUU0/VoEGD9MILL2jixIl66KGHNGXKFLVu3VqSdNdddyk3N1e7du3Szp07tXz5cr3xxhvyeDxq3769rr32Ws2aNUsjRoxISJ4RCef8HqsyNrLx+NS3r3jmRJnQZUxjWu6m1Vey1juCc3O7IPdDy41ZxiRuzRtwGY9jyXXEL7roIh199NGqrKzUjh07an3L++9//7tmzpypRYsWqaCgQC+99JJOPPFE3/Zhw4bpwgsvVH5+vq666iqtXr3at23r1q3Kz89XeXm5UlNT6+y3oqJCFRUVvtslJSXq1KmTiouLlZ2d3UjZAgAAAABsUlJSIq/Xa81Y8f3339cVV1yhr7/+WpJ02WWX6ZhjjtGNB9/Ek3TPPfdo3bp1+tvf/qbMzExt27ZNbdq08W3/xS9+oZkzZ2rTpk166aWX9Oabb/q2/etf/9KFF15Y66fNDsdYGwAAAABQn1iPtY29lPrhli1bpjfffFMXXHCBCgsL1a5du1rb27Zt6/tts1Dbg22rrKxUcXFxwH3fe++98nq9vr9OnTrFMDMAAAAAABIv1Fh6586dqqqqqjUpfvj2+sbpgTDWBgAAAADEm/ET43PmzNHIkSP19NNPq6CgQJWVlfL/kntVVZU8Ho8khdwebJsk3/39TZ48WcXFxb6/LVu2xCq16FRXS5s21fxVV4deH6ysaaLNyZY8AX+0cSA0m/tIJHGaGH8gbs7JlnwAoAHqG0tLinisHWycLRk21g7n/B6rMjay8fjUt6945kQZu/qEabmbVl/JWu8Izs3tgtzdl7tb8wZcxtjfGK+qqtI111yjRYsWacGCBTr++OMlSa1bt9bOnTtrld2xY4dycnJqbT/4G+OHb/d6vQHvm5GRIa/XGzCO9PR0paenxzK12Ni3TyooqFkuLZWysoKvD1bWNNHmZEuegD/aOBCazX0kkjhNjD8QN+dkSz4A0AChxtqtWrWS4zjavXu37zfGD99eWFioZcuWBbxvMEaNtcM5v8eqjI1sPD717SueOVEmdBnTmJa7afWVrPWO4NzcLsi9ZtlNubs1b8BljP3G+KRJk7RhwwYtX77cNykuSX369NHixYtrlV28eLEGDhwYcPv+/fv/P3t3Hh91de9//D1JICGBDESEhDUIBUUsFmQrVhZBKRWpCtpWtFoqFa4CWpei9odIvYJFRG2l99aCWitoK1RxwaIIyg0FwaWioLKKEJAEmLAlkOT7+yMyMMmsmZnvNq/n4zGPzHzPmZnzOdvMmZP5jtavX6++ffuqR48e+vzzz3XgwIGA+/bp00dpabatCgAAAAAAkircWjsnJ0ddunQJSC8uLtbevXvVvXt39ezZU2vWrFH1ad+IOX2dDgAAAACAHdhyN7i8vFxz587V/PnzlVPrv2lGjBih3bt367nnnpMkrVu3Ti+//LJ++ctfSpLGjRunRx55RF9//bWqqqo0ffp0DRo0SB06dFB+fr6GDRume+65R5WVlSopKdGDDz6oyZMnmx0iAAAAAAC2ce211+rtt9/W8uXLJUmvv/66Nm7cqNGjR0uqWWtPmzZNBw8e1PHjxzVlyhTddNNNys7OVu/evVVQUKCZM2equrpaW7du1ZNPPqlbb73VypAAAAAAAAhgy1Opb926VdXV1XX+u7xLly568803tWTJEt100026/fbblZ+fr+eff15t2rSRJF1xxRXavHmzevfurerqag0cOFDz5s3zP8Zf/vIXjR07VgUFBcrJydEdd9yhH//4x2aGBwAAAACArbRp00YLFy7UhAkTtH//fnXq1ElLlizx/7P6pEmTtGvXLnXu3FkZGRkaOXKkZsyYIUnyeDxatGiRfvGLX2j27Nlq1qyZZs2apZ49e1oZEgAAAAAAAWy5Md61a9eAU7DV1rNnT33wwQch0++8807deeedQdOaN2+ul19+Oe4yAgAAAADgVAMHDtSmTZsCjl166aV1jp2UlpamWbNmadasWUHTzzrrLK1YsSLRxQQAAAAAIGFseSp1AAAAAAAAAAAAAAAShY1xAAAAAAAAAAAAAICr2fJU6ohCRoY0YcKp6+GOh8prN/HG5JQ4gdro40B4Th4jsZTTjuUPJpVjcko8AIDYRDO/JyqPEzmxfiI9l5kxkSd8HruxW+x2ay+3tjtCS+V+Qeynriczj52katxAivEYhmFYXQgnKSsrk9frlc/nU25urtXFAQAAAADYAGvF+FB/AAAAAIDaEr1W5FTqAAAAAAAAAAAAAABX4zwOTmUYUklJzfXmzSWPJ/TxUHntJt6YnBInUBt9HAjPyWMklnLasfzBpHJMTokHABCbaOb3ROVxIifWT6TnMjMm8oTPYzd2i91u7eXWdkdoqdwviL3meirFnqpxAymGU6nHyDandztyRGrcuOb64cNSTk7o46Hy2k28MTklTqA2+jgQnpPHSCzltGP5g0nlmJwSDwBL2Gat6FCW1l8083ui8jiRE+sn0nOZGRN5wuexG7vFbrf2cmu7I7RU7hfEXnM9lWJP1bgBm+NU6gAAAAAAAAAAAAAAxICNcQAAAAAAAAAAAACAq7ExDgAAAAAAAAAAAABwNTbGAQAAAAAAAAAAAACuxsY4AAAAAAAAgKhVVRv+62u2lgbchnvR7gBSHfMg4HxsjAMAAAAAAACIytINxRoye4X/9g3z39eFM5dr6YZi6wqFpKPdAaQ65kHAHTKsLgDqKSND+vnPT10PdzxUXruJNyanxAnURh8HwnPyGImlnHYsfzCpHJNT4gEAxCaa+T1ReZzIifUT6bnMjMlleZZuKNb45z5Qg8pK/aPbxZKkqrR07fGVa/xzH2jumB4a1q0g+ueyG7v1d9odVrPbmDATsZ+6nsw8dsI8CKQEj2EYnOshBmVlZfJ6vfL5fMrNzbW6OAAAAAAAG2CtGB/qD7C/qmpDF85crmJfedB0j6R8b5ZW3T1Y6WkecwuHpKHdAaQ65kHAWoleK3IqdQAAAAAAAABhrd22P+SmgCQZkop95Vq7bb95hULS0e4AUh3zIOAunMfBqQxDOnq05np2tuTxhD4eKq/dxBuTU+IEaqOPA+E5eYzEUk47lj+YVI7JKfEAAGITzfyeqDxO5MT6ifRcZsbkojzfHCoPyNPoRIUk6ViDzIDH8edz4piwW3+n3WE1u40JMxF7zfVUip15EEgJfGPcqY4elRo3rrmcnGRDHQ+V127ijckpcQK10ceB8Jw8RmIppx3LH0wqx+SUeAAAsYlmfk9UHidyYv1Eei4zY3JRnhZNsvzXG52o0MZHR2njo6P8GwR18jlxTNitv9PusJrdxoSZiD31YmceBFICG+MAAAAAAAAAwurdIU8F3iyF+t6bR1KBN0u9O+SZWSwkGe0OINUxDwLuwsY4AAAA4lJVbfivr9laGnAbAAAA7pCe5tHUEV0lqc7mwMnbU0d0VXoap4x1E9odQKpjHgTchY1xAAAA1NvSDcUaMnuF//YN89/XhTOXa+mGYusKBQAAgKQY1q1Ac8f0UEtvZsDxfG+W5o7poWHdCiwqGZKJdgeQ6pgHAffIsLoAAAAAcKZln+7R+EWblHU88He19vjKNf65D/S/V56toRaVDQAAAMkxrFuBhrYfKN1fc/vpG3vpgnPb8k05l6PdAaQ65kHAHfjGOAAAAOrlv9/YqGAnTTdOSwcAAID7nL4J0OesM9gUSBG0O4BUxzwIOB8b4wAAAKiXPb6KkGlGhHQAAAAAAAAAMBOnUneq9HRp1KhT18MdD5XXbuKNySlxArXRx4HwnDxGYimnHcsfzLfl3HXwmKrTav7HsjotTa916e+/flJ1Wpp2DfmRWjdt5IiY/NdjOQYAcL5o5vdE5XEiJ9ZPpOcyMybyhM9jN3aL3W7t5dZ2R2ip3C+I/dT1ZOaxk1SNG0gxHsMwgp0BEyGUlZXJ6/XK5/MpNzfX6uIAAABYYvWWUv30z/+OmG/BTX3Vr+MZJpQIAKzFWjE+1B8AAAAAoLZErxU5lToAAABi1rtDngq8WQr1a1oeSQXeLPXukGdmsQAAAAAAAAAgKDbGAQAAELP0NI+mjugqSXU2x0/enjqiq9LTQm2dAwAAAAAAAIB52Bh3qiNHJI+n5nLkSPjjofLaTbwxOSVOoDb6OBCek8dILOW0Y/mDOa2cwzrkau6YHipsZGj7zMu0feZlanS8XPneLM0d00PDOuQ6LibH9TEAQPyimd8TlceJnFg/kZ7LzJjI46wxYbfY7dZebm13hJbK/YLYUy/2VI0bSDEZVhcAAAAAzjWsW4GGth8o3V9z++kbe+mCc9vWfFOcBSAAAAAAAAAAm2BjHAAAAHE5/XTpfc46Q+L06QAAAAAAAABshlOpAwAAAAAAAAAAAABcjY1xAAAAAAAAAAAAAICrsTEOAAAcp6ra8F9fs7U04DYAAAAAAAAAALWxMQ4AABxl6YZiDZm9wn/7hvnv68KZy7Xs0z3WFQoAAAAAAAAAYGsZVhcA9ZSeLg0ffup6uOOh8tpNvDE5JU6gNvo4EN5pff9fm77R+L9/poaVJ7T8rAskSdVpadrjK9ctL/5H7/3gYrVokmmfMRLLWHbKGE/lmJwSDwAgNtHM74nK40ROrJ9Iz2VmTOQJn8du7Ba73drLre2O0FK5XxD7qevJzGMnqRo3kGI8hmFw7tEYlJWVyev1yufzKTc31+riAACQMqqqDV04c7mKfeVB0z2S8r1ZWnX3YKWnecwtHAAg5bFWjA/1BwAAAACoLdFrRU6lDgAAHGHttv0hN8UlyZBU7CvX2m37zSsUAAAAAAAAAMAR2BgHAACO8M2h0Jvi9ckHAAAAAAAAAEgdtt4YNwxDzz77rPr16xdw/MMPP1Tfvn3Vvn17de3aVcuWLQtInzNnjjp16qTWrVvriiuuUGlpqT+ttLRUo0ePVrt27dS+fXs98sgjpsSScEeOSDk5NZcjR8IfD5XXbuKNySlxArXRx4Hwvu37l32/sxodr9n0bnS8XJ/Nvkqfzb6qzrHLvt/ZPmMklrHslDGeyjE5JR4AqKdbbrlFXq9XhYWF/suOHTskxbcOt71o5vdE5XEiJ9ZPpOcyMybyOGtM2C12u7WXW9sdoaVyvyD21Is9VeMGUkyG1QUIZenSpbrzzjt17NgxZWScKuahQ4c0YsQIPf300xoyZIhWrlypkSNHatOmTcrPz9eLL76oZ599VmvXrpXX69Utt9yicePG6aWXXpIkXXfdderTp49efPFFFRcX6/vf/746d+6sESNGWBVq/R09Gv3xUHntJt6YnBInUBt9HAjv6FGlS8r3Zmr7sZpD2ScqArJ4Th47YXrpwotlLDtljKdyTE6JBwDqafLkyZo2bVrAsXjX4Y4QzfyeqDxO5MT6ifRcZsZEHmexW+x2ay+3tjtCS+V+Qezm5LGTVI0bSCG2/cb4kSNHNHPmTD311FMBxxcsWKBevXppyJAhkqQBAwbooosu0gsvvCCp5r/Up06dqry8PKWnp2v69Ol65ZVXtH//fn3xxRdat26d7r33Xnk8HrVq1UoTJ07UvHnzTI8PAADE7p4fniOpZhP8dLVvAwCA+mnatGmdY/GswwEAAAAAsAvbboxfddVVGj58eJ3jq1evVv/+/QOO9enTRx999JEqKyu1bt26gPTmzZursLBQn3zyiVavXq3evXsHfAP95H1DqaioUFlZWcAFAABYY+i5+Zo7podaejMDjud7s/TYT863plAAALhIsI3xeNbhobDWBgAAAACYzbYb46EUFxerZcuWAcdatGih0tJSlZSUqKqqSs2bNw+aHu6+oTz00EPyer3+S9u2bRMXDAAAiNmwbgV66/aB/ttP39hLq+4erKHn5ltXKAAAXGLKlClq166dBg0apH/961+S4luHh8JaGwAAAABgNsdtjFdWVsowjIBjVVVV8ng8qqyslKSw6aHSQpkyZYp8Pp//snPnzgRFAgAA6is97dRrd5+zzgi4DQAA6ufxxx/Xnj17tG3bNt155526+uqrtX79+rjW4aGw1gYAAAAAmC0jchZ7ycvLU0lJScCxffv2KT8/X82aNZNhGDpw4IDy8vLqpBcXF2vt2rVB7xtKZmamMjMzQ6YDAAAAAOAGaWk1/zufnp6u4cOH66c//an++c9/xrUOD4W1NgAAAADAbI7bGO/Zs6eKiop0++23+48VFRXpmmuuUU5Ojrp06aKioiJddtllkmpO+bZ37151795daWlpmjZtmqqrq/0L/qKiIvXr18+SWOKSliYNGHDqerjjofLaTbwxOSVOoDb6OBCek8dILOW0Y/mDSeWYnBIPACRIZWWlGjZsGNc63BGimd8TlceJnFg/kZ7LzJjIEz6P3dgtdru1l1vbHaGlcr8g9lPXk5nHTlI1biDFeIza5zuzmRUrVujmm2/Wpk2bJElff/21zjvvPL300ksaPHiwXn/9dU2YMEGffvqpcnJy9Oijj+r555/XsmXLlJ2drXHjxqlZs2Z69NFHZRiGvve97+maa67R3Xffre3bt2vQoEFatGiRevbsGVV5ysrK5PV65fP5lJubm8zQAQAAAAAO4Ya14ptvvqmhQ4cqLS1N//rXv/STn/xEq1atUm5ubr3X4dFyQ/0BAAAAABIr0WtFx31jvE2bNlq4cKEmTJig/fv3q1OnTlqyZIlycnIkSZMmTdKuXbvUuXNnZWRkaOTIkZoxY4YkyePxaNGiRfrFL36h2bNnq1mzZpo1a1bUm+IAAAAAALjVo48+quuuu07Z2dlq166dFi9erK5du0pSvdfhAAAAAADYhe2/MW43/Bc7AAAAAKA21orxof4AAAAAALUleq3IDxw41ZEj0pln1lyOHAl/PFReu4k3JqfECdRGHwfCc/IYiaWcdix/MKkck1PiAQDEJpr5PVF5nMiJ9RPpucyMiTzOGhN2i91u7eXWdkdoqdwviD31Yk/VuIEU47hTqeM0JSXRHw+V127ijckpcQK10ceB8Jw8RmIppx3LH0wqx+SUeAAAsYlmfk9UHidyYv1Eei4zYyKPs9gtdru1l1vbHaGlcr8gdnPy2Emqxg2kEL4xDgAAAAAAAAAAAABwNTbGAQAAAAAAAAAAAACuxsY4AAAAAAAAAAAAAMDV2BgHAAAAAAAAAAAAALgaG+MAAABALVXVhv/6mq2lAbcBAAAAAAAAOE+G1QVAPaWlSRdccOp6uOOh8tpNvDE5JU6gNvo4EJ6Tx0gs5bRj+YNJgZiWbijWjEUf6rH870iSrn96nfKaf6lpQzvoEifEAwCITTSvV4nK40ROrJ9Iz2VmTOQJn8du7Ba73drLre2O0FK5XxD7qevJzGMnqRo3kGI8hmHw9ZcYlJWVyev1yufzKTc31+riAAAAIIGWbijW+Oc+UO03yJ5v/84d00PDuhWYXSwADsBaMT7UHwAAAACgtkSvFfl3FQAAAEA1p0+ftuSzOpvikvzHpi35jNOqAwAAAAAAAA7EqdQBAAAASWu37VexrzxkuiGp2Feutdv2q1/HM8wrGAAASHlV1YbWbtuvbw6Vq0WTLPXukKf0NE/kOwKi/wAAAJzEN8ad6uhRqbCw5nL0aPjjofLaTbwxOSVOoDb6OBCek8dILOW0Y/mDcXFM3X9wvrJO1GyMZ50o16q5v9Cqub+oc6z7D863dzwAgNhE83qVqDxO5MT6ifRcZsaUgDxLNxTr4umvq22Pruo5oIdufHKFLpy5XEs3FNu2zFHnsRu7xe7W/gPnSOV+QeypF3uqxg2kGL4x7lSGIe3Ycep6uOOh8tpNvDE5JU6gNvo4EJ6Tx0gs5bRj+YNxcUzZkjzfFtNjSG3KvvFfDzhWJnvHAwCITTSvV4nK40ROrJ9Iz2VmTHHmWbqhWOOf+0BZx8sD3pvs8ZVr/HMfaO6YHhrWrcBWZY4pj93YLXa39h84Ryr3iyjKXFVVrfRv86zZUqILzm1b92wMLo3dle2eqnEDKYZvjAMAAADfyvdmKtRJJTnZJAAAMFNVtaFpSz5TsI/UTx6btuQzVVXzoTvqov8AybV0Q7GGzF7hv33D/PeDn40BAGArbIwDAAAA37rnh+dIqrsJzqY4AAAw29pt+1XsKw+Zbkgq9pVr7bb95hUKjkH/AZLn5NkY9vgqAo6fPBsDm+MAYF9sjAMAAADfGnpuvuaO6aGW3syA4/neLD32k/OtKRQAAEhJ3xwKvalZn3xILfQfIDk4GwMAOBu/MQ4AAACcZli3Ag1tP1C6v+b20zf2qvmtuGNHrSwWAABIMS2aZCU0H1IL/QdIjljOxtCv4xnmFQwAEBW+MQ4AAADUkp526uTpfc46I+A2AACAGXp3yFOBNyvkT7p4JBV4s9S7Q56ZxYJD0H+A5OBsDADgbHxj3Kk8Hqlr11PXwx0Plddu4o3JKXECtdHHgfCcPEZiKacdyx9MKsfklHgAALGJZn5PVB4ncmL9RHouM2OKI096mkdTR3TV+Oc+kDzSF2e0kyQZHvk3O6eO6HrqH/hsUOaY89iN3WJ3a/+Bc6RyvwhR5tPPsmDUGlun8+dzUexJyWMnqRo3kGI8hmHwYxcxKCsrk9frlc/nU25urtXFAQAAAADYAGvF+FB/QGhLNxRr2pLPAk7dW+DN0tQRXTWsW4GFJYMT0H+AxKqqNnThzOXa4ysP+jvjHkn53iytunswZx4DgARI9FqRb4wDAAAAAAAANjWsW4GGds3X2m379c2hcrVoUnP6azZcEA36D5BYp5+NwSMFbI4HPRsDAMBW2BgHAAAAAAAAbCw9zaN+Hc+wuhhwKPoPkFjDuhVo7pgedc7GkM/ZGADA9tKsLgDq6ehR6dxzay5Hj4Y/Hiqv3cQbk1PiBGqjjwPhOXmMxFJOO5Y/mFSOySnxAABiE838nqg8TuTE+on0XGbGRB5njQm7xW639nJruyO0VO4XEco8rFuBVt3aV5+99Gv95++364Ux39WquwfX3RR3YewJzWMnqRo3kGL4xrhTGYb02Wenroc7Hiqv3cQbk1PiBGqjjwPhOXmMxFJOO5Y/mFSOySnxAABiE838nqg8TuTE+on0XGbGRJ7weezGbrHbrb3c2u4ILZX7RRRlTvdI2Zs/lyT16ZAnBTt9uktjd2W7p2rcQIrhG+MAAAAAAAAAAAAAAFdjYxwAAAAAAAAAAAAA4GpsjAMAAAAAAAAAAAAAXI2NcQAAABNVVZ/6fak1W0sDbgMAAAAAAAAAkoONcQAAAJMs3VCsIbNX+G/fMP99XThzuZZuKLauUAAAAAAAAACQAjKsLgDqyeOR2rc/dT3c8VB57SbemJwSJ1AbfRwIz8lj5LQy/euzPRr/0iZlnqjQ17ktJEmGR9rjK9f45z7Q/1x1ti6xW/mDiaXu7dgmwTi5jwEA4hfN/J6oPE7kxPqJ9FxmxkSe8Hnsxm6x26293NruCC2V+wWxn7qezDx2kqpxAynGYxgG5++MQVlZmbxer3w+n3Jzc60uDgAAcICqakMXzlyuYl950HSPpHxvllbdPVjpaSyaAMCJWCvGh/oDAAAAANSW6LUip1IHAABIsrXb9ofcFJckQ1Kxr1xrt+03r1AAAAAAAAAAkELYGAcAAEiybw6F3hSvTz4AAAAAAAAAQGzYGHeqY8ekXr1qLseOhT8eKq/dxBuTU+IEaqOPA+E5eYx8W6aLr79MmScqJEmZJyr08jO36eVnbvMfO3n84usvs1f5g4ml7u3YJsE4uY8BAOIXzfyeqDxO5MT6ifRcZsZEHmeNCbvFbrf2cmu7I7RU7hfEnnqxp2rcQIrJsLoAqKfqamndulPXwx0Plddu4o3JKXECtdHHgfCcPEa+LVNjSa2uaqjtx6Q0w1D3PV9Kqrku1fzGeKvchmr8yUen7mdXsdS9HdskGCf3MQBA/KKZ3xOVx4mcWD+RnsvMmMgTPo/d2C12u7WXW9sdoaVyvyD2U9eTmcdOUjVuIMXwjXEAAAAT3PPDcyTVbIKfzlMrHQAAAAAAAACQeGyMAwAAW6uqNvzX12wtDbhdn3xWGXpuvuaO6aGW3syA4/neLM0d00NDz823qGSxsXs914db+hgAAADsIZXfN6Zy7AAAwP7YGAcAAGFVVRtavaVUL3+0S6u3mPvBxtINxRoye4X/9g3z39eFM5dr2ad7osq3dEOxSSWNzrBuBXrr9oH+20/f2Eur7h6sYd0KHPEBUrTtcZKbYnJKHwMAAKnLCe+9UkG07xutXGcli1vfM7uxrRCZE+dU+mrqoc2B2PEb43CNqmpD6d9eX7O1VBecmy1JWrttv745VK4WTbLUu0Oe0tNqn8S2fs8VzeNGmy/WvIkuZ7zifZ5Q9zer/EAkyerjVoq2TEs3FGvaks9U7Cv3HyvwZum3PzpHzXIy6z2/SZHn56UbijX+uQ+Udbwi4PgeX7kmLfxIn317e9mnezR+0aag+W5+7gPdNuQ7KmyeE3F+iaZMsdapgrw2nf6Yfc46Q0rzaOmGYs18ab3e+fb4DfPfV9Mzvwxaz7GUM5F9d3vJET361pdqFKE9TgoV09QRXTWsW0FCy1lfiehj45/7QH/82feiaqdgx5LVH5PBKeWEu9jxNRSpKdh6k76IRElE/4rlvZdZnDhu4i1zuPeX45/7QHPH9NCwbgUh11lWtle8oo1diu713S6fabmxrWKRqHEczeMkqs0T0b8SOacmKnYz+6qZ7W4nTitvotvcrHUXazz7SNW2YGMcrhDszUpm002SpINHT/jzJeKNa7QvOLG8MCXjTbZZb9zjfZ5Q97+8e4Fe+bg4ZRcesI9k9XEr+3Is89j45z5Q7f81LfaVa8LzHwYci2V+a5rdQFL4+bmq2tC0JZ/VeW5JdY799xsbZdT55e5T+R5968uA5wk2v0RTpnBCxZl1vFz//vb2yYX0AxcXamit+wb7AClYPcdSzmT03WCCtVEsH4pZNUYS2cduWfChTv+n7GDtFKrtktEfk6G+YxmIhx1fQ5Ga7LjhCPdIRP+K5b2XWZw4buItc6T3lx5J05Z8pupq6b+er7vOsrK94hVt7EO75mvZZ3sivr7b5TOtUGtiJ7dVLBI1jqN5nES1eTSPE227J2JOTVTsZvZVM9vdTpxY3kS2uVnrLtZ49pHKbZGSp1I/duyYxo0bp/bt26tNmza66667ZBgOPMVE8+Y1l2iOh8prN/WIadmnezT+uQ+0x1eh0ka5Km2UK6nmQ9rTP6iVTr0w1PcUTidfcGpvEtR+3GjzxZo30eWMV7zPE+r+xb5y/c+725JefluJdtw6ZSy7RLL6uJV9OdoyhftgI5hY5rdo5ue12/YH3O/0+V2q+XCltFGujnnztMdXETJfbaHml3heM8LF6Tt6IqBMJ7+JfLxZntS8eZ16jlT+aMuZrL57Uqj2ONHsjLAxnTw2bclnqqo2LB0jiexjtc9UFqydgh1LRn9MhnjGMlBfdnwNRWSOXmuHeJ99si/WXm+G7Itufb8eTVyJypMokZ7LzJiS2L9iee9l27hsIBFtEc37y2Jfue57eUPYf840u70SkSfa2P+wfHPE13e7fKb1+n+KI/4jbZ22cpFEvf5F8ziJavNoHifWdo9nTk1U7Gb2VTPb3U6S8n4vie95ovlH/1jb3Ix1F2s8+0j1tvAYjlmlJs6ECRN0/Phx/elPf9KRI0c0ZMgQXX/99br11lsj3resrExer1c+n0+5uaE/uIY5qqoNXThzecRvs53OIynfm6VVdw+O+XSy4Z7r5OOuvHOQBvz+nYj5Vt09WJKiesxYyhptOWONP9HPU5+2i+ZxgURJdh+3oi/HUqa12/brp3/+d9B8ocQyv0W6/6v/2a1JCz+KeJ/r+7XXs6t3xFTOWCRjLou3niM9phTfa0t952dJeuwn56tFk6yoYvrb2D664x8fWzZGXv5oly36WCzsOG8Ew2s14mXH19BosFZ031rbqX0RzpCo/rV6S2lU770W3NRX/TqeUd/iRs2J4yZRZY72/WU0zGqvRIk29qaNGujgsRNB0zySWuZmSvJoT5n1n2nl5TRU6ZHjER/LaW0VjUSNiWgeJ1FtHm2ZDcPQnrKKkHkS1e6Jij2aPGaWOZFtYZfXAaeVV0rca7+ZsTuxnt3KiW2R6LViyn1j/PDhw3rmmWf08MMPKyMjQ16vV1OmTNG8efOsLhrqofZ/pEbj5H+prt22P6HPdfJx/7p6e1T51m7bH/VjxlLWZDxmMp6nPm0XzeMCiZLsPm5FX46lTN8cim98xjs/t2iSFdV92udlx1zO+pYpmHjjrE89R3pMq+ZnSWrRJCvqmFZvLbF0jNilj8XCjvNGMLxWI152fA1FZG5ca9MXkUyJ6l/RvvdK1PvOSJw4bhJV5mjfX0bDrPZKlGhjD7UpLtXU856yipAbgCfzmPWZVjQbjZLz2ioaiRoT0TxOoto82jKH2hQ/mSdR7Z6o2KPJY2aZE9kWdnkdcFp5pcS99psZuxPr2a1oixTcGF+/fr06dOigvLw8/7E+ffpow4YNqqqqqpO/oqJCZWVlARfYRzxvPmO9b7T5d+w/GvXjJWMBa9aiON7nMev5gfoyq4+b2ZdjKVM8H+rEMr+Fun/vDnkq8GYF+VXnGh7V/O7Ndf0Kw+ZLlGTMZfHWc6jHtGJ+PtkevTvkxRBTdK2WrDFitz4WCzvOG4m+L1KbHV9DEZkb19r0RSRTovpXtO+9Ev2+MxQnjptElTma95d5OQ2iei6z2itRoom9aaPoYo+GnT5TclpbRSNRYyKR9Wzmc0UjUrvbaY47KVFlTlRb2KWOnFZeKXGv/WbG7sR6divaIgU3xouLi9WyZcuAYy1atFBlZaV8Pl+d/A899JC8Xq//0rZtW7OKGt6xY9LAgTWXY8fCHw+V127qEdPAX12tzBM1/+mXeaJCC5//jRY+/xv/sXBifeOa6G+WtWiSlZQFrFmL4nifx6znd4Rox61TxrJLmNXHzezLsZQp0gcbke4fT1wtmmQpPc2jqSO6SpKyas3vHtXM+a8t+q0aDhmsaUM7BM2XSPVt52CvTSePDfzV1eqd38hfz7G+joUqT7L7bu1ynt4e6YMHRYzp5IZztKcbTNYYsVsfi4Ud541E3xepzY6voYjM0WvtEO+zT+9j4V6n/fnc+n49mrgSlSdRIj2XmTEluX+d/r493Huv3h3y7BmXDSSqLSK9v5Sk343sFtU/Z5rVXonKE03sN/YvDP6Y9WDWZ0p5OQ2ibysXSdSYiPZxYi1TfdJjcbLd45lTExl7LGUOJtq+ana72+V1ICnv95L8nifaf/SPpc0Tkc8uz4XwaAspw+oCmK2yslK1f1b95H+vezx1p5IpU6bo9ttv998uKyuzx+Z4dbW0cuWp6+GOh8prN/WIySup1fAp2n5MSjMM9d25QVLN9VBO/kZCrG9cT77g7PGVK9ijn3zc6/oV6qlV2yLmO/n80TxmLGWNtpzxvnGP93ki3T+URJXfVqIdt04Zyy6R7D5uRV+OpUwnP9gY/9wH8khRjdNY5rdo7j+sW4HmjumhmS+tD5jf871ZeuDis5U3e7Uk6ZJzWmrumEZ18iVCvO0c7LUp/eSxnZJk+Os5PcrXsWjKmcy+Wzum2u2RHiamk++0po7oqr5nnWH5GIm3j6V5pOrEdLWo2HHeCMaVr9UwlR1fQxGZo9faId5nn94Xg72m1+mLbn2/Hk1cicqTKJGey8yYkty/Tn/fHu69l/83Iu0Wlw0kcqyHe385dURXDetWoLQ0T9B1lhXtlcg8kWIf2jVfC9/fGfb1/eTvKe8ts8dnWr/90Tn6r+c/jK6tXCRRYyKax0lUm0fbpoZhaG9ZRVTtHs+cmqjYo62fRPRVM9vdTq8DSXm/l+T3POE+s6tvmyd73cUazz5oixT8xnheXp5KSkoCju3bt09ZWVnyer118mdmZio3NzfgAnu554fnSIruhKzxvHE9/b9fa9/z9MdtmJEWVb70NE/UjxlLWZPxmMl4nnD3D8XtCw/YSzL7uFV9OdYynfxgI98b+T8EY5nforn/ScO6Feit2wf6bz99Yy+tunuwhp6bH3D/2vluGdRJniifO9Yyna6+cZ7uZD239GYmpJzJ7runHwvXHsFiyvdmae6YHhrWrcA2Y6S+fezpG3vpDz/tEXc/i5Yd541geK1GIthlfkBs3LjWpi8imRLZv6J572UWJ46bRJc51PvLk+0Qap1lRXslWrjYo6nn+y8/V/dfbp/PtIZ/t5Vr2yqcRI0JM9s82jLff/m5EfOcbPd45tRExR5t/SSir5rZ7nZ6HXBaeU9KxGuJmbE7tZ7diLZIwY3xHj166PPPP9eBAwf8x4qKitSnTx+lpaVcdbjC0HPzg75ZaZrdQE2zA3+/KN43rtG+4MTywpSMBZFZi6x4nyfU/Qu8WfrVRR1UkGILD9hPsvq4lX051jIN61agVXcP1oKb+uqxn5yvBTf11ZM/6xHV+Az1XM1inJ9PfyPW56wzwm7onvRfgzvFNL/EWqbThYvTG+QxH/vJ+UEfo/YHSMHqOdpyJrPvnl7+cO0R6QPBRJQzUerTx/qcdYaGfzd4+YO9BwnWdsnoj8mQqLEMxMIu8wOi59a1tp02HOE+iexf0bz3MosTx02iyxzp/WWwdZZV7ZVo4WKP5vXdbp9pubmtwknUmIjmcRLV5onsX4mYUxMVu5l91cx2txOnlfekRLa5Gesu1nj2kept4TFqn+ssBYwcOVKtWrXSE088oYMHD2rw4MF64IEH9OMf/zjifcvKyuT1euXz+az9j/YjR6TGjWuuHz4s5eSEPh4qr93EGVPVocNKz20iSVrznx264Nya0/Ct3bZf3xwq9/9mbiL+06Wq2ojqcaPNF2veRJczXvE+T6j7m1V+y0U7bp0yll0oWX3cSmbGFCyvFMP8HMcYiWV+ialM0cZ55Eid16b0Y0ejfr2Lt5xJaedg5Y/lNTwJ5YxbnPNwtO0U7Fiy+mMyOKWccBfL54cY2GataCHHrrWjeL0Ktt6s0xfd+n49mrgSlSdRIj2XmTGZ2b9sliequGzG1LaIhs3aNGF9I4rXd6d8puV2iRoT0TxOotoiYf3LxLnQTmMi2jK78XXAdq8BJjK1fzHv2oZT2iLRa8WU3BgvKSnR2LFjVVRUpJycHN1xxx265ZZborqvbT7sYGPcuXECtdHHgfCcPEZiKacdyx9MKsfklHgAWMI2a0ULOXat7cSNXzM5sX4ctjGe0nnsxm6x26293NruCC2V+wWx11xPpdhTNW7A5hK9VsxIQJkcp3nz5nr55ZetLgYAAAAAAK7BWhsAAAAAYGcpuTHuGtnZ0R8Plddu4o3JKXECtdHHgfCcPEZiKacdyx9MKsfklHgAALGJZn5PVB4ncmL9RHouM2Mij7PYLXa7tZdb2x2hpXK/IHZz8thJqsYNpJCUPJV6PDg9HgAAAACgNtaK8aH+AAAAAAC1JXqtmJaAMgEAAAAAAAAAAAAAYFtsjAMAAAAAAAAAAAAAXI2NcacqL5d+9KOaS3l5+OOh8tpNvDE5JU6gNvo4EJ6Tx0gs5bRj+YNJ5ZicEg8AIDbRzO+JyuNETqyfSM9lZkzkcdaYsFvsdmsvt7Y7QkvlfkHsqRd7qsYNpBh+YzxGtvndsyNHpMaNa64fPizl5IQ+Hiqv3cQbk1PiBGqjjwPhOXmMxFJOO5Y/mFSOySnxALCEbdaKDmVp/UUzvycqjxM5sX4iPZeZMZEnfB67sVvsdmsvt7Y7QkvlfkHsNddTKfZUjRuwOX5jHAAAAAAAAAAAAACAGLAxDgAAAAAAAAAAAABwNTbGAQAAAAAAAAAAAACuxsY4AAAAAAAAAAAAAMDV2BgHAAAAAAAAAAAAALhahtUFcBrDMCRJZWVl1hbkyJFT18vKpKqq0MdD5bWbeGNySpxAbfRxIDwnj5FYymnH8geTyjE5JR4Alji5Rjy5ZkRsLF1rRzO/JyqPEzmxfiI9l5kxkSd8HruxW+x2ay+3tjtCS+V+Qew1Uin2VI0bsLlEr7U9Bqv2mHz99ddq27at1cUAAAAAANjQzp071aZNG6uL4TistQEAAAAAoSRqrc3GeIyqq6u1e/duNWnSRB6Px+riBFVWVqa2bdtq586dys3Ntbo4CII2cgbayRloJ2egneyPNnIG2skZaCdnSHQ7GYahQ4cOqVWrVkpL41fLYsVaGzAPfRluQn+GW9CX4Rb0ZSRaotfanEo9RmlpaY757//c3FwmHpujjZyBdnIG2skZaCf7o42cgXZyBtrJGRLZTl6vNyGPk4pYawPmoy/DTejPcAv6MtyCvoxESuRam39jBwAAAAAAAAAAAAC4GhvjAAAAAAAAAAAAAABXY2PchTIzMzV16lRlZmZaXRSEQBs5A+3kDLSTM9BO9kcbOQPt5Ay0kzPQTogVfQZuQV+Gm9Cf4Rb0ZbgFfRl25zEMw7C6EAAAAAAAAAAAAAAAJAvfGAcAAAAAAAAAAAAAuBob4wAAAAAAAAAAAAAAV2NjHAAAAAAAAAAAAADgamyMu8yxY8c0btw4tW/fXm3atNFdd90lfkbeesuXL1f//v3VqVMndezYUU888YQ/bfv27Ro6dKjat2+vTp066bnnnrOwpJCk8ePH6+yzz/bf/vDDD9W3b1+1b99eXbt21bJlyywsHdauXauLLrpI7du3V6tWrbRo0SJJtJOd7Nq1SyNGjFDr1q111llnafr06f402sk6hmHo2WefVb9+/QKOR2qTOXPmqFOnTmrdurWuuOIKlZaWmlnslBOsnU6cOKEHHnhA5513ntq2basf/OAH+uijjwLut2DBAp1zzjlq06aNBg0apG3btplc8tQSajyddOTIEZ155pmaMWNGwHHGk7lCtZNhGJo9e7a6dOmidu3aqVOnTjpx4oQ/nXZCMKy14VR8HgE34nMbuAGfb8EN+AwQjmTAVcaPH2+MHTvWOHHihHHw4EHjggsuMB5//HGri5XyJk6caGzatMkwDMPYsmWL0bp1a+ONN94wKisrjW7duhnz5883DMMwPv30U6NZs2bGhx9+aF1hU9xXX31lZGdnG126dDEMwzDKysqM1q1bG8uWLTMMwzBWrFhheL1eo7i42MpipqyNGzcaBQUF/vaoqKgw9u7dSzvZzODBg4277rrLqK6uNkpLS43u3bsb8+fPp50s9MYbbxjdunUzOnbs6J/fDCPyHPfCCy8Y3/ve94zS0lKjsrLSuPnmm40rr7zSkhhSQah22rBhg/Hb3/7WOHz4sGEYhvGnP/3JaNOmjXH8+HHDMAyjqKjIKCwsNHbs2GEYhmE8+OCDRs+ePc0PIEWEaqfTzZw500hPTzceeugh/zHGk7nCtdP06dONAQMGGHv37jUMwzB27dplVFVVGYZBOyE01tpwKj6PgNvwuQ3cgM+34BZ8Bggn8hgG/+LsFocPH1bLli21c+dO5eXlSZIWLVqk6dOn68MPP7S4dDjd7bffroyMDA0ZMkR33313QPtMnDhR6enpevTRRy0sYeoaNWqU8vPz9dZbb2nTpk363//9X73xxhtavHixP8/ll1+uiy++WJMmTbKwpKnpqquu0gUXXKApU6YEHKed7CUvL0/vvvuuunXrJkm67777dPDgQX33u9+lnSzy0ksvqVGjRsrOztbNN9+sTZs2SYo8dr7//e/r7rvv1siRIyVJJSUlKigo0N69e/3vNZA4odopmLy8PK1atUpdu3bVz372M/Xp08c/jiorK9WyZUstX75c3bt3N6v4KSNSO+3evVuDBg1St27d1KtXL/3mN7+RJMaTyUK10759+9ShQwdt3LhRbdu2rXM/2gnBsNaGm/B5BJyOz23gBny+BbfgM0A4EadSd5H169erQ4cOAR/Y9OnTRxs2bFBVVZWFJUNt+/btk9fr1erVq9W/f/+AtD59+tQ5PSrM8dprr6m0tFSjRo3yH6ON7KO8vFyvvvqqbrzxxjpptJO9jBo1Sn/4wx90/Phx7dixQy+//LJGjRpFO1noqquu0vDhw+scD9cmlZWVWrduXUB68+bNVVhYqE8++STpZU5FodqptqNHj+ro0aPyer2S6rZjRkaGevTowdhKkkjtNHnyZN1zzz1q0qSJ/xjjyXyh2unVV1/VhRdeGHRTnHZCKKy14SZ8HgEn43MbuAGfb8FN+AwQTsTGuIsUFxerZcuWAcdatGihyspK+Xw+i0qF2tauXatXX31VP/vZz0K2Gb9jaL7S0lJNnDhRc+fODThOG9nHF198oUaNGumdd97Rd7/7XZ111ln61a9+pbKyMtrJZh588EEtXbpUzZo1U4cOHTRo0CANHDiQdrKhcG1SUlKiqqoqNW/ePGg6rHPvvfdq4MCBat26tSReq+zk+eefV2lpqa6//vqA44wn+/jkk0/Uvn17/epXv1KHDh10/vnn69lnn5VEOyE01tpwCz6PgJPxuQ3cgs+34CZ8BggnYmPcRSorK1X7zPgn/3vd4/FYUSTUsnDhQl1++eV65pln1KFDh5BtRnuZyzAMjR07VpMnT9bZZ58dkEYb2cehQ4f83+Rau3atPv74Y+3bt0+TJk2inWykqqpKw4cP1+TJk+Xz+bRr1y59/PHHeuyxx2gnGwrXJpWVlZJEm9nIkSNH9POf/1wrV67UX//6V/9xxpY9bNu2Tffee6+efvrpOnXPeLKPQ4cOacmSJRo9erS2bt2qp59+WnfccYdWrlxJOyEk1tpwAz6PgJPxuQ3chM+34BZ8BginYmPcRfLy8lRSUhJwbN++fcrKyvKfahPWqKqq0oQJEzRt2jS9+eabuvzyyyWFbrP8/HwripmyZsyYoRMnTuiWW26pk0Yb2Ufz5s114sQJzZgxQ1lZWWrSpInuv/9+vfLKK7STjSxfvlzHjx/X5MmTlZGRoYKCAs2ePVsPP/ww7WRD4dqkWbNmMgxDBw4cCJoOc23ZskW9evVSgwYNtGrVKp155pn+NMaW9Y4dO6Yrr7xSM2fODHqKbsaTfTRv3lzDhg3TkCFD5PF4dP7552vMmDF65ZVXaCeExFobTsbnEXADPreBm/D5FtyCzwDhVGyMu0iPHj30+eefB3yQU1RUpD59+igtjaa20uTJk7V161atW7dO3bt39x/v2bOnioqKAvIWFRWpX79+ZhcxpT3++ON677331KxZMzVt2lSXXXaZvvzySzVt2pQ2spH27durYcOGKi8v9x9LS0tTVlYW7WQjx48fV0ZGRsCxBg0a6Pjx47STDYVrk5ycHHXp0iUgvbi4WHv37g14LUPyHTx4UIMHD9Ztt92mp556StnZ2QHptdvx+PHjWr9+vfr27Wt2UVPW22+/rU2bNmncuHFq2rSpmjZtqueff17Tpk3T0KFDGU820rVrVx06dCjg2Mn3E7QTQmGtDSfj8wi4AZ/bwE34fAtuwWeAcCwDrnL55ZcbN998s3HixAlj3759xnnnnWcsXrzY6mKltGPHjhnp6enG7t2766QdOXLEKCgoMP76178ahmEY77//vlFQUGDs3LnT7GLiNO+8847RpUsXwzAMY+fOnUbTpk2Nt99+2zAMw3jttdeM9u3bG4cPH7ayiClrwoQJxk033WScOHHCKC8vN6688krjrrvuop1s5ODBg0arVq2M559/3jAMwzh06JBx2WWXGTfffDPtZAOnz2+GEXmOmz17tnHBBRcYBw4cMCoqKoyf//znxuTJky0peyqp3U7/+7//a1xyySUh8y9atMgoLCw0du7caVRWVhr33Xef8eMf/9iMoqa02u1U289//nPjoYce8t9mPFmjdjsdPXrUKCgoMJYtW2YYhmF89tlnRkFBgfHxxx8bhkE7ITTW2nAiPo+AW/G5DZyOz7fgBnwGCKfKiLx1Dif5y1/+orFjx6qgoEA5OTm644479OMf/9jqYqW0rVu3qrq6us5/Q3Xp0kVvvvmmlixZoptuukm333678vPz9fzzz6tNmzYWlRa1tWnTRgsXLtSECRO0f/9+derUSUuWLFFOTo7VRUtJM2fO1Pjx49W6dWs1adJEV111laZPn66GDRvSTjbh9Xr15ptv6vbbb9eUKVOUlpamkSNH6sEHH1R2djbtZDOR5rhJkyZp165d6ty5szIyMjRy5EjNmDHD4lKnni+//FKrV69WYWFhwPF7771XN910k6644gpt3rxZvXv3VnV1tQYOHKh58+ZZU1iExHiyh0aNGumll17ShAkTtG/fPp155pn6y1/+ou9+97uSaCeExlobTsTnEUgFfG4DJ+LzLbgBnwHCqTyGYRhWFwIAAAAAAAAAAAAAgGThx7AAAAAAAAAAAAAAAK7GxjgAAAAAAAAAAAAAwNXYGAcAAAAAAAAAAAAAuBob4wAAAAAAAAAAAAAAV2NjHAAAAAAAAAAAAADgamyMAwAAAAAAAAAAAABcjY1xAABc7J577tH8+fPrHF+xYoUuvPDCmB7rqaee0g033BBzGe677z7df//9Md3nrbfe0sCBA2N+LgAAAAAAzMB6GwAA52FjHAAAl9m+fbs2b96szZs3a+fOndqxY4f/9q5duyLef+DAgVqxYkXMz1tYWKjt27dHlfe2225T8+bNAy4ej0dffPFFzM8LAAAAAIAZWG8DAOBsGVYXAAAAJNbNN9+skpIS/+2NGzfq1VdflST17NlT//M//2NV0fweffRRPfroo/7b27dvV8+ePdWxY0cLSwUAAAAAQGistwEAcDY2xgEAcJmlS5dKqjl92/vvv6+GDRtqwIABOv/881VZWanDhw/r2LFjIe9/6NAhlZWVxfy89b2fJM2dO1c//elPlZ6eXq/7AwAAAACQbKy3AQBwNjbGAQBwoRtuuEFbtmzR1VdfrYqKCl177bW6/vrr1a5dO/32t7/VsWPH1KFDh6D33bJlS8ynWDt48KD279+vL774Qt/97ndjuu+///1vzZ8/X//5z3/qlOOOO+7Q2WefrV/+8pcxPSYAAAAAAMnAehsAAOdiYxwAAJfZvHmz3n77bW3dulUNGjSQVLNw79Chg/bv36+f/vSnWrFihe6777469125cqUaNGighQsX6o477oj6OV9++WU1b95cCxYs0KhRo6K+36pVq3T11VfrueeeU35+fkBadna2zj77bLVt2zbqxwMAAAAAIFlYbwMA4GxpVhcAAAAkVuPGjVVeXh5wmrVvvvlGWVlZOnLkiDZv3qxdu3YFve/J3yIzDEOvv/56VM9XXV2txx9/XAsWLND777+vTz75JOJ9Tpw4occff1xXXHGF5s2bp0suuaROnoKCAv3yl7/UpZdeGlU5AAAAAABIJtbbAAA4G98YBwDAZfLz8/X//t//U69evTRo0CAdP35c7733nv7yl79o5cqV+v3vfy+fzyev1xtwv7/+9a8qKSnRtddeq65du2rkyJH697//rdatW4d9vgcffFBnn322hgwZoj/+8Y+65pprtGbNGjVp0iRo/u3bt2vgwIHq0KGDioqK9J3vfCdhsQMAAAAAkCystwEAcDY2xgEAcKFbb71VP/nJT7RhwwY1aNBATz75pH/hPHLkyDqndluyZInuv/9+rVixQh6PRz169ND06dP1gx/8QP/85z9D/o7Z//7v/+rFF1/UqlWrJEkjRozQ+vXrddFFF+nll19Wu3bt6tynsLBQS5YsUbdu3VRdXZ2E6AEAAAAASA7W2wAAOBenUgcAwKVWrFihEydO6MILL6zz3+RZWVkqKCiQJPl8Pj3wwANavHhxwO+L3XDDDbr33nv1wQcfBH38bdu26amnntJrr70W8N/w999/v6688kpt2rQpZNnOO+88rVy5UgMGDAia3qpVKw0bNizqWAEAAAAAMAvrbQAAnIlvjAMA4FJr1qxRfn5+0N8T69u3r/7+979Lkrxer95///2gjzF27NiQj9+hQwetXbs2aNpvf/vbepT4lK5du6pr165xPQYAAAAAAMnAehsAAGfiG+MAAAAAAAAAAAAAAFfjG+MAALjYAw88oFmzZoVM//DDD/2neLPCv//9bzVt2jRk+meffaZWrVqZVyAAAAAAAKLAehsAAOfxGIZhWF0IAABgf/v379fhw4fVrl27mO63Z88eSVJ+fn4yigUAAAAAgKOx3gYAwBxsjAMAAAAAAAAAAAAAXI3fGAcAAAAAAAAAAAAAuBob4wAAAAAAAAAAAAAAV2NjHAAAAAAAAAAAAADgamyMAwAAAAAAAAAAAABcjY1xAAAAAAAAAAAAAICrsTEOAAAAAAAAAAAAAHA1NsYBAAAAAAAAAAAAAK7GxjgAAAAAAAAAAAAAwNXYGAcAAAAAAAAAAAAAuBob4wAAAAAAAAAAAAAAV2NjHAAAAAAAAAAAAADgamyMAwAAAAAAAAAAAABcjY1xAAAAAAAAAAAAAICrsTEOAAAAAAAAAAAAAHA1NsYBAAAAAAAAAAAAAK7GxjgAACaaNGmSLrjgAquLAQAAAACAa7DWBgAA0WBjHAAAE7Vu3VodO3aM+X7FxcV66qmnklAi+ygsLJTH4wm4DBw4MCDP8ePH9Zvf/EatWrVSo0aNdOGFF2r9+vUhH7OyslKdO3fW+eefH3B89erVuuSSS3TmmWcqNzdXAwYM0KpVq5IQFQAAAAAg2Vhrh2bmWru2wYMHq2nTpvEHAQBAgrAxDgCAie666y698MILMd/vhRde0O9+97sklMhe7rvvPm3bts1/WbhwYUD6zTffrMWLF+uZZ57R2rVr1bZtWw0dOlTFxcVBH++ZZ57Rl19+Wef4xx9/rCuvvFJvvfWW3n77bbVr107Dhg3Ttm3bkhIXAAAAACB5WGuHZ9Za+3Rvv/223nnnnYTFAABAImRYXQAAAGCe6upq/3+I21GXLl1UWFgYNG3jxo16+umntX79en3ve9+TVLMY/853vqO5c+fqgQceCMi/f/9+3Xfffbr00ku1Z8+egLSbb7454Pb8+fO1ePFirVixQh06dEhcQAAAAAAA12OtHej48eOaOHGihg8frv/7v/9LaCwAAMSDb4wDAGCiyZMnB5yy7P7779f555+vDz74QN///veVnZ2t8847T2+99ZY/T2FhoW677Tbt2LGjzkK7rKxMEyZM0Jlnnqns7Gz98Ic/1JYtW/zpK1askMfj0ccff6x+/fqpQYMG+vzzz8OW8eR9Nm/erKuvvlpNmjRRYWGhHnnkkTp5P/roI40YMUJNmzZVVlaWLrjgAr388sv+9CNHjqiwsFCPPfZYVPXTsmXLkGmvvPKKzjnnHP9CXZIaNmyoH//4x1q2bFmd/HfccYdGjhypvn37RnxewzBUXV0d9vkBAAAAAPbEWjs8s9faM2bMUNu2bTV69OioygcAgFnYGAcAwGIlJSUaP3687r33Xq1atUrf+c53dMUVV6i0tFSStGrVKv32t79V69at/ac9k2p+02v48OFauXKl/va3v2nlypXKyMjQj370I1VVVQU8x69//WvdfvvtWr9+vQoKCqIq189//nNdfPHFKioq0o033qg77rhDb775pj/9gw8+UP/+/ZWbm6slS5bovffe08CBA3XllVfqpZdekiRlZGSobdu2OuOMM6J6zlGjRik3N1fdunXTww8/HBDHhg0bdN5559W5T9euXbV58+aAY//85z+1dOlSzZgxI+zzVVVV6csvv9T111+vH/zgBxo2bFhU5QQAAAAA2Btr7VPMXGu///77evTRR/Xkk09GVTYAAMzEqdQBALDY7t279frrr+u73/2uJOmpp55SQUGB3njjDY0ZM0Zt2rRRXl6eMjIyAk59tmDBAn3wwQfauHGj2rdvL0l6/vnn1bZtWy1evFijRo3y5x0+fHjM/6n9k5/8RL/61a8kSeedd55effVV/f3vf9ell14qSbrzzjv1gx/8QH/729/89+nVq5cOHjyoKVOm6KqrrlJmZqbee++9qJ7vb3/7mxo1aqSKigqtWLFCDzzwgLZs2aL/+Z//kSTt27dPHTt2rHO/vLw8+Xw+/+2dO3fqpptu0sKFC9W0adOQz9enTx+tW7dO1dXV+vGPf6y//e1vSkvjfwYBAAAAwA1Ya9cwc61dVlamn/zkJ5o9e7bOOussvfvuu1GVEQAAs/DpLwAAFmvTpo1/oS7VLD7btm2rnTt3hr3fG2+8oSFDhvgX6pLUpEkTnX/++fr4448D8v7whz+MuVw/+tGPAm53797dX6by8nKtXLlSY8eOrXO/a6+9Vl9++aWKi4tjer7+/furR48e6tevn6ZMmaInnnhCTz31lHbv3i2p5r/2g21cn37Ku/Lyco0aNUrjxo3TxRdfHPb5XnjhBa1fv95/Orru3btr48aNMZUZAAAAAGBPrLVrmLXWNgxD119/vfr27asbb7wxpjICAGAWNsYBALBYXl5enWONGzdWRUVF2Pvt27dPr7/+urKysgIu7733nn+Be1J9fju7drlOL1NpaamqqqrUtm3bOvc7efq4AwcOxPycpxs5cqSqq6v1n//8R5KUm5sb8N/qJx08eNB/+rixY8cqOztbDzzwQMTHLyws1Pnnn6/LL79cixcvVrdu3XTPPffEVWYAAAAAgD2w1g4uWWvte++9V1988YX/m+gAANgRp1IHAMChmjZtqhEjRuihhx6qk+b1egNuJ/oU4V6vVx6PR7t27aqTtmfPHknSmWeeGddzHD9+XJKUmZkpSercubOWL19eJ9/GjRvVrVs37dixQ88//7ykmt9bq83j8Wj+/Pm64YYbgj7fhRde6L8/AAAAACA1sdauEeta+2R9NWnSJGieqVOn6v7774+r7AAAxIuNcQAAHKBBgwZ1/qv9wgsv1OOPP64OHTr4F7Rmady4sfr27at58+bpqquuCkhbsGCBevToEfdifeHChWrUqJF69OghSbr00kv1+9//Xps3b1anTp0kSSdOnNDixYv161//WgUFBfrwww/rPM6f/vQnvfPOO3rhhRfUrl07SVJ1dXWdDzDWrl2rzp07x1VmAAAAAIBzsNZO3Fo7WJ5XXnlFv//97/Xee+8pPz8/rnIDAJAIbIwDAOAAnTt31p49e/SPf/xDbdq08f9m1+zZs3XZZZfpN7/5jQoKCrR582b9+c9/1nPPPVfnP9kT7eGHH9bgwYM1ZswYjR8/XpmZmXrxxRf17LPP6s0335RU85/ow4cP1y9/+Uv95Cc/CflYb7zxhpYuXapRo0YpNzdXr7/+uqZNm6apU6f64xg0aJAuvPBCjRo1So8//riaNm2qhx56SA0bNtTYsWPVsGFDnX/++XUeOz8/X40aNQpIu+CCC3THHXfovPPO06FDhzR//nwtX75c7777bkLrCAAAAABgX6y1E7fWDnbq+o8++kjp6elB7w8AgBXYGAcAwAGGDBmisWPH6sYbb1ReXp527Nih3NxcrVy5UnfccYeuvPJKGYahTp06aezYsUFPXZZoF154oVasWKH77rtPl1xyiTwej/r27avly5erX79+kmr+y/zzzz/X3r17wz5Wu3bttHbtWj399NMqLy/XOeecoz/96U91Tnu+aNEiTZo0SSNGjJBhGLr00kv19ttvKysrK6ayDxo0SL/97W+1e/dunXnmmerfv78+/PBDvjEOAAAAACmEtXaNRK21AQCwO49hGIbVhQAAAAAAAAAAAAAAIFnSImcBAABucskllygrKyvo5a9//avVxQMAAAAAwHFYawMAYH98YxwAgBTz1Vdf6ejRo0HTCgoKkv57aQAAAAAAuA1rbQAA7I+NcQAAAAAAAAAAAACAq3EqdQAAAAAAAAAAAACAq7ExDgAAAAAAAAAAAABwtQyrC+A01dXV2r17t5o0aSKPx2N1cQAAAAAANmAYhg4dOqRWrVopLY3/QY8Va20AAAAAQG2JXmuzMR6j3bt3q23btlYXAwAAAABgQzt37lSbNm2sLobjsNYGAAAAAISSqLU2G+MxatKkiaSaBsjNzTW/ACdOSPPn11y/8UapQYPEpttVsuMOl+7WOgXMZOUYjpSeymOYuS846iU46iU46gXAt8rKytS2bVv/mhGxYa0NW68ZzEi3Qxnox6APxc8JdWj1XOL09EjMmO8BIIUkeq3tMQzDSMgjpYiysjJ5vV75fD5rFusAAAAAANthrRgf6g8AAAAAUFui14r88BkAAAAAAAAAAAAAwNU4lbrTVFVJ771Xc/0HP5DS0xObblfJjjtculvrFDCTlWM4Unoqj2HmvuCol+Col+CoFwBwh1Rda9uJndcMZqTboQz0Y9CH4ueEOrR6LnF6eiRmzPcAgHrjVOoxsvz0bkeOSI0b11w/fFjKyUlsul0lO+5w6W6tU8BMVo7hSOmpPIaZ+4KjXoKjXoKjXgB8y/K1osNZXn+puta2EzuvGcxIt0MZ6MegD8XPCXVo9Vzi9PRIzJjvASCFcCp1AAAAAAAAAAAAAABiwMY4AAAAAAAAAAAAAMDV2BgHAAAAAAAAAAAAALgaG+MAAAAAAAAAAAAAAFdjYxwAAAAAAAAAAAAA4GpsjAMAAAAAAAAAAAAAXC3D6gIgRg0aSA8/fOp6otPtKtlxh0t3a50CZrJyDEdKT+UxzNwXHPUSHPUSHPUCAO6QqmttO7HzmsGMdDuUgX4M+lD8nFCHVs8lTk+PxIz5HgBQbx7DMAyrC+EkZWVl8nq98vl8ys3Ntbo4AAAAAAAbYK0YH+oPAAAAAFBboteKfGMcAGB7VdWG1m7br28OlatFkyz17pCn9DSP1cUCAAAAkCJYkwAAAADOx8a401RVSR98UHO9Rw8pPT2x6XaV7LjDpbu1TgEzxTGOlm4o1vSXP9EZX3wqSdrQsqNaNsvR1BFdNaxbQdyPn9JjmLkvOOolOOolOOoFANwhVdfadmLluj9CetLXJDaIMeoywt3oQ/FzQh1aPZc4PT0SM+Z7AEC9cSr1GFl+ercjR6TGjWuuHz4s5eQkNt2ukh13uHS31ilgpnqOo6UbijX+uQ+UdbxcGx8dJUk657Z/qLxhliRp7pgeNR9EJXOMuxlzX3DUS3DUS3DUC4BvWb5WdDjL6y9V19p2YuW6P0y6KWsSm9cBUgh9KH5OqEOr5xKnp0dixnwPACkk0WvFtASUCQCAhKuqNjRtyWcK9t9bJ49NW/KZqqr5/y4AAAAAiceaBAAAAHAXNsYBALa0dtt+FfvKQ6Ybkop95Vq7bb95hQIAAACQMliTAAAAAO7CxjgAwJa+ORT6A6j65AMAAACAWLAmAQAAANyFjXEAgC21aJKV0HwAAAAAEAvWJAAAAIC72H5jfPz48Tr77LP9tz/88EP17dtX7du3V9euXbVs2bKA/HPmzFGnTp3UunVrXXHFFSotLfWnlZaWavTo0WrXrp3at2+vRx55xLQ4AACx6d0hTwXeLHlCpHskFXiz1LtDnpnFAgAAAJAiWJMAAAAA7mLrjfGdO3fq2Wef9d8+dOiQRowYod/97nfasWOH5s6dq9GjR2vPnj2SpBdffFHPPvus1q5dq6+++kr5+fkaN26c//7XXXedunXrph07dmj16tV64okntGTJEtPjAgBElp7m0dQRXSWpzgdRJ29PHdFV6WmhPqYCAAAAgPpjTQIAAAC4S4bVBQjntttu04033qi33npLkrRgwQL16tVLQ4YMkSQNGDBAF110kV544QVNmjRJc+bM0dSpU5WXV/OfutOnT1dBQYH279+vkpISrVu3Tq+88oo8Ho9atWqliRMnat68eRoxYoRlMcasQQNp6tRT1xOdblfJjjtculvrFDBTPcfRsG4Fmjumhx5c/LHm9P+pJKkyPV353ixNHdFVw7oVxPX4Ud3XzZj7gqNegqNegqNeAMAdUnWtbSdWrvvDpJuyJrE4xpjKCHejD8XPCXVo9Vzi9PRIzJjvAQD15jEMw7C6EMG89tprmjVrlqZOnaqbb75ZmzZt0o033qhzzz1Xd9xxhz/fgw8+qM2bN+vPf/6zsrOztXv3bjVv3tyf/p3vfEdPPfWUtm/frr///e969dVX/Wn/93//pzFjxmjbtm0hy1FRUaGKigr/7bKyMrVt21Y+n0+5ubkJjhoAEExVtaG12/brm0PlatGk5lSFfCsDAADYSVlZmbxeL2vFeqL+YHesSQAAAADzJXqtaMtvjJeWlmrixIl67bXX/KdJl6Ti4mINHjw4IG+LFi20Zs0alZSUqKqqKmBT/GR6aWmpiouL1bJly6Bp4Tz00EOaNm1anBEBAOKRnuZRv45nWF0MAAAAACmKNQkAAADgfLbbGDcMQ2PHjtXkyZN19tlnB2yMV1ZWqvYX3KuqquTxeFRZWem/v8fjCZoe6r7hTJkyRbfffrv/9slvjFumulrauLHm+jnnSGlpiU23q2THHS7drXUKmMnKMRwpPZXHMHNfcNRLcNRLcNQLALhDqq617cTOawYz0u1QBvox6EPxc0IdWj2XOD09EjPmewBAvdluY3zGjBk6ceKEbrnlljppeXl5KikpCTi2b98+5efnq1mzZjIMQwcOHPD/xvjp6cXFxVq7dm3Q+4aTmZmpzMzMOCJKsGPHpG7daq4fPizl5CQ23a6SHXe4dLfWKWAmK8dwpPRUHsPMfcFRL8FRL8FRLwDgDqm61rYTO68ZzEi3Qxnox6APxc8JdWj1XOL09EjMmO8BAPVmu381evzxx/Xee++pWbNmatq0qS677DJ9+eWXatq0qXr27KmioqKA/EVFRerXr59ycnLUpUuXgPTi4mLt3btX3bt3V8+ePbVmzRpVV1fXuS8AAAAAAAAAAAAAwL1stzFeXFyssrIyHTx4UAcPHtSrr76q73znOzp48KCuvfZavf3221q+fLkk6fXXX9fGjRs1evRoSdK4ceM0bdo0HTx4UMePH9eUKVN00003KTs7W71791ZBQYFmzpyp6upqbd26VU8++aRuvfVWK8MFAAAAAAAAAAAAACSZ7U6lHk6bNm20cOFCTZgwQfv371enTp20ZMkS5Xx7KpFJkyZp165d6ty5szIyMjRy5EjNmDFDkuTxeLRo0SL94he/0OzZs9WsWTPNmjVLPXv2tDIkAAAAAAAAAAAAAECS2X5jfODAgdq0aZP/9qWXXhpw+3RpaWmaNWuWZs2aFTT9rLPO0ooVK5JRTAAAAAAAAAAAAACATdnuVOoAAAAAAAAAAAAAACQSG+MAAAAAAAAAAAAAAFez/anUUUuDBtIdd5y6nuh0u0p23OHS3VqngJmsHMOR0lN5DDP3BUe9BEe9BEe9AHCYW265RX/961/VrFkz/7GVK1eqffv2+vDDDzV+/HgVFxcrJydHjz32mIYOHerPN2fOHP3hD3/QsWPH1Lt3bz311FM644wzJEmlpaW6+eabtWbNGnk8Hk2cOFG//vWvTY+v3lJ1rW0ndl4zmJFuhzLQj0Efip8T6tDqucTp6ZGYMd8DAOrNYxiGYXUhnKSsrExer1c+n0+5ublWFwcAAAAAYANOWSvecsstOuOMMzRt2rSA44cOHdI555yjp59+WkOGDNHKlSs1cuRIbdq0Sfn5+XrxxRc1Y8YMvfXWW/J6vbrlllv0zTff6KWXXpIkDR8+XH369NH/+3//T8XFxfr+97+vJ554QiNGjIiqXE6pPwAAAACAeRK9VuRU6gAAAAAApJCmTZvWObZgwQL16tVLQ4YMkSQNGDBAF110kV544QVJNd8Wnzp1qvLy8pSenq7p06frlVde0f79+/XFF19o3bp1uvfee+XxeNSqVStNnDhR8+bNMzMsAAAAAADC4lTqTlNdLX31Vc31du2ktLTEpttVsuMOl+7WOgXMZOUYjpSeymOYuS846iU46iU46gWAAwXbGF+9erX69+8fcKxPnz766KOPVFlZqXXr1gWkN2/eXIWFhfrkk0+0fft29e7dWxkZGQH3feKJJ0KWoaKiQhUVFf7bZWVlcUSUAKm61rYTO68ZzEi3Qxnox6APxc8JdWj1XOL09EjMmO8BAPXGxrjTHDsmdehQc/3wYSknJ7HpdpXsuMOlu7VOATNZOYYjpafyGGbuC456CY56CY56AeBAU6ZM0dSpU9WxY0dNmTJFl1xyiYqLizV48OCAfC1atNCaNWtUUlKiqqoqNW/evE56aWmpiouL1bJly6BpoTz00EN1TuduqVRda9uJndcMZqTboQz0Y9CH4ueEOrR6LnF6eiRmzPcAgHrjX41cpqr61E/Gr9laGnAb9UOdAgAAAHCLxx9/XHv27NG2bdt055136uqrr9b69etVWVkpwwhc61RVVcnj8aiyslKSwqaHSgtlypQp8vl8/svOnTsTFCEAAAAAAMGxMe4iSzcUa8jsFf7bN8x/XxfOXK6lG4qtK5TDUacAAAAA3CTt21Nxpqena/jw4frpT3+qf/7zn8rLy1NJSUlA3n379ik/P1/NmjWTYRg6cOBA0PRw9w0lMzNTubm5ARcAAAAAAJKJjXGXWLqhWOOf+0B7fBUBx/f4yjX+uQ/YyK0H6hQAAACA21VWVqphw4bq2bOnioqKAtKKiorUr18/5eTkqEuXLgHpxcXF2rt3r7p3766ePXtqzZo1qq6urnNfAAAAAADsgo1xF6iqNjRtyWcKdoLvk8emLfnM1acAT/TpzqlTAAAAAG705ptv+jew//Wvf+mll17SVVddpWuvvVZvv/22li9fLkl6/fXXtXHjRo0ePVqSNG7cOE2bNk0HDx7U8ePHNWXKFN10003Kzs5W7969VVBQoJkzZ6q6ulpbt27Vk08+qVtvvdWyOAEAAAAAqI2NcRdYu22/in3lIdMNScW+cq3dtt+8QpkoGac7T/U6BQAAAOBOjz76qPLz81VYWKjf/e53Wrx4sbp27ao2bdpo4cKFmjBhglq0aKHf/e53WrJkiXJyciRJkyZN0oABA9S5c2cVFhaqUaNGmjFjhiTJ4/Fo0aJFevPNN9WyZUsNGzZMs2bNUs+ePa0MFQAAAACAABlWFwDx++ZQ6A3cOvnys5JcGnOdPN151vHgpzufO6aHhnUriPlxU7lOAQAAALjX0qVLQ6Zdeuml2rRpU9C0tLQ0zZo1S7NmzQqaftZZZ2nFihWJKCIAAAAAAEnBxrjTZGRIEyacui6pRZNTG7NVael69ns/8l8/XYsmWUHv7whByn366c5rx21I8qjmdOdDu+YrPVLctdJTok4BM8U4Bk1NT+UxHE+9uLneqJfgqJfgqBcAcIdkvx9FZHZeM5iRbocy0I9BH4qfWOLThQABAABJREFUE+rQ6rnE6emRmDHfAwDqzWMYBj+SHIOysjJ5vV75fD7l5uZaXRxJNRvEF85crj2+8qC/ie2RlO/N0qq7Bys9zWN28ZJm9ZZS/fTP/46Yb8FNfdWv4xkxPXaq1ikAAACA+rHjWtFJqD8AAAAAQG2JXivyG+MukJ7m0dQRXSXVbNie7uTtqSO6um4DN6bTnccoVesUAAAAAAAAAAAAcCM2xp3GMKR9+2oup33Zf1i3As0d00P5uZnKO+pT3lGfZBjK92YF/s52iPvbXpByn366cxlGQNyna9EkK3LcQdJdX6eAmeoxBk1LT+UxHE+9uLneqJfgqJfgqBcAcIdkvx9FZHZeM5iRbocy0I9BH4qfE+rQ6rnE6emRmDHfAwDqjVOpx8jy07sdOSI1blxz/fBhKScnILnq0GGl5zaRJK35zw5dcG7bwG81R7i/bQUp9+mnO886Xq6Nj46SJJ1z2z90rGFW4OnOjx0NH3eYenFtnQJmijROrExP5TEcT724ud6ol+Col+CoFwDfsnyt6HCW11+y348iMjuvGcxIt0MZ6MegD8XPCXVo9Vzi9PRIzJjvASCFcCp1hHX6hm2fs85w9am+zTrdeSrVKQAAAAAAAAAAAOBGbIzD0U6e7rylNzPgeJ3TnQMAAAAAAAAAAABIWRlWFwCI17BuBRrafqB0f83tp2/sVfd05wAAAAAAAAAAAABSFhvjcIXapzsXm+IAAAAAAAAAAAAAvsWp1AEAAAAAAAAAAAAArsbGOAAAAAAAAAAAAADA1TiVutNkZEg///mp64lOt6tkxx0u3a11CpjJyjEcKT2VxzBzX3DUS3DUS3DUCwC4Q6qute3EzmsGM9LtUAb6MehD8XNCHVo9lzg9PRIz5nsAQL15DMMwrC6Ek5SVlcnr9crn8yk3N9fq4gAAAAAAbIC1YnyoPwAAAABAbYleK3IqdQAAAAAAAAAAAACAq3EeDqcxDOno0Zrr2dmSx5PYdLtKdtzh0t1ap4CZrBzDkdJTeQwz9wVHvQRHvQRHvQCAO6TqWttO7LxmMCPdDmWgH4M+FD8n1KHVc4nT0yMxY74HANQb3xh3mqNHpcaNay4nXxwTmW5XyY47XLpb6xQwk5VjOFJ6Ko9h5r7gqJfgqJfgqBcAcIdUXWvbiZ3XDGak26EM9GPQh+LnhDq0ei5xenokZsz3AIB6Y2McAAAAAAAAAAAAAOBqbIwDAAAAAAAAAAAAAFyNjXEAAAAAAAAAAAAAgKuxMQ4AAAAAAAAAAAAAcDU2xgEAAAAAAAAAAAAArsbGOAAAAAAAAAAAAADA1TKsLgBilJ4ujRp16nqi0+0q2XGHS3drnQJmsnIMR0pP5THM3Bcc9RIc9RIc9QIA7pCqa207sfOawYx0O5SBfgz6UPycUIdWzyVOT4/EjPkeAFBvHsMwDKsLEczDDz+sp556SuXl5fJ6vXrwwQd1+eWXS5IaN24sr9erBg0aSJJ69eqlv//97/77zpkzR3/4wx907Ngx9e7dW0899ZTOOOMMSVJpaaluvvlmrVmzRh6PRxMnTtSvf/3rqMtVVlYmr9crn8+n3NzcBEYMAAAAAHAq1orxof4AAAAAALUleq1o21Op9+nTR59++qm++uor/fGPf9Q111yj0tJSf/qqVau0fft2bd++PWBT/MUXX9Szzz6rtWvX6quvvlJ+fr7GjRvnT7/uuuvUrVs37dixQ6tXr9YTTzyhJUuWmBobAAAAAAAAAAAAAMA8tj2V+oABA/zXL7roImVnZ2vfvn3+b343bdo06P3mzJmjqVOnKi8vT5I0ffp0FRQUaP/+/SopKdG6dev0yiuvyOPxqFWrVpo4caLmzZunESNGJD0mAAAAAAAAAAAAAID5bPuN8ZPKy8s1Z84c9erVS2effbYkKS0tTV6vt07eyspKrVu3Tv379/cfa968uQoLC/XJJ59o9erV6t27tzIyTv0/QJ8+ffTRRx+FfP6KigqVlZUFXCx15Ijk8dRcjhxJfLpdJTvucOlurVPATFaO4UjpqTyGmfuCo16Co16Co14AwB1Sda1tJ3ZeM5iRbocy0I9BH4qfE+rQ6rnE6emRmDHfAwDqzbYb41u2bFHbtm2VnZ2thQsX6sknn/SneTwedezYUZ07d9bYsWO1e/duSVJJSYmqqqrUvHnzgMdq0aKFSktLVVxcrJYtWwZNC+Whhx6S1+v1X9q2bZvAKAEAAAAAAAAAAAAAyWbbjfGOHTtq586dOnr0qCZOnKh+/frpyy+/lCQdOHBA27Zt0/vvv6/s7GyNGDFChmGosrJSkmQYRsBjVVVVyePxqLKyMmRaKFOmTJHP5/Nfdu7cmeBIAQAAAAAAAAAAAADJZNuN8ZOysrL0s5/9TJdddpmeeeYZSTWnUpckr9erxx57TJ9//rm2bt2qZs2ayTAMHThwIOAx9u3bp/z8fOXl5amkpCRoWiiZmZnKzc0NuAAAAAAAAAAAAAAAnMP2G+MnZWZmqlGjRnWOV1dXq7q6Wg0bNlROTo66dOmioqIif3pxcbH27t2r7t27q2fPnlqzZo2qq6v96UVFRerXr58pMQAAAAAAAAAAAAAAzGfLjfFdu3ZpwYIF/lOjv/vuu1q8eLFGjx6tLVu26IsvvpAkVVRUaNKkSerVq5f/t7/HjRunadOm6eDBgzp+/LimTJmim266SdnZ2erdu7cKCgo0c+ZMVVdXa+vWrXryySd16623WhYrAAAAAAAAAAAAACC5bLkxnpmZqb/85S9q1aqVOnbsqGnTpmnx4sXq3Lmz9u/fr+HDh6t169Y655xzdPz4cf3jH//w33fSpEkaMGCAOnfurMLCQjVq1EgzZsyQJHk8Hi1atEhvvvmmWrZsqWHDhmnWrFnq2bOnVaECAAAAAAAAAAAAAJIsw+oCBNO8eXO99dZbQdN69eqlzZs3h7xvWlqaZs2apVmzZgVNP+uss7RixYpEFNMa6enS8OGnric63a6SHXe4dLfWKWAmK8dwpPRUHsPMfcFRL8FRL8FRLwDgDqm61rYTO68ZzEi3Qxnox6APxc8JdWj1XOL09EjMmO8BAPXmMQzDsLoQTlJWViav1yufz6fc3FyriwMAAAAAsAHWivGh/gAAAAAAtSV6rWjLU6kDAAAAAAAAAAAAAJAobIwDAAAAAAAAAAAAAFyNjXGnOXJEysmpuRw5kvh0u0p23OHS3VqngJmsHMOR0lN5DDP3BUe9BEe9BEe9AIA7pOpa207svGYwI90OZaAfgz4UPyfUodVzidPTIzFjvgcA1FuG1QVAPRw9mtx0u0p23OHS3VqngJmsHMOR0lN5DDP3BUe9BEe9BEe9AIA7pOpa207svGYwI90OZaAfgz4UPyfUodVzidPTIzFjvgcA1AvfGAcAAAAAAAAAAAAAuBob4wAAAAAAAAAAAAAAV2NjHAAAAAAAAAAAAADgamyMAwAAAAAAAAAAAABcjY1xAAAAAAAAAAAAAICrZVhdAMQoLU0aMODU9USn21Wy4w6X7tY6Bcxk5RiOlJ7KY5i5LzjqJTjqJTjqBQDcIVXX2nZi5zWDGel2KAP9GPSh+DmhDq2eS5yeHokZ8z0AoN48hmEYVhfCScrKyuT1euXz+ZSbm2t1cQAAAAAANsBaMT7UHwAAAACgtkSvFfl3IwAAAAAAAAAAAACAq7ExDgAAAAAAAAAAAABwNTbGnebIEenMM2suR44kPt2ukh13uHS31ilgJivHcKT0VB7DzH3BUS/BUS/BUS8A4A6puta2EzuvGcxIt0MZ6MegD8XPCXVo9Vzi9PRIzJjvAQD1lmF1AVAPJSXJTberZMcdLt2tdQqYycoxHCk9lccwc19w1Etw1Etw1AsAuEOqrrXtxM5rBjPS7VAG+jHoQ/FzQh1aPZc4PT0SM+Z7AEC98I1xAAAAAAAAAAAAAICrsTEOAAAAAAAAAAAAAHA1NsYBAAAAAAAAAAAAAK7GxjgAAAAAAAAAAAAAwNXYGAcAAAAAAAAAAAAAuFqG1QVAjNLSpAsuOHU90el2ley4w6W7tU4BM1k5hiOlp/IYZu4LjnoJjnoJjnoBAHdI1bW2ndh5zWBGuh3KQD8GfSh+TqhDq+cSp6dHYsZ8DwCoN49hGIbVhXCSsrIyeb1e+Xw+5ebmWl0cAAAAAIANsFaMD/UHAAAAAKgt0WtF/t0IAAAAAAAAAAAAAOBqbIwDAAAAAAAAAAAAAFyNjXGnOXpUKiysuRw9mvh0u0p23OHS3VqngJmsHMOR0lN5DDP3BUe9BEe9BEe9AIA7pOpa207svGYwI90OZaAfgz4UPyfUodVzidPTIzFjvgcA1FuG1QVAjAxD2rHj1PVEp9tVsuMOl+7WOgXMZOUYjpSeymOYuS846iU46iU46gUA3CFV19p2Yuc1gxnpdigD/Rj0ofg5oQ6tnkucnh6JGfM9AKDe+MY4AAAAAAAAAAAAAMDV2BgHAAAAACAFjR8/Xmeffbb/9ocffqi+ffuqffv26tq1q5YtWxaQf86cOerUqZNat26tK664QqWlpf600tJSjR49Wu3atVP79u31yCOPmBYHAAAAAADRYGMcAAAAAIAUs3PnTj377LP+24cOHdKIESP0u9/9Tjt27NDcuXM1evRo7dmzR5L04osv6tlnn9XatWv11VdfKT8/X+PGjfPf/7rrrlO3bt20Y8cOrV69Wk888YSWLFlielwAAAAAAITCxjgAAAAAACnmtttu04033ui/vWDBAvXq1UtDhgyRJA0YMEAXXXSRXnjhBUk13xafOnWq8vLylJ6erunTp+uVV17R/v379cUXX2jdunW699575fF41KpVK02cOFHz5s2zJDYAAAAAAIJhYxwAAAAAgBTy2muvqbS0VKNGjfIfW716tfr37x+Qr0+fPvroo49UWVmpdevWBaQ3b95chYWF+uSTT7R69Wr17t1bGRkZde4bSkVFhcrKygIuAAAAAAAkU0bkLLAVj0fq2vXU9USn21Wy4w6X7tY6Bcxk5RiOlJ7KY5i5LzjqJTjqJTjqBYDDlJaWauLEiXrttdf8p0mXpOLiYg0ePDggb4sWLbRmzRqVlJSoqqpKzZs3r5NeWlqq4uJitWzZMmhaKA899JCmTZuWgIgSJFXX2nZi5zWDGel2KAP9GPSh+DmhDq2eS5yeHokZ8z0AoN48hmEYVhfCScrKyuT1euXz+ZSbm2t1cQAAAAAANuCEtaJhGLriiit08cUX69Zbb9WKFSt08803a9OmTRoyZIiuv/56XX/99f78f/rTn/TGG2/oj3/8o9q3b6/Kykp5Tvtwtm/fvrr77rv16aefauvWrQGnTt+0aZP69Okjn88XtCwVFRWqqKjw3y4rK1Pbtm1tXX8AAAAAAHMleq3NqdQBAAAAAEgBM2bM0IkTJ3TLLbfUScvLy1NJSUnAsX379ik/P1/NmjWTYRg6cOBA0PRw9w0lMzNTubm5ARcAAAAAAJKJjXEAAAAAAFLA448/rvfee0/NmjVT06ZNddlll+nLL79U06ZN1bNnTxUVFQXkLyoqUr9+/ZSTk6MuXboEpBcXF2vv3r3q3r27evbsqTVr1qi6urrOfQEAAAAAsAvbbow//PDD6ty5s9q1a6fzzjtPr7zyij/tww8/VN++fdW+fXt17dpVy5YtC7jvnDlz1KlTJ7Vu3VpXXHFFwO+alZaWavTo0WrXrp3at2+vRx55xLSYEuLoUencc2suR48mPt2ukh13uHS31ilgJivHcKT0VB7DzH3BUS/BUS/BUS8AHKS4uFhlZWU6ePCgDh48qFdffVXf+c53dPDgQV177bV6++23tXz5cknS66+/ro0bN2r06NGSpHHjxmnatGk6ePCgjh8/rilTpuimm25Sdna2evfurYKCAs2cOVPV1dXaunWrnnzySd16661WhhubVF1r24md1wxmpNuhDPRj0Ifi54Q6tHoucXp6JGbM9wCAesuwugCh9OnTR7fddpsaNGigd999V5deeqm+/vprNWzYUCNGjNDTTz+tIUOGaOXKlRo5cqQ2bdqk/Px8vfjii3r22We1du1aeb1e3XLLLRo3bpxeeuklSdJ1112nPn366MUXX1RxcbG+//3vq3PnzhoxYoTFEUfJMKTPPjt1PdHpdpXsuMOlu7VOATNZOYYjpafyGGbuC456CY56CY56AeASbdq00cKFCzVhwgTt379fnTp10pIlS5STkyNJmjRpknbt2qXOnTsrIyNDI0eO1IwZMyRJHo9HixYt0i9+8QvNnj1bzZo106xZs9SzZ08rQ4pNqq617cTOawYz0u1QBvox6EPxc0IdWj2XOD09EjPmewBAvdl2Y3zAgAH+6xdddJGys7O1b98+vfvuu+rVq5eGDBniz3fRRRfphRde0KRJkzRnzhxNnTpVeXl5kqTp06eroKBA+/fvV0lJidatW6dXXnlFHo9HrVq10sSJEzVv3jznbIwDAAAAAJAAAwcO1KZNm/y3L7300oDbp0tLS9OsWbM0a9asoOlnnXWWVqxYkYxiAgAAAACQELY9lfpJ5eXlmjNnjnr16qWzzz5bq1evVv/+/QPy9OnTRx999JEqKyu1bt26gPTmzZursLBQn3zyiVavXq3evXsrIyOjzn1DqaioUFlZWcAFAAAAAAAAAAAAAOActt0Y37Jli9q2bavs7GwtXLhQTz75pKSa30Rr2bJlQN4WLVqotLRUJSUlqqqqUvPmzYOmh7tvKA899JC8Xq//0rZt2wRFCAAAAAAAAAAAAAAwg203xjt27KidO3fq6NGjmjhxovr166cvv/xSlZWVMmr9rkZVVZU8Ho8qKyslKWx6qLRQpkyZIp/P57/s3LkzQRECAAAAAAAAAAAAAMxg243xk7KysvSzn/1Ml112mZ555hnl5eWppKQkIM++ffuUn5+vZs2ayTAMHThwIGh6uPuGkpmZqdzc3IALAAAAAAAAAAAAAMA5MiJnsYfMzEw1atRIPXv2VFFRkW6//XZ/WlFRka655hrl5OSoS5cuKioq0mWXXSap5tTre/fuVffu3ZWWlqZp06apurpaaWlp/vv269fPkpjqxeOR2rc/dT3R6XaV7LjDpbu1TgEzWTmGI6Wn8hhm7guOegmOegmOegEAd0jVtbad2HnNYEa6HcpAPwZ9KH5OqEOr5xKnp0dixnwPAKg3j1H73OI2sGvXLr377rsaPXq0MjIy9O677+qaa67RypUrlZ2drfPOO08vvfSSBg8erNdff10TJkzQp59+qpycHD366KN6/vnntWzZMmVnZ2vcuHFq1qyZHn30URmGoe9973u65pprdPfdd2v79u0aNGiQFi1apJ49e0ZVtrKyMnm9Xvl8Pr49DgAAAACQxFoxXtQfAAAAAKC2RK8VbfmN8czMTP3lL3/RpEmT1KRJExUWFmrx4sXq3LmzJGnhwoWaMGGC9u/fr06dOmnJkiXKycmRJE2aNEm7du1S586dlZGRoZEjR2rGjBmSJI/Ho0WLFukXv/iFZs+erWbNmmnWrFlRb4oDAAAAAAAAAAAAAJzHlt8YtzP+ix0AAAAAUBtrxfhQfwAAAACA2hK9VkxLQJlgpmPHpF69ai7HjiU+3a6SHXe4dLfWKWAmK8dwpPRUHsPMfcFRL8FRL8FRLwDgDqm61rYTO68ZzEi3Qxnox6APxc8JdWj1XOL09EjMmO8BAPXGN8ZjZPl/sR85IjVuXHP98GHp21PIJyzdrpIdd7h0t9YpYCYrx3Ck9FQew8x9wVEvwVEvwVEvAL5l+VrR4Syvv1Rda9uJndcMZqTboQz0Y9CH4ueEOrR6LnF6eiRmzPcAkEL4xjgAAAAAAAAAAAAAADFgYxwAAAAAAAAAAAAA4GpsjAMAAAAAAAAAAAAAXI2NcQAAAAAAAAAAAACAq7ExDgAAAAAAAAAIq6ra8F9fs7U04DYAAIATZFhdANRD8+bJTberZMcdLt2tdQqYycoxHCk9lccwc19w1Etw1Etw1AsAuEOqrrXtxM5rBjPS7VAG+jFC9IGlG4o186X1+kejXEnSDfPfV9Mzv9TUEV01rFtBxPunFCeMQ6vnEqenR2LGfA8AqBePYRj8a18MysrK5PV65fP5lJuba3VxAAAAAAA2wFoxPtQfANjX0g3FGv/cB6r9IbLn279zx/QI3BwHAABIkESvFTmVOgAAAAAAAACgjqpqQ9OWfFZnU1yS/9i0JZ9xWnUAAOAIbIwDAAAAAAAAAOpYu22/in3lIdMNScW+cq3dtt+8QgEAANQTG+NOc+yYNHBgzeXYscSn21Wy4w6X7tY6Bcxk5RiOlJ7KY5i5LzjqJTjqJTjqBQDcIVXX2nZi5zWDGel2KAP9GEH6wDeHTm2KZ56o0MLnf6OFz/9GmScqAu76zaFy+pDkjHFo9Vzi9PRIzJjvAQD1xm+Mx8jy3z07ckRq3Ljm+uHDUk5OYtPtKtlxh0t3a50CZrJyDEdKT+UxzNwXHPUSHPUSHPUC4FuWrxUdzvL6S9W1tp3Yec1gRrodykA/RpA+sHpLqX76539LkhodL9fGR0dJks657R861jDLf9cFN/VVv/ws+pATxqHVc4nT0yMxY74HgBTCb4wDAAAAAAAAAJKud4c8FXiz5AmR7pFU4M1S7w55ZhYLAACgXtgYBwAAAAAAAADUkZ7m0dQRXSWpzub4ydtTR3RVelqorXMAAAD7YGMcAAAAAAAAABDUsG4Fmjumh1p6MwOO53uzNHdMDw3rVmBRyQAAAGKTYXUBAAAAAAAAAAD2NaxbgYa2HyjdX3P76Rt76YJz2/JNcQAA4ChsjAMAAAAAAAAAwjp9E7zPWWdIbIoDAACHYWPcibKzk5tuV8mOO1y6W+sUMJOVYzhSeiqPYea+4KiX4KiX4KgXAHCHVF1r24md1wxmpNuhDPRj0Ifi54Q6tHoucXp6JGbM9wCAevEYhmFYXQgnKSsrk9frlc/nU25urtXFAQAAAADYAGvF+FB/AAAAAIDaEr1WTEtAmQAAAAAAAAAAAAAAsC02xgEAAAAAAAAAAAAArsbGuNOUl0s/+lHNpbw88el2ley4w6W7tU4BM1k5hiOlp/IYZu4LjnoJjnoJjnoBAHdI1bW2ndh5zWBGuh3KQD8GfSh+TqhDq+cSp6dHYsZ8DwCoN35jPEaW/+7ZkSNS48Y11w8flnJyEptuV8mOO1y6W+sUMJOVYzhSeiqPYea+4KiX4KiX4KgXAN+yfK3ocJbXX6qute3EzmsGM9LtUAb6MehD8XNCHVo9lzg9PRIz5nsASCH8xjgAAAAAAAAAAAAAADFgYxwAAAAAAAAAAAAA4GpsjAMAAAAAAAAAAAAAXI2NcQAAAAAAAAAAAACAq7ExDgAAAAAAAAAAAABwNTbGAQAAAAAAAAAAAACu5jEMw7C6EE5SVlYmr9crn8+n3Nxcq4sDAAAAALAB1orxof4AAAAAALUleq3IN8YBAAAAAAAAAAAAAK7GxjgAAAAAAAAAAAAAwNXYGHea8nJp9OiaS3l54tPtKtlxh0t3a50CZrJyDEdKT+UxzNwXHPUSHPUSHPUCAO6QqmttO7HzmsGMdDuUgX4M+lD8nFCHVs8lTk+PxIz5HgBQb/zGeIws/92zI0ekxo1rrh8+LOXkJDbdrpIdd7h0t9YpYCYrx3Ck9FQew8x9wVEvwVEvwVEvAL5l+VrR4Syvv1Rda9uJndcMZqTboQz0Y9CH4ueEOrR6LnF6eiRmzPcAkEL4jXEAAAAAAAAAAAAAAGJg243x5cuXq3///urUqZM6duyoJ554wp/WrVs3tWzZUoWFhSosLFS/fv0C7rtgwQKdc845atOmjQYNGqRt27b5044dO6Zx48apffv2atOmje666y7xpXkAAAAAAAAAAAAAcC/bboy//PLLmjdvnjZv3qxly5Zp5syZWrp0qT994cKF2r59u7Zv367Vq1f7j69evVr33HOP3nzzTX399dcaOnSoRo8e7U//9a9/rerqam3ZskWffvqp3nnnHf3hD38wNTYAAAAAAAAAAAAAgHlsuzH+2GOPqUuXLpKks846S1dffbWWL1/uT2/atGnQ+z3xxBOaPHmy2rVrJ0m66667tG3bNn388cc6fPiwnnnmGT388MPKyMiQ1+vVlClTNG/evKTHAwAAAAAAAAAAAACwhm03xmvbt2+fvF6v/3aojfHVq1erf//+/tsZGRnq0aOHPvroI61fv14dOnRQXl6eP71Pnz7asGGDqqqqgj5eRUWFysrKAi4AAAAAAAAAAAAAAOdwxMb42rVr9eqrr+pnP/uZJMnj8WjgwIH+b5J/8cUX/rzFxcVq2bJlwP1btGih0tLSkGmVlZXy+XxBn/uhhx6S1+v1X9q2bZvg6AAAAAAAAAAAAAAAyZRhdQEiWbhwoSZPnqxnnnlGHTp0kCR9/PHHSktL07FjxzRnzhwNGTJEn332mRo3bqzKykoZhhHwGFVVVfJ4PCHTpJrN9mCmTJmi22+/3X+7rKzM2s3x7Gzp8OFT1xOdblfJjjtculvrFDCTlWM4Unoqj2HmvuCol+Col+CoFwBwh1Rda9uJndcMZqTboQz0Y9CH4ueEOrR6LnF6eiRmzPcAgHrzGLV3im2iqqpKt956q9555x0tXLhQ3bt3D5n3nHPO0R/+8AddfPHFatGihZYuXaoePXr40y+++GL98pe/lNfr1W9+8xv95z//8aft3LlTnTt31pEjR5SWFvkL9GVlZfJ6vfL5fMrNzY0vSAAAAACAK7BWjA/1BwAAAACoLdFrRdueSn3y5MnaunWr1q1bF3ZTXJIqKyvVsGFDSVLPnj1VVFTkTzt+/LjWr1+vvn37qkePHvr888914MABf3pRUZH69OkT1aY4AAAAAAAAAAAAAMB5bLkbXF5errlz52r+/PnKyckJSPvmm2/0wQcfSKr5Vvl///d/Ky0tTb169ZIkjRs3To888oi+/vprVVVVafr06Ro0aJA6dOig/Px8DRs2TPfcc48qKytVUlKiBx98UJMnTzY7xPqrqJBuuKHmUlGR+HS7Snbc4dLdWqeAmawcw5HSU3kMM/cFR70ER70ER70AgDuk6lrbTuy8ZjAj3Q5loB+DPhQ/J9Sh1XOJ09MjMWO+BwDUmy1Ppf7ZZ5+pW7duateuXcDxLl266M9//rOGDx+u0tJSZWVlqVevXnr44YdVWFjoz/f73/9ejz76qKqrqzVw4EDNnTtXzZo1kySVlJRo7NixKioqUk5Oju644w7dcsstUZfN8tO7HTkiNW5cc/3wYanWPw7EnW5XyY47XLpb6xQwk5VjOFJ6Ko9h5r7gqJfgqJfgqBcA37J8rehwltdfqq617cTOawYz0u1QBvox6EPxc0IdWj2XOD09EjPmewBIIYleK2YkoEwJ17VrV1VXV4dM37BhQ9j733nnnbrzzjuDpjVv3lwvv/xyXOUDAAAAAAAAAAAAADiHLU+lDgAAAAAAAAAAAABAorAxDgAAAAAAAAAAAABwNTbGAQAAAAAAAAAAAACuxsY4AAAAAAAAAAAAAMDV2BgHAAAAAAAAAAAAALhahtUFQIyys6Vvvjl1PdHpdpXsuMOlu7VOATNZOYYjpafyGGbuC456CY56CY56AQB3SNW1tp3Yec1gRrodykA/Bn0ofk6oQ6vnEqenR2LGfA8AqDePYRiG1YVwkrKyMnm9Xvl8PuXm5lpdHAAAAACADbBWjA/1BwAAAACoLdFrRU6lDgAAAABAinj44YfVuXNntWvXTuedd55eeeUVf9qHH36ovn37qn379uratauWLVsWcN85c+aoU6dOat26ta644gqVlpb600pLSzV69Gi1a9dO7du31yOPPGJaTAAAAAAARIONcaepqJD+679qLhUViU+3q2THHS7drXUKmMnKMRwpPZXHMHNfcNRLcNRLcNQLAIfp06ePPv30U3311Vf64x//qGuuuUalpaU6dOiQRowYod/97nfasWOH5s6dq9GjR2vPnj2SpBdffFHPPvus1q5dq6+++kr5+fkaN26c/3Gvu+46devWTTt27NDq1av1xBNPaMmSJVaFGbtUXWvbiZ3XDGak26EM9GPQh+LnhDq0ei5xenokZsz3AIB641TqMbL89G5HjkiNG9dcP3xYyslJbLpdJTvucOlurVPATFaO4UjpqTyGmfuCo16Co16Co14AfMvytWI9nXHGGfq///s/vfvuu3rjjTe0ePFif9rll1+uiy++WJMmTdL3v/993X333Ro5cqQkqaSkRAUFBdq7d69KSkp04YUXavfu3crIyJAkzZ49W++9917A44Vjef2l6lrbTuy8ZjAj3Q5loB+DPhQ/J9Sh1XOJ09MjMWO+B4AUwqnUAQAAAABAXMrLyzVnzhz16tVLZ599tlavXq3+/fsH5OnTp48++ugjVVZWat26dQHpzZs3V2FhoT755BOtXr1avXv39m+Kn37fUCoqKlRWVhZwAQAAAAAgmdgYBwAAAAAgRWzZskVt27ZVdna2Fi5cqCeffFKSVFxcrJYtWwbkbdGihUpLS1VSUqKqqio1b948aHq4+4by0EMPyev1+i9t27ZNUIQAAAAAAATHxjgAAAAAACmiY8eO2rlzp44ePaqJEyeqX79++vLLL1VZWanav7RWVVUlj8ejyspKSQqbHiotlClTpsjn8/kvO3fuTFCEAAAAAAAEx8Y4AAAAAAApJisrSz/72c902WWX6ZlnnlFeXp5KSkoC8uzbt0/5+flq1qyZDMPQgQMHgqaHu28omZmZys3NDbgAAAAAAJBMbIwDAAAAAJCiMjMz1ahRI/Xs2VNFRUUBaUVFRerXr59ycnLUpUuXgPTi4mLt3btX3bt3V8+ePbVmzRpVV1fXuS8AAAAAAHbBxjgAAAAAAClg165dWrBggf/U6O+++64WL16s0aNH69prr9Xbb7+t5cuXS5Jef/11bdy4UaNHj5YkjRs3TtOmTdPBgwd1/PhxTZkyRTfddJOys7PVu3dvFRQUaObMmaqurtbWrVv15JNP6tZbb7UsVgAAAAAAasuwugCIUaNG0rZtp64nOt2ukh13uHS31ilgJivHcKT0VB7DzH3BUS/BUS/BUS8AHCQzM1N/+ctfNGnSJDVp0kSFhYVavHixOnfuLElauHChJkyYoP3796tTp05asmSJcnJyJEmTJk3Srl271LlzZ2VkZGjkyJGaMWOGJMnj8WjRokX6xS9+odmzZ6tZs2aaNWuWevbsaVmsMUvVtbad2HnNYEa6HcpAPwZ9KH5OqEOr5xKnp0dixnwPAKg3j2EYhtWFcJKysjJ5vV75fD5+Aw0AAAAAIIm1YryoPwAAAABAbYleK3IqdQAAAAAAAAAAAACAq7Ex7jTHj0t33llzOX488el2ley4w6W7tU4BM1k5hiOlp/IYZu4LjnoJjnoJjnoBAHdI1bW2ndh5zWBGuh3KQD8GfSh+TqhDq+cSp6dHYsZ8DwCoN06lHiPLT+925IjUuHHN9cOHpW9/7y1h6XaV7LjDpbu1TgEzWTmGI6Wn8hhm7guOegmOegmOegHwLcvXig5nef2l6lrbTuy8ZjAj3Q5loB+DPhQ/J9Sh1XOJ09MjMWO+B4AUwqnUAQAAAAAAAAAAAACIARvjAAAAAAAAAAAAAABXY2McAAAAAAAAAAAAAOBqbIwDAAAAAAAAAAAAAFyNjXEAAAAAAAAAAAAAgKuxMQ4AAAAAAAAAAAAAcLUMqwuAGDVqJG3YcOp6otPtKtlxh0t3a50CZrJyDEdKT+UxzNwXHPUSHPUSHPUCAO6QqmttO7HzmsGMdDuUgX4M+lD8nFCHVs8lTk+PxIz5HgBQbx7DMAyrC+EkZWVl8nq98vl8ys3Ntbo4AAAAAAAbYK0YH+oPAAAAAFBboteKpp5KvU+fPmY+HQAAAAAArsdaGwAAAACAyJJ6KvUTJ06oQYMG/ttfffVVMp8uNRw/Lv33f9dcv+ceqWHDxKbbVbLjDpfu1joFzGTlGI6UnspjmLkvOOolOOolOOoFgAVYaydBqq617cTOawYz0u1QBvox6EPxc0IdWj2XOD09EjPmewBAvSXsVOoDBgzQypUrA461aNFC33zzjf92q1attHv37kQ8nWUsP73bkSNS48Y11w8flnJyEptuV8mOO1y6W+sUMJOVYzhSeiqPYea+4KiX4KiX4KgXAN9K1lqRtbZJUnWtbSd2XjOYkW6HMtCPQR+KnxPq0Oq5xOnpkZgx3wNACrHtqdQ3btxY5xg/Xw4AAAAAQP2x1gacoar61Lhcs7U04DYAAAAAe0jqb4x7PJ5kPjwAAAAAACmHtTZgL0s3FGvI7BX+2zfMf18XzlyupRuKrSsUAAAAgDqS+hvjhmFo0aJF/usVFRXJfDoAAAAAAFyPtTZgH0s3FGv8cx8o63jgONzjK9f45z7Q3DE9NKxbgUWlAwAAAHC6pG6MS9L8+fP9148dO5bspwMAAAAAwPVYawPWq6o2NG3JZwp20nRDkkfStCWfaWjXfKWbXDYAAAAAdSX9VOpLlizxX7xeb9T3Xb58ufr3769OnTqpY8eOeuKJJ/xp27dv19ChQ9W+fXt16tRJzz33XMB9FyxYoHPOOUdt2rTRoEGDtG3bNn/asWPHNG7cOLVv315t2rTRXXfdxe+zAQAAAAAcI561NoDEWbttv4p95SHTDUnFvnKt3bbfvEIBAAAACCmpG+O1xfI7aC+//LLmzZunzZs3a9myZZo5c6aWLl2qqqoqjRgxQtdee6127NihV155RRMnTtRHH30kSVq9erXuuecevfnmm/r66681dOhQjR492v+4v/71r1VdXa0tW7bo008/1TvvvKM//OEPiQ4VAAAAAABT8JvjgDW+ORR6U7w++QAAAAAkV8JOpX7gwAH16NHDf9swDB08eLDej/fYY4/5r5911lm6+uqrtXz5cqWlpSkjI0M33HCDJKlr164aM2aMnnnmGZ1//vl64oknNHnyZLVr106SdNddd+mRRx7Rxx9/rI4dO+qZZ57Rzp07lZGRIa/XqylTpmj69Om69dZb611WU2VlSWvXnrqe6HS7Snbc4dLdWqeAmawcw5HSU3kMM/cFR70ER70ER70ASLJEr7URQqqute3EzmuGEOktmpzKV5HRQJdfP9t//XQtmmRF10dsGCNSDH0ofk6oQ6vnEqenR2LGfA8AqDePkaDziK9fvz7o8Z49e/qvt2rVSrt3767X41933XU6++yzVVlZqX379gV8y/tvf/ubnnrqKb3zzjvq0KGD/v73v+uCCy7wpw8dOlRjxoxRYWGh/uu//ksbNmzwp+3atUuFhYUqLy9XenrdX3yqqKhQRUWF/3ZZWZnatm0rn8+n3NzcesUCAAAAAHCXsrIyeb3ehK8Vk73Wtotk1R+QTFXVhi6cuVx7fOVBf2fcI+n/s3fv4VFV9/7HP5MECAQyEBES7ihiiXgpyK1Qr1jRGhGFWo9otVYq/lQQtZbWFhCtUBVvPdJTrbdSQevlYKzGoyIePVAiIlYE64WLFINCAhMIBEiyf3/EBIZMMre9Z6+95/16Hh4me82eWfu711oz31kza+cHs/XurWcoM4OVHQAAAIB42Z0r2vaL8UOT8uYkOgdfWlqql19+Wbfffrvmzp2r7t27h5V36dJF5eXlkqSysjJ17do1YnmbNm0iltXU1CgUCikvL6/Jc991112aNWtWQvUGAAAAACAZTubaAJKTmRHQjKJCTV6wSgEpbHK8YRp8RlEhk+IAAACAIWybGI/FCy+8EPc+ixYt0tSpU/Xkk0+qb9++qqmpaZL019bWNl5TraXy5sqk5q/JNn36dE2bNq3x74ZfjLtm/36pYZn5KVOk1q3tLTeV08fdUrlfYwqkkpt9OFp5Ovdhxr7IiEtkxCUy4gLAAInk2jhMuubaJjE5Z2ihfMzAAs2fOEh3vvihzlnyrCTp8ZPPV+e8DppRVKgxAwtie3yDjxFphDaUPC/E0O2xxOvl0aRivAcAJMy2pdTjUV5eriOOOKLF+9TW1ur666/XW2+9pUWLFunEE0+UVH/N8Orqaj344ION9/3LX/6iBQsW6LXXXlOXLl1UUlISdg22M888Uz/72c8UDAb1y1/+Uv/85z8byzZv3qz+/furqqpKGRkZUevu+vJuVVVS+/b1t3fvlnJy7C03ldPH3VK5X2MKpJKbfThaeTr3Yca+yIhLZMQlMuIC4Fuu54qKLdc2levxS9dc2yQm5wwxlNfu2q3M3A6SpBX/3KSTj+sZ/kvxWNqI4ceINEAbSp4XYuj2WOL18mhSMd4DQBoxcin1008/vdlfXDc4//zzNXXqVEnS8ccfH/X6Z1OnTtX69eu1cuVK5Rwy8A8ePFh333132H2XLVumESNGNJYvW7ascWJ8//79ev/99/Xoo4+qbdu2+te//qUdO3aoU6dOjfsOGzYspklxAAAAAABSxYlcG4AzDp0EH3bUERLLpwMAAADGsWVi/Lbbbot6nx49ejTejvYj9erqas2fP1+bN28OmxSXpKKiIt14441asGCBJk6cqJUrV2rx4sUqLS2VJE2aNEnTpk3TBRdcoIKCAs2ePVunn366+vbtK0kaM2aMfvWrX+mhhx7Szp07deedd+r222+P95ABAAAAAHCU3bk2AAAAAADpzJaJ8TPPPDOu+0f7xvv69etVV1fX+CvwBscee6xee+01FRcX6+qrr9a0adOUn5+vp59+uvHDgHHjxunzzz/X0KFDVVdXp9NOO02PPfZY42P8+c9/1lVXXaWCggLl5OTo5ptv1gUXXBBX/QEAAAAAcJrduTYAAAAAAOnMlolxSfrf//3fiNsHDBigI488Mq7HKiwsVF1dXbPlgwcP1qpVq5otv+WWW3TLLbdELOvcubMWL14cV30AAAAAAHCDnbk2AAAAAADpzLaJ8RkzZkiS1q1bp27duikYDGrjxo2688479R//8R92PQ0AAAAAAGmDXBsAAAAAAHvYNjH+1ltvSZIuueQSTZ48Waeccop+85vf2PXwAAAAAACkHXJtAAAAAADsYdvEOFIkO1v69oMRZWfbX24qp4+7pXK/xhRIJTf7cLTydO7DjH2REZfIiEtkxAUA/CFdc22TmJwzpKLchDrQjkEbSp4XYuj2WOL18mhSMd4DABIWsCzLsvMBD/8W+4ABA/T9739fl19+uQKBgCzL0vLly1VdXW3n06ZMZWWlgsGgQqGQcnNz3a4OAAAAAMAATueK5NoAAAAAgHRjd65o2y/G//d//1eStG3bNq1evVqS9OWXX2rAgAHq3LmzbrvtNrueCgAAAACAtECuDQAAAACAPWz7xfjpp58ecfttt92mM888046nMILr32I/cED605/qb0+aJLVqZW+5qZw+7pbK/RpTIJXc7MPRytO5DzP2RUZcIiMukREXAN9yKlck106RdM21TWJyzpCKchPqQDsGbSh5Xoih22OJ18ujScV4DwBpxO5c0fal1P3O9WS9qkpq377+9u7dUk6OveWmcvq4Wyr3a0yBVHKzD0crT+c+zNgXGXGJjLhERlwAfMv1XNHjXI9fuubaJjE5Z0hFuQl1oB2DNpQ8L8TQ7bHE6+XRpGK8B4A0YneumGFDnQAAAAAAAAAAAAAAMBYT4wAAAAAAAAAAAAAAX2NiHAAAAAAAAAAAAADga0yMAwAAAAAAAAAAAAB8jYlxAAAAAAAAAAAAAICvMTEOAAAAAAAAAAAAAPC1LLcrgDi1aSO9/PLB23aXm8rp426p3K8xBVLJzT4crTyd+zBjX2TEJTLiEhlxAQB/SNdc2yQm5wypKDehDrRj0IaS54UYuj2WeL08mlSM9wCAhAUsy7LcroSXVFZWKhgMKhQKKTc31+3qAAAAAAAMQK6YHOIHAAAAADic3bkiS6kDAAAAAAAAAAAAAHyNpdS95sAB6a9/rb996aVSq1b2lpvK6eNuqdyvMQVSyc0+HK08nfswY19kxCUy4hIZcQEAf0jXXNskJucMqSg3oQ60Y9CGkueFGLo9lni9PJpUjPcAgISxlHqcXF/erapKat++/vbu3VJOjr3lpnL6uFsq92tMgVRysw9HK0/nPszYFxlxiYy4REZcAHzL9VzR41yPX7rm2iYxOWdIRbkJdaAdgzaUPC/E0O2xxOvl0aRivAeANMJS6gAAAAAAAAAAAAAAxIGJcQAAAAAAAAAAAACArzExDgAAAAAAAAAAAADwNSbGAQAAAAAAAAAAAAC+xsQ4AAAAAAAAAAAAAMDXmBgHAAAAAAAAAAAAAPhaltsVQJzatJGeffbgbbvLTeX0cbdU7teYAqnkZh+OVp7OfZixLzLiEhlxiYy4AIA/pGuubRKTc4ZUlJtQB9oxaEPJ80IM3R5LvF4eTSrGewBAwgKWZVluV8JLKisrFQwGFQqFlJub63Z1AAAAAAAGIFdMDvEDAAAAABzO7lyRpdQBAAAAAAAAAAAAAL7GUupeU1Mjvfhi/e1x46SsLHvLTeX0cbdU7teYAqnkZh+OVp7OfZixLzLiEhlxiYy4AIA/pGuubRKTc4ZUlJtQB9oxaEPJ80IM3R5LvF4eTSrGewBAwlhKPU6uL+9WVSW1b19/e/duKSfH3nJTOX3cLZX7NaZAKrnZh6OVp3MfZuyLjLhERlwiIy4AvuV6ruhxrscvXXNtk5icM6Si3IQ60I5BG0qeF2Lo9lji9fJoUjHeA0AaYSl1AAAAAAAAAAAAAADiwMQ4AAAAAAAAAAAAAMDXmBgHAAAAAAAAAAAAAPgaE+MAAAAAAKSJJUuWaOTIkerXr5+OPvpoPfTQQ41lGzdu1FlnnaXevXurX79+WrBgQdi+Cxcu1IABA9SjRw+dfvrp2rBhQ2PZ3r17NWnSJPXu3Vs9evTQL37xC1mWlbLjAgAAAAAgGibGAQAAAABIE4sXL9Zjjz2mzz//XK+//rrmzp2rkpIS1dbWqqioSJdeeqk2bdqkl156STfccINWr14tSVq+fLl+9atf6bXXXtO///1vnXXWWZowYULj4950002qq6vTF198oY8//lhvvfWW/vCHP7h0lAAAAAAANMXEOAAAAAAAaeKBBx7QscceK0k66qij9KMf/UhLlizRm2++qaysLF1xxRWSpMLCQk2cOFFPPvmkJOmhhx7S1KlT1atXL0nSL37xC23YsEEffvihdu/erSeffFK///3vlZWVpWAwqOnTp+uxxx5z5RgBAAAAAIgky+0KIE6tW0uPP37wtt3lpnL6uFsq92tMgVRysw9HK0/nPszYFxlxiYy4REZcAHjctm3b9J3vfEfLly/XyJEjw8qGDRumRx99VFL9L8anTZvWWJaVlaVBgwZp9erV2rlzp/r27au8vLywfdesWaPa2lplZmY2ed59+/Zp3759jX9XVlbafWjxSddc2yQm5wypKDehDrRj0IaS54UYuj2WeL08mlSM9wCAhAUsLvoVl8rKSgWDQYVCIeXm5rpdHQAAAACAAbyYK5aWlurss8/WqlWrNHfuXHXv3l2/+c1vGstff/113XTTTfrnP/+p7OxsffbZZ+rZs2dj+aWXXqrBgwerW7dueuSRR/Tmm282lh04cECtW7dWeXl52IR5g5kzZ2rWrFlNtnspfgAAAAAAZ9mdaxu9lLplWXrqqac0YsSIsO3t27dX9+7d1adPH/Xp0yfsumaSdP/996tfv37q3r27xo0bp/Ly8say8vJyTZgwQb169VLv3r117733puRYAAAAAAAwxaJFi3T++efrySefVN++fVVTU6PDvzdfW1urQCAgSS2WN1cmqXH/w02fPl2hUKjx3+bNm+06NAAAAAAAIjJ2KfWSkhLdcsst2rt3r7Kymlbz3XffVd++fZtsf/bZZ/XUU0+ptLRUwWBQ1113nSZNmqTnn39eknTZZZdp2LBhevbZZ1VWVqbvfe976t+/v4qKihw/JlvU1EivvVZ/++yzpcNjk2y5qZw+7pbK/RpTIJXc7MPRytO5DzP2RUZcIiMukREXAB5TW1ur66+/Xm+99ZZee+01nXjiiZKkvLw8bd++Pey+27ZtU35+flh5wzXGDy0PBoMR983OzlYwGIxYjzZt2qhNmzZ2Hlpy0jXXNonJOUMqyk2oA+0YtKHkeSGGbo8lXi+PJhXjPQAgYcYupf7888+rbdu2ateuna655hp98sknjWXt27fX5s2b1alTpyb7fe9739Ott96qsWPHSpK2b9+ugoICff3119q+fbtGjRqlr776qnGyfd68eXrnnXf04osvxlQv15fHq6qS2revv717t5STY2+5qZw+7pbK/RpTIJXc7MPRytO5DzP2RUZcIiMukREXAN9yPVeM0fXXX6/PPvtMzz//vHIOGXeeeeYZ3X333Vq5cmXjtsmTJ6tr166aOXOmzjnnHP3whz/UddddJ0nav3+/unTpog8++EBt27ZV7969tXXr1sY8/ZlnntH8+fO1dOnSmOrlevzSNdc2ick5QyrKTagD7Ri0oeR5IYZujyVeL48mFeM9AKSRtFlK/aKLLtK5554bsSwjIyPit85ramq0cuVKjRw5snFb586d1adPH3300Udavny5hg4dGvYL9GHDhmn16tXN1mPfvn2qrKwM+wcAAAAAgNdUV1dr/vz5evzxx8MmxSWpqKhIX331lRYsWCBJWrlypRYvXqyf/exnkqRJkybp3nvv1b///W/V1tZq9uzZOv3009W3b1/l5+drzJgx+tWvfqWamhpt375dd955p6ZOnZrqQwQAAAAAoFnGToy3JBAI6Oijj1b//v111VVX6auvvpJU/+vw2tpade7cOez+Xbp0UXl5ucrKytS1a9eIZc256667FAwGG//17NnT/gMCAAAAAMBh69evV11dnUaMGKE+ffo0/jv77LPVrl07FRcXa968eerSpYt++tOf6umnn1aPHj0kSePGjdO1116roUOHqnv37vrss8/02GOPNT72n//8Z3311VcqKCjQySefrEmTJumCCy5w6UgBAAAAAGjKkxen2LFjhzIyMhQKhXTbbbepqKhIK1euVE1NjSTJsiwFAoHG+9fW1ioQCKimpkaHrxzfUNac6dOna9q0aY1/V1ZWMjkOAAAAAPCcwsJC1dXVNVs+ePBgrVq1qtnyW265RbfcckvEss6dO2vx4sVJ1xEAAAAAAKd48hfjGRn11Q4Gg3rggQf0r3/9S+vXr1enTp1kWZZ27NgRdv9t27YpPz9feXl52r59e8Sy5rRp00a5ublh/wAAZqmtO/ilpxXry8P+BgAAAAAAAAAA8OTE+KHq6upUV1en1q1bKycnR8cee6yWLVvWWF5WVqavv/5aJ554ogYPHqwVK1aEfUN+2bJlGjFihBtVBwDYoGRNmUbPW9r49xWPv6dRc5eoZE2Ze5UCAAAAAAAAAABG8dzE+BdffKFPP/1UkrRv3z5NmTJFQ4YMaVzefNKkSZo1a5Z27typ/fv3a/r06br66qvVrl07DR06VAUFBZo7d67q6uq0fv16Pfzww7r++uvdPCQAQIJK1pRp8oJV2hraF7Z9a6hakxesYnIcSBFWbQAAAAAAAABgOs9dY7yiokKXXHKJ9u7dqzZt2ujMM8/Uc88911g+ZcoUbdmyRf3791dWVpbGjh2rOXPmSJICgYBeeOEF/fSnP9W8efPUqVMn3XPPPRo8eLBbhxO/1q2lP/zh4G27y03l9HG3VO7XmAKp5EAfra2zNKt4rSxJBzKz9JuzrpG+vW1JCkiaVbxWZxXmKzOZPu5njH2REZfImjm2kjVluuO//6nTv+2DC5/6QEfmfaYZRYUaM7CgxX19gfYCAP6Qrrm2SdzM+00oN6EOtGPQhpLnhRi6PZZ4vTyaVIz3AICEBSzL4ic9caisrFQwGFQoFOJ64wDgouVflOuSR/4R9X4Lrx6uEUcfkYIaAemnYdWGw99MBr79f/7EQQcnxwHA58gVk0P8AAAAAACHsztX9NxS6gAASNI3u6ptvR+A+By6asPhGrbNKl7LsuoAAAAAAAAAjOC5pdTTXm2t9M479be//30pM9PeclM5fdwtlfs1pkAqOdBHu3TIbizOqKvV0H9/LEkq7XGc6jIO7t+lQ3ZyfdzPGPsiIy6RHXZspRt3qixU/8WTSH3QklQWqlbphgqN6NMxbeJCewEAj0rXXNskbub9JpSbUAfaMWhDyfNCDN0eS7xeHk0qxnsAQMJYSj1Ori/vVlUltW9ff3v3biknx95yUzl93C2V+zWmQCo50Edr6yyNmrtEW0PVyt5frXX3jZckDbjxOe1tna2ApPxgtt699Qxl7t2TeB/3M8a+yIhLZIcd2+LPdmrKotWSpLYR+mCDB358ksYe0zFt4kJ7AdKX67mix7kev3TNtU3iZt5vQrkJdaAdgzaUPC/E0O2xxOvl0aRivAeANMJS6gAASMrMCGhGUaGkg9czbtDw94yiQmVmHF4KwA6Hrtpgx/0AAAAAAHDaoZf7WrG+nMt/AUCaYWIcAOBZYwYWaP7EQeoabBO2PT+YrfkTB2nMwAKXagb439C+eSoIZjf5YkqDgKSCYLaG9s1LZbUAAAAAAIioZE2ZRs9b2vj3FY+/p1Fzl6hkTZl7lQIApBQT4wAATxszsEBvTDut8e8nrhyid289g0lxwGGs2gAAAAAA8IqSNWWavGCVtob2hW3fGqrW5AWrmBwHgDTBxDgAwPMOnXgbdtQRTMQBKcKqDQAAAAAA09XWWZpVvFaRFk1v2DareC3LqgNAGshyuwIAAADwrjEDC3RW79OkmfV/P3HlEJ18XE++oAIAAAAAMELphgqVhaqbLbcklYWqVbqhQiPys1NXMQBAyvGLcQAAACSFVRsAAAAAAKb6Zlfzk+KJ3A8A4F38YtxrWrWSfv/7g7ftLjeV08fdUrlfYwqkkpt9OFp5Ovdhxr7IiEtkxCUy4gIA/pCuubZJXM4ZajOz9O9bZ2j3vhrt+rJSQ45tF/5lv1S0EZPzJqQH2lDyvBBDt8cSF8q7dDj4K/CazEz97rQrG28fqkuH7OTPQSrGewBAwgKWZXHhjDhUVlYqGAwqFAopNzfX7eoAAAAAAAxArpgc4gc3lawp06zitWHL7BYEszWjqFBjBha4WDMAgB1q6yyNmrtEW0PVEa8zHpCUH8zWu7eewQpoAGAYu3NFllIHAAAAAABAWipZU6bJC1Y1ufbs1lC1Ji9YpZI1ZS7VDABgl8yMgGYUFUqqnwQ/VMPfM4oKmRQHgDTAUupeU1srrVpVf3vQIOmw5V6SLjeV08fdUrlfYwqkUpR+UnugRh+//JZ27Nmv1kOGaGi/I8OTETf7uJ8x9kVGXCIjLpERFwDwh3TNtU3iQt5fW2dpVvFaWZIy6mo18OsvJElruh6tuoxMBSTNKl6rswrzlWnVOd9G3PzsI9Y6wt9oQ8nzQgzdHktcKh8zsEDzJw7S7MUf6YhPP5ZUP9537ZQTvkJIsucgFeM9ACBhLKUeJ9eXd6uqktq3r7+9e7eUk2NvuamcPu6Wyv0aUyCVWugnJWvKNPf59/XWzCJJ0oAbn1PHIzuGJyVu9nE/Y+yLjLhERlwiIy4AvuV6ruhxrscvXXNtk7iQ9y//olyXPPIPSVLb/dVad994SfU5yd7WB69Hu/Dq4RqRn+18G3Hzs49Y6wh/ow0lzwsxdHsscbm8dtduZeZ2kCSt+OcmnXxcz/AfZyR7DlIx3gNAGmEpdQCAbzQsW7g1tC9sO8sWAgAAAHDaN7uqo98pjvsBAMx36CT4sKOOYPl0AEgzTIwDAFxx6LKFh2vYNqt4rWrrWNgEAAAAgP26dMiOfqc47gcAAADAbEyMAwBcUbqhQmWh5n95YUkqC1WrdENF6ioFAAAAIG0M7ZungmC2mvutYEBSQTBbQ/vmpbJaAAAAABzCxDgAwBUsWwgAAADATZkZAc0oKpSkJpPjDX/PKCo0ZpndQ1fTWrG+nNW1AAAAgDgxMQ4AcAXLFgIAAABw25iBBZo/cZC6BtuEbc8PZmv+xEEaM7AgZXVpaeK7ZE2ZRs9b2vj3FY+/p1Fzl6hkTVnK6gcAAAB4HRPjAABXsGyh2fg1CgAAANLFmIEFemPaaY1/P3HlEL176xkpnRRvaeK7ZE2ZJi9Ypa2hfWH7bA1Va/KCVUyOAwAAADHKcrsCiFOrVtKMGQdv211uKqePu6Vyv8YUSKUI/aRh2cLJC1apNjNT94+8RJJUk5nZdNlCN/u4nzVz7CVrynTnix/qom/PyX8+tUqd8z7TjKLCgx8O+jluvCZERlwiIy4A4A/pmmubxM28X1Jmm9aN5cOOzZcOXz7dwedvmPjOqq0Jy4saJr6D7VrJ+nbboeWW6r9QPKt4rc4qzFcm7RjJog0lzwsxdHm89Xx5NLHsb0I7AIA0FbAsi5+AxaGyslLBYFChUEi5ubluVwcAPK9kTZlmFa9VWejgtcQLgtnhk7BImYYP5Q5/c9DwsWCql5MEAMAryBWTQ/yQrmrrLI2auyQsH0rEwquHa8TRR9hUKwAAAMAMdueK/GIcAOCqMQMLdFZhvko3VOibXdXq0qF++fTMw3+hAcfV1lmaVby2yaS4pKa/RuH8AAAAAEkr3VCR9KS4JH2zK/nHAAAAAPyOiXGvqauT1q2rvz1ggJSRYW+5qZw+7pbK/RpTIJWi9JNMWRpRvVVqJanvgKbLFrrZx/3ssGMv3bCj8UO5gFWnfts3S5I+79xTViBDlqSyULVKN1RoRN9O/o0brwmREZfIiAsA+EO65tomcTPvd7H80AntSO/BD9VSeZcO2bRjJI82lDwvxNDQ8dAz5dHEsr8J7QAA0hRLqcfJ9eXdqqqk9u3rb+/eLeXk2FtuKqePu6Vyv8YUSCU3+3C08nTuw4cd++LPdmrKotWSpLb7q7XuvvGSpAE3Pqe9rbMbd3vgxydp7DEd/Rs3XhMiIy6RERcA33I9V/Q41+OXrrm2SUzOGRwsX/5FuS555B+SWn4P3lx5QFJ+MFvv3nqGMvfuoR0jOYyFyfNCDA0dDz1THk0s+5vQDgDAI+zOFfmqEQAAkPTtr0xsvB8AAACAlg3tm6eCYP0EdyQBSZ3atWq8fXiZJM0oKuRSRwAAAEAMmBgHAACSYvtQriBYfw14AAAAAMnLzAhoRlGhpOYnvu+68Hj9ceIgdQ22CSvPD2Zr/sRBGjOwwPmKAgAAAD7AxDgAAJAU24dy/BoFAAAAsNeYgQWaH2Xie8zAAr0x7bTGsieuHKJ3bz2DSXEAAAAgDlluVwAAAJij4UO5uc+/H7Y9P5itGUWFfPAGAAAAOGDMwAKd1fs0aWb9309cOUQnH9cz7Euph94edtQREl9YBQAAAOLCxDgAAAgTy4dyAAAAAOzFxDcAAADgLCbGAQBAE3woBwAAAAAAAADwEybGvaZVK+nmmw/etrvcVE4fd0vlfo0pkEpu9uFo5enchxn7IiMukRGXyIgLAPhDuubaJjE5Z0hFuQl1oB2DNpQ8L8TQ7bHE6+XRpGK8BwAkLGBZluV2JbyksrJSwWBQoVBIubm5blcHAAAAAGAAcsXkED8AAAAAwOHszhUzbKgTAAAAAAAAAAAAAADGYil1r6mrk778sv52r15SRoa95aZy+rhbKvdrTIFUcrMPRytP5z7M2BcZcYmMuERGXADAH9I11zaJyTlDKspNqAPtGLSh5Hkhhm6PJV4vjyYV4z0AIGEspR4n15d3q6qS2revv717t5STY2+5qZw+7pbK/RpTIJXc7MPRytO5DzP2RUZcIiMukREXAN9yPVf0ONfjl665tklMzhlSUW5CHWjHoA0lzwsxdHss8Xp5NKkY7wEgjaTVUuqWZempp57SiBEjwrZ/8MEHGj58uHr37q3CwkK9/vrrYeX333+/+vXrp+7du2vcuHEqLy9vLCsvL9eECRPUq1cv9e7dW/fee29KjgUAAAAAAAAAAAAA4A5jJ8ZLSkp0wgkn6Pbbb9eOHTsat+/atUtFRUW64447tGnTJs2fP18TJkzQ1q1bJUnPPvusnnrqKZWWlurLL79Ufn6+Jk2a1Lj/ZZddpoEDB2rTpk1avny5HnroIRUXF6f8+AAAAAAAAAAAAAAAqWHsxHhVVZXmzp2rRx99NGz7woULNWTIEI0ePVqSdOqpp+qUU07RM888I6n+1+IzZsxQXl6eMjMzNXv2bL300kuqqKjQp59+qpUrV+rXv/61AoGAunXrphtuuEGPPfZYyo8PAAAAAAAAsamtO3glwBXry8P+BgAAAIBYGDsxftFFF+ncc89tsn358uUaOXJk2LZhw4Zp9erVqqmp0cqVK8PKO3furD59+uijjz7S8uXLNXToUGVlZTXZtzn79u1TZWVl2D8AAAAAAACkRsmaMo2et7Tx7ysef0+j5i5RyZoy9yoFAAAAwHOMnRhvTllZmbp27Rq2rUuXLiovL9f27dtVW1urzp07Ryxvad/m3HXXXQoGg43/evbsad/BAAAAAAAAoFkla8o0ecEqbQ3tC9u+NVStyQtWMTkOAAAAIGaemxivqamRZYUvl1VbW6tAIKCamhpJarG8ubLmTJ8+XaFQqPHf5s2bbToSAAAAAAAANKe2ztKs4rWKtGh6w7ZZxWtZVh2AZ3BZCAAA3JUV/S5mycvL0/bt28O2bdu2Tfn5+erUqZMsy9KOHTuUl5fXpLysrEylpaUR921OmzZt1KZNG3sPIhlZWdK11x68bXe5qZw+7pbK/RpTIJXc7MPRytO5DzP2RUZcIiMukREXAPCHdM21TRIhhqUbKlQWqpYk1WZk6qnv/rDxtlQ/OV4WqlbphgqN6NHe3JwjlnIT6kA7Bm0oeS3EoGRNmX734mr97Nux7I4nV+mIIz7TjKJCjRlYEHX/VNSR8hjKo0nFeA8ASFjAOvwn1IZZunSprrnmGn3yySeSpLlz5+q9997Tc88913ifc845RxdffLGuuOIKDRgwQHfffbfOO+88SfVLrx9zzDH65ptv9NFHH+n8889XWVmZMjIyGh9v3bp1euKJJ2KqT2VlpYLBoEKhkHJzc+09WAAAAACAJ5ErJof4IZLFq7doyqLVUe/3wI9P0tiTujtfIQBIUMNlIQ7/IL5hHdP5EwcdnBwHAACN7M4VPbeU+qWXXqo333xTS5YskSS98sorWrdunSZMmCBJmjRpkmbNmqWdO3dq//79mj59uq6++mq1a9dOQ4cOVUFBgebOnau6ujqtX79eDz/8sK6//no3DwkAAAAAAACH6dIh29b7AYAbuCwEAADm8Nw6HD169NCiRYt07bXXqqKiQv369VNxcbFycnIkSVOmTNGWLVvUv39/ZWVlaezYsZozZ44kKRAI6IUXXtBPf/pTzZs3T506ddI999yjwYMHu3lI8bEsqWEp+c6dpcOvj55suamcPu6Wyv0aUyCV3OzD0crTuQ8z9kVGXCIjLpERFwDwh3TNtU0SIYZD++apIJitraFqWZalvL2VkqSKtrlSIKCApPxgtob2zTM754il3IQ60I5BG0pehBgcelkIRRjLwi4LcVSe8zF0eyzxenk0qRjvAQAJM34pddO4vrxbVZXUvn397d27pW+/EGBbuamcPu6Wyv0aUyCV3OzD0crTuQ8z9kVGXCIjLpERFwDfcj1X9DjX45euubZJmolhw/LDbfdXa+194yVJA258TtWt638l3rj8sMk5RyzlJtSBdgzaUPIixODQy0K03V+tdYeMZXtbH1zx4oEfn6Sxx3R0PoZujyVeL48mFeM9AKSRtF9KHQAAAAAAAOlhzMACzZ84SF2DbcK25wezuSYvAE/gshAAAJjDc0upAwAAAAAAIH2MGVigs3qfJs2s//uJK4fo5ON6KjODpWUBmO/Qy0JEEnZZiL17Uls5AADSDL8YBwAAAAAAgNEOnQQfdtQRTIoD8IzMjIBmFBVKqp8EP1TD3zOKChnXAABIASbGAQAAAAAAAABwCJeFAADADCylDgAAAAAAAACAg7gsBAAA7mNiHAAAAAAAAAAAhx1+WQgxKQ4AQEoxMe41WVnST35y8Lbd5aZy+rhbKvdrTIFUcrMPRytP5z7M2BcZcYmMuERGXADAH9I11zaJyTlDKspNqAPtGLSh5Hkhhm6PJV4vjyYV4z0AIGEBy7IstyvhJZWVlQoGgwqFQsrNzXW7OgAAAAAAA5ArJof4AQAAAAAOZ3euyNeNAAC+V1tnqXRDhb7ZVa0uHbI1tG8e1/ACAAAAAAAAACCNMDHuNZYl7dlTf7tdOykQsLfcVE4fd0vlfo0pkEou9uGSNWWa9dLH2rk9JEna26qNCjq21YyiQo0ZWJDefZixLzLiEhlxiYy4AIA/pGuubRI3834Tyk2oA+0YtKHkeSGGbo8lXi+PJhXjPQAgYRluVwBx2rNHat++/l/Di6Od5aZy+rhbKvdrTIFUcqkPl6wp0+QFq7Rze0jr7huvdfeNV9sD+7Q1VK3JC1apZE1Zevdhxr7IiEtkxCUy4gLAgyzL0lNPPaURI0aEbf/ggw80fPhw9e7dW4WFhXr99dfDyu+//37169dP3bt317hx41ReXt5YVl5ergkTJqhXr17q3bu37r333pQci23SNdc2iZt5vwnlJtSBdgzaUPK8EEO3xxKvl0eTivEeAJAwJsYBAL5UW2dpVvFaWRHKGrbNKl6r2rpI9wAAAPCnkpISnXDCCbr99tu1Y8eOxu27du1SUVGR7rjjDm3atEnz58/XhAkTtHXrVknSs88+q6eeekqlpaX68ssvlZ+fr0mTJjXuf9lll2ngwIHatGmTli9froceekjFxcUpPz4AAAAAAJrDxDgAwJdKN1SoLFTdbLklqSxUrZUbK1JXKQBp5dAv3qxYX84XcQAYoaqqSnPnztWjjz4atn3hwoUaMmSIRo8eLUk69dRTdcopp+iZZ56RVP9r8RkzZigvL0+ZmZmaPXu2XnrpJVVUVOjTTz/VypUr9etf/1qBQEDdunXTDTfcoMceeyzlxwcAAAAAQHOYGAcA+NI3u5qfFD/Utt37HK4JgHRUsqZMo+ctbfz7isff06i5S+ov4QAALrrooot07rnnNtm+fPlyjRw5MmzbsGHDtHr1atXU1GjlypVh5Z07d1afPn300Ucfafny5Ro6dKiysrKa7Nucffv2qbKyMuwfAAAAAABOYmIcAOBLXTpkx3S/I9u3cbgmANJNyZoyTV6wSltD4V+82Rqq1uQFq5gcB2CksrIyde3aNWxbly5dVF5eru3bt6u2tladO3eOWN7Svs256667FAwGG//17NnTvoMBAAAAACACJsYBAL40tG+eCoLZCjRTHpBUEMzWyX3yUlktAD5XW2dpVvFaRVo0vWHbrOK1LKsOwDg1NTWyrPCxqba2VoFAQDU1NZLUYnlzZc2ZPn26QqFQ47/NmzfbdCQAAAAAAETGxDgAwJcyMwKaUVQoSU0mxxv+nlFUqMyM5j+wBYB4lW6oUFmo+Us5WJLKQtUq3VCRukoBQAzy8vK0ffv2sG3btm1Tfn6+OnXqJMuytGPHjojlLe3bnDZt2ig3NzfsHwAAAAAATsqKfhcYJTNTGj/+4G27y03l9HG3VO7XmAKp5FIfHjOwQPMnDtJdL6zW34+tvyZmXUaG8oPZmlFUqDEDC6Tq6vTtw4x9kRGXyIhLZIcd2ze7Dk6K12VkhI09h/pmV7XUPce/cQHgOYMHD9ayZcs0bdq0xm3Lli3TxRdfrJycHB177LFatmyZzjvvPEn1S69//fXXOvHEE5WRkaFZs2aprq5OGd+Od8uWLdOIESNcOZaEpGuubRI3834Tyk2oA+0YtKHkeSGGbo8lXi+PJhXjPQAgYQHr8PXO0KLKykoFg0GFQiG+0Q4AHlFbZ6l0Q4W+2VWtLh2yNbRvHr8UB+CI5V+U65JH/hH1fguvHq4RRx+RghoBSBWv5YpLly7VNddco08++USS9O9//1vHH3+8nn/+eZ1xxhl65ZVXdO211+rjjz9WTk6O7rvvPj399NN6/fXX1a5dO02aNEmdOnXSfffdJ8uy9N3vflcXX3yxbr31Vm3cuFGnn366XnjhBQ0ePDim+ngtfgAAAAAA59mdK/KLcQCA72VmBJiAApASQ/vmqSCYra2h6ojXGQ9Iyg/Wf0EHAEzSo0cPLVq0SNdee60qKirUr18/FRcXKycnR5I0ZcoUbdmyRf3791dWVpbGjh2rOXPmSJICgYBeeOEF/fSnP9W8efPUqVMn3XPPPTFPigMAAAAAkAr8YjxOfIsdAAAALSlZU6bJC1ZJUtjkeMM6FfMnDqq/lAMAXyFXTA7xAwAAAAAczu5cMSP6XWCUqiopEKj/V1Vlf7mpnD7ulsr9GlMgldzsw9HK07kPM/ZFRlwiIy6RRTi2MQMLNH/iIPVpa2nj3PO0ce55aru/WvnB7PBJcT/HBQC8Jl1zbZOYnDOkotyEOtCOQRtKnhdi6PZY4vXyaFIx3gMAEsZS6gAAAIDNxgws0Fm9T5Nm1v/9xJVDdPJxPZWZEWhpNwAAAAAAAAAOYWIcAAAAcMChk+DDjjpCYlIcAAAAAAAAcA1LqQMAAAAAAAAAAAAAfI2JcQAAAAAAAAAAAACArzExDgAAAAAAAAAAAADwNSbGAQAAAAAAAAAAAAC+luV2BRCnzEzp3HMP3ra73FROH3dL5X6NKZBKbvbhaOXp3IcZ+yIjLpERl8iICwD4Q7rm2iYxOWdIRbkJdaAdgzaUPC/E0O2xxOvl0aRivAcAJCxgWZbldiW8pLKyUsFgUKFQSLm5uW5XBwAAAABgAHLF5BA/AAAAAMDh7M4VWUodAAAAAAAAAAAAAOBrTIwDAAAAAAAAAAAAAHyNiXGvqaqScnLq/1VV2V9uKqePu6Vyv8YUSCU3+3C08nTuw4x9kRGXyIhLZMQFAPwhXXNtk5icM9hQXrtrt2rb5aimbTut+OhL1dZFuLKh4ceANEAbSp4XYuj2WOL18mhi2d+EdgAAaSrL7QogAXv2OFtuKqePu6Vyv8YUSCU3+3C08nTuw4x9kRGXyIhLZMQFAPwhXXNtk5icMyRRXrKmTHOff19v7a0vv+Lx99TxyM80o6hQYwYWGFHHmMvhf7Sh5Hkhhm6PJV4vjyaW/U1oBwCQhvjFOAAAAAAAAOCAkjVlmrxglbaG9oVt3xqq1uQFq1SypsylmgEAAADph4lxAAAAAAAAwGa1dZZmFa9VhEXTG7fNKl4beVl1AAAAALbz5MT4ddddp2AwqD59+jT+27RpkyTpgw8+0PDhw9W7d28VFhbq9ddfD9v3/vvvV79+/dS9e3eNGzdO5eXlbhwCAAAAAAAAfKx0Q4XKQtXNlluSykLVKt1QkbpKAQAAAGnMkxPjkjR16lRt3Lix8V/v3r21a9cuFRUV6Y477tCmTZs0f/58TZgwQVu3bpUkPfvss3rqqadUWlqqL7/8Uvn5+Zo0aZLLRwIAAAAAAAC/+WZX85PiidwPAAAAQHI8OzHesWPHJtsWLlyoIUOGaPTo0ZKkU089VaeccoqeeeYZSfW/Fp8xY4by8vKUmZmp2bNn66WXXlJFBd/MBQAAAAAAgH26dMi29X4AAAAAkpPldgUSFWlifPny5Ro5cmTYtmHDhmn16tWqqanRypUrw8o7d+6sPn366KOPPtKpp54a8Xn27dunffv2Nf5dWVlpzwEkKiNDaqhrRoTvNSRbbiqnj7ulcr/GFEglN/twtPJ07sOMfZERl8iIS2TEBQD8IV1zbZOYnDMkWD60b54KgtnaGqpWXSCgf/QcKEmqCwQkSQFJ+cFsDe2bZ+wxIM3QhpLnhRi6PZZ4vTyaWPY3oR0AQJoKWJZluV2JeF133XV67rnn1Lp1ax199NGaPn26fvCDH2jMmDG69NJLddlllzXe95FHHlFxcbH+9Kc/qXv37qqtrQ17rJEjR+qmm27ShRdeGPG5Zs6cqVmzZjXZHgqFlJuba++BAQAAAAA8qbKyUsFgkFwxQcQPflWypkyTF6ySVH9N8QaBb/+fP3GQxgwsSHm9AAAAAC+wO1f05NeNHnzwQW3dulUbNmzQLbfcoh/96Ed6//33VVNTo8Pn+WtraxUIBFRTUyNJzZY3Z/r06QqFQo3/Nm/ebP8BAQAAAAAAwHfGDCzQ/ImDlB8MXy49P5jNpDgAAACQYp5cSj3j2+VDMjMzde655+qSSy7Rf//3fysvL0/bt28Pu++2bduUn5+vTp06ybIs7dixQ3l5eU3Km9OmTRu1adPGmQMBAAAAAACAr40ZWKCzCvNVuqFC3+yqVpcO9cunZ2Y0/0MNAAAAAPbz5C/GD1dTU6PWrVtr8ODBWrZsWVjZsmXLNGLECOXk5OjYY48NKy8rK9PXX3+tE088MdVVTlxVlXTkkfX/qqrsLzeV08fdUrlfYwqkkpt9OFp5Ovdhxr7IiEtkxCUy4gIA/pCuubZJTM4ZbCjP3LtHI4Z/R2PPOkkj8rMjT4obfgxIA7Sh5Hkhhm6PJV4vjyaW/U1oBwCQpjz5i/HXXntNZ511ljIyMvQ///M/ev755/Xuu+8qNzdXc+bM0ZIlS3TGGWfolVde0bp16zRhwgRJ0qRJkzRr1iyNGjVK7dq10/Tp03X11VerXbt2Lh9RnA77Vbzt5aZy+rhbKvdrTIFUcrMPRytP5z7M2BcZcYmMuERGXADAH9I11zaJyTlDKspNqAPtGLSh5Hkhhm6PJV4vjyYV4z0AICGenBi/7777dNlll6ldu3bq1auXXnzxRRUWFkqSFi1apGuvvVYVFRXq16+fiouLlZOTI0maMmWKtmzZov79+ysrK0tjx47VnDlz3DwUAAAAAAAAAAAAAIDDPDkxXlJS0mzZ2WefrU8++SRiWUZGhu655x7dc889TlUNAAAAAAAAAAAAAGAYX1xjHAAAAAAAAAAAAACA5jAxDgAAAAAAAAAAAADwNSbGAQAAAAAAAAAAAAC+5slrjKe1jAzp5JMP3ra73FROH3dL5X6NKZBKbvbhaOXp3IcZ+yIjLpERl8iICwD4Q7rm2iYxOWdIRbkJdaAdgzaUPC/E0O2xxOvl0aRivAcAJCxgWZbldiW8pLKyUsFgUKFQSLm5uW5XBwAAAABgAHLF5BA/AAAAAMDh7M4V+cU4AAAAAAAAAABACtTWWSrdUKFvdlWrS4dsDe2bp8yMgNvVAoC0wMQ4AAAAAAAAAACAw0rWlGlW8VqVhaobtxUEszWjqFBjBha4WDMASA9coMJr9uyR+vSp/7dnj/3lpnL6uFsq92tMgVRysw9HK0/nPszYFxlxiYy4REZcAMAf0jXXNonJOUMqyk2oA+0YtKHkeSGGbo8lXi+PpoX9S9aUafKCVdqxfafenf9TvTv/p8o+UK2toWpNXrBKJWvK7KkDAKBZ/GLcayxL2rTp4G27y03l9HG3VO7XmAKp5GYfjlaezn2YsS8y4hIZcYmMuACAP6Rrrm0Sk3OGVJSbUAfaMWhDyfNCDN0eS7xeHk0z+9fWWZpVvFaWpIAl9aj8Rvr2tiUpIGlW8VqdVZivTPoSADiGX4wDAAAAAAAAPldbd3ByZcX68rC/AQDOKt1QEbZ8+uEsSWWhapVuqEhdpQAgDTExDgAAECM+TAQAAIAXlawp0+h5Sxv/vuLx9zRq7pKDy/YCABz1za7mJ8UTuR8AIDFMjAMAAMSADxMBAADgRQ3XtN0a2he2vck1bQEAjunSIdvW+wEAEsPEOAAAQBR8mAgAAAAvOvSatodr2DareC0rIQGAw4b2zVNBMFuBZsoDkgqC2RraNy+V1QKAtMPEOAAAQAv4MBEAAABexTVtAcAMmRkBzSgqlKQmk+MNf88oKlRmRnNT5wAAO2S5XQHEKRCQCgsP3ra73FROH3dL5X6NKZBKbvbhaOXp3IcZ+yI77NgO/TDRCkifHtGr8bYU/mHiiIK2aROXmMtiKfcy4gIA/pCuubZJTM4ZUlHu0HMceq3aSO9lG3yzq1ry83tZxIaxMHleiKHb453Xy6NpYf8xAws0f+IgzXl+Vdh4nB/M1oyiQo0ZWGBPHQAAzQpYlsXPm+JQWVmpYDCoUCik3Nxct6sDAAActnj1Fk1ZtDrq/R748Ukae1J35ysEADASuWJyiB/gjOVflOuSR/4R9X4Lrx6uEUcfkYIaAQBq6yyVbqjQN7uq1aVD/fLp/FIcACKzO1fkF+MAAAAt6NIh29b7AQAAAKnScE3braHqiJcGCqj+l4pc0xYAUiczI8CXkQDAJVxjHAAAoAUNHyY2993tgKQCPkwEAACAgbimLQAAAHAQE+Nes2ePdNxx9f/27LG/3FROH3dL5X6NKZBKbvbhaOXp3IcZ+yI77NgO/TCx7YFq/c+j1+p/Hr1W2Qeqm36YmEZxibkslnIvIy4A4A/pmmubxOScIRXlDj5HwzVte7dV2HvZ/GC25k8cdPCatrRjMBYmzwsxdHu883p5NKkY7wEACWMpda+xLGnt2oO37S43ldPH3VK5X2MKpJKbfThaeTr3Yca+yCIcW8OHiXOff1/9y7+UJAWs+mUnZxQVHvwwMc3iElNZLOVeRlwAwB/SNdc2ick5QyrKHX6OMQMLdFbvU5U5s/697JNXDNHJx/UM/6U47RiMhcnzQgzdHu+8Xh5NKsZ7AEDCmBgHAACIQf2HiadJM+v/fuLKCB8mAgAAAIY69H3rsKOOkHgfC8ABtXWWMr+9vWJ9uU4+rh15MwDAGCylDgAAEKPDP0wkuQcAAAAAoF7JmjKNnre08e8rHn9Po+YuUcmaMvcqBQDAIZgYBwAAAAAAgK/V1h1cinbF+vKwvwEAyStZU6bJC1Zpa2hf2PatoWpNXrCKyXEAgBGYGAcAAAAAAIBv8QtGAHBWbZ2lWcVrFekrRw3bZhWv5UtJAADXMTEOAAAAAAAAX+IXjADgvNINFSoLVTdbbkkqC1WrdENF6ioFAEAEWW5XAHEKBKTevQ/etrvcVE4fd0vlfo0pkEpu9uFo5enchxn7IiMukRGXyIgLAPhDuubaJnHgHBz6C0YrIP07t4v07W1LUkD1v2A8qzBfmW7nLKl4DtoxoqENJc8LMXSgjt/sOjgpfvh4e6hvdlVLBW3NHuuSPQepGO8BAAkLWJbF+iVxqKysVDAYVCgUUm5urtvVAQAAAAAYgFwxOcQPTlj+RbkueeQfUe+38OrhGnH0ESmoEQD4E+MtAMApdueK/GIcAAAAAAAAvnPoLxjtuB+AltXWWSrdUKFvdlWrS4dsDe2bp8wMfu2aDob2zVNBMFtbQ9URrzMekJQfrG8TAAC4iYlxAAAAAAAA+E6XDtm23g9A80rWlGlW8dqw60wXBLM1o6hQYwYWuFgzpEJmRkAzigo1ecEqBaSwyfGGr0bMKCrkixIAANdluF0BxGnvXmnIkPp/e/faX24qp4+7pXK/xhRIJTf7cLTydO7DjH2REZfIiEtkxAUA/CFdc22TOHAOGn7BGJDU5sA+LX7yRi1+8ka1ObBPUv1kTUHDLxjdzllS8Ry0Y0STYBspWVOmyQtWqWJ7KKyfbQ1Va/KCVSpZU5bCg3CZF/phlOeordqj3Sd8VzuOO0krPv63auusmPYfM7BA8ycOUu92gbB2kB/M1vyJgw5+QcLtsczpc5CK8R4AkDCuMR4n1697VlUltW9ff3v3biknx95yUzl93C2V+zWmQCq52YejladxH67dtVuZuR0kSSv+uUknH9fz4Le303ns4zUhItpLM2gvAL7leq7oca7HL11zbZM4dA4aJuza7q/W2vvGS5IG3PicqlvX/0q8cbLG7ZwlFc9BO0Y0CbSR2jpLo+YuUVmoWm33V2vdIf1sb+vsxiW03731jPT4tbAX+mELz1Gypkxzn39fb80sklR/Hjse2TH8l/9R6thi7piC/V0/B6kY7wEgjdidK/KLcQAA0lDJmjKNnre08e8rHn9Po+YuSa9v8iNmtBcAAOBVDb9g7BpsE7a9yS8YASSkdENF2PLph7MklYWqVbqhInWVQkIavki0NbQvbHu8v/w/dBJ72FFHxPWFCHJPAIDTmBgHAKS1Q5cEW7G+vOkSYTHsv/yLci1evUXLv4h/fzfYlewiPdBeWpbsGAIAAJw3ZmCB3ph2WuPfT1w5RO/eeobvJsV5XwI3fLOr+UnxRO6XLC/m6CaorbM0q3itIkWrYdus4rWOxpPcEwCQCkyMA0ki8QS8K9lvIpesKdOouUt0ySP/0JRFq3XJI/8w/pvMdiW7jH3pwYQPR0zGrxkAADBHtPenyfyC0Qt4XwK3dOmQbev9kuHFHN0Ubv/yn9wTAJAqTIwjLTg1gUPiCXhXst9Ebtj/8MTx8P1b+ra6099kj/T4sSa7Kzc2n+zGMvY5eWypiFuDdJr0d6q9+BW/ZgBSg199AYhFuufmdr0vcft9cLJjPq8Z7hjaN08FwfpriUcSkFQQzNbQvnmSop+nRM9jrDl6stxuZ3Y8f6S+Hs8v/50YK+ycmHd6LEtFG3B7PIbz3B5LgHSW5XYFAKeVrCnT3Off11vf/n3F4++p45GfaUZRYVLLpjW84c7eHznxjPVaZQ0TD9/sqlaXDvWJgt++uY6DnD7fLT0+be2gaN9EDqj+m8hnFeZLUpO46dvyaPvX1Umz/742LLkrCGZrRlFh42NEKmsYO6Kds5bKS9aURXz8cwbmxxSjbbv3Rdwey9gXy7Elqrnjiidu0R7fidcMOyTbh91oL34V8xhy3TBlprhuhzL1NYHXI8QqljEfSJXaOqtxTF+xvlwnH9eOscsQduXmXhVPbtPS+xK33wcnO+Y7nSfEKpkczqsyMwKaUVSoyQtWNZkcb/h7RlGhMjMCUc9Tou0grn4QJd6J5E2HtzOnXi/saOfN9fUfD+kVUx02bt+j0Ys/SGqsiBSjuJbkz29+9QE7xrKWzmEq2kAqxmM3P58EeQ7Mka59NS0nxvfu3aspU6botddeU21trf7jP/5Dc+fOVSDgkRPeubOz5aZK4LgOTZDL2+Y2bo+YILf0+IeVHf6G+9DHjucNNy+C6cXp893S40vOTVTGzOmxK47yw7+JfGgflg5+E/kPSz7Xove+bBK3Hw/pFdM3ma99elWTsq2hal2zoOn2hrJYJ5ejne/JC1Y1+VBga6haj/3fxrBthx97gyPbt0lo7PvlCx8ptOdAxOdO9oPJhjG9pceWEm/rMb1m9M115XXWyQ8KJWfaSxNeff8RQaxjyMqNFRrmUlxMfU3gvQ9iFcuYT5sxj19z7YYPqJ/7drxv9gNqH73WuSbO1824cvMEHj/l5Qk8RqzvS0o3VGhEfnbyn504INkx3+k8IZ7jcGLSN+USaMdjBhZo/sRBmvv8+2FtKP+w42/pPE06pa/+9L8bEmoH8fzaeMTRRzR7v0TzpkPbmS2vFy3002TaeUt9/f43PlXHdq0U2nNAUtOxJCAp2K6V7n/j06Q+Z23uNfXwifnmcs/GJfkd+hy4pdd8ycY2YMcxJMjNzyeNGutcQp4DU6RzXw1YlpV2azRce+212r9/v/74xz+qqqpKo0eP1uWXX67rr78+6r6VlZUKBoMKhULKzY38Ag0z1NZZGjV3SbNvjAOqf4P+7q1nxP0tmOVflOuSR/4R9X4Lrx7e7Bvu5l4EG2rCi6C/OH2+W3r85gb5dG5ri1dv0ZRFqxPat6WY2qEh2Yw0udxwzpr7wKChPNiulXZ+m8xGevxAQGpuhaaWxsZYx77mJDPuxjKmR4tbS23dydeMZCU7fkTb36n24mexjiEP/PgkjT2pu/MVOoyprwm890GsTB6TW0Ku6M9cm7HLbHbk5l6X7PsSt8fcZJ/f6TwhVtHGimg5nF/GkuZ+eRbtPElSRhJ5hx3vz5PNm5xsZ3a08//8j0FNVrQ7/H4d27XSjj0HmuQNDX93jBKDaGNFLDGOdAyxPL4dY5nbbSAV47Gbn0/a8fhe5/ZrLtDAa33V7lwx7a4xvnv3bj355JP6/e9/r6ysLAWDQU2fPl2PPfaY21WDzey8Ns3h4lreJ4JoSzxJ9d/w5Noi/uD0+Y7l8SNJ57bW+A3jBDgdKUvSzmYSQevbf4+80/QDlUPLm0vUGu7TcLqjLXN3uFjHvpaeO9FxN5YxvaW4SS23dSdfM5KR7PgRbX8n24ufxTqGJDPWJMrU1wTe+yAepo7JaJkfc23GLvMlm5v7QbLvS9wec5N9fqfzhFjEMla0lMPZUQdTZGYENOLoIzT2pO4acfQRjXlCtPMkNT8pLkVvB8n2AzvyJifbmR3t/DeL10R9jB17DujG0ccoPxgep/xgtm4cfUzUGLR0jmLpJw0T8InknsmOJSa0AafHYxM+n/TLWJcot19zAYm+KqXhxPj777+vvn37Ki8vr3HbsGHDtGbNGtXW1ja5/759+1RZWRn2D97gZILs9cQTqeX0+Y4lwXTqub1qaN88FQSzmyRbXmHH+5KrRvaJmOy29I1Auyb5Ehl3nZ6UN/VDVac/KIxVIu3Fz6KNIQHVLz81tG9eM/dwjqmvCbz3QTxMHZPRMj/m2oxd5jP5y2qpkuz7ErfH3GSf380v7zaIZaxIZtLXD+xqP809TrL9wK68qTnJnmM72nl51f6Y7tunc47evfUMLbx6uB748UlaePVwvXvrGerTOSem/Zurayz9pKWJ+Wi5Z7JjiQltwOnx2O3PJ9NhrIvG7ddcQKKvSmk4MV5WVqauXbuGbevSpYtqamoUCoWa3P+uu+5SMBhs/NezZ89UVTWyvXul006r/7d3r/3lpkrguA5NfNsc2KdFT/9Si57+pdoc2Be2a5cO2S0/foSyQ99wR3ps0xNPpJbT59uOduJ4W3N67IqzPDMj0Hh9qOzD+nC8k+XNfZPZdKML8/XuDSP04Vu/08o37tAzl52od28942CimcDYF6tEPph0elI+1teM/FZWSl9n3f6gsEEi7SWMV99/NCOWMWRGUaEy91WnPC6mvibw3gfxYKLLm/yYax86JrX0/uCbXdW+e61zRQLvJ+LKzQ3LSeyKQczvSzICyX924oBkx3w3v7xrx75OPE5SHGrndp2n5h7n0H6QyK+N7Yx90q8XUfqp03Xs0iFbmfuqNeKqizR26qUa0a2dMjMCSX/OGutrap/OOS3nnpIjnwPHWr9YRG0DdhxDAkz5fNKIsc4l5DkwAX1VynK7AqlWU1Ojwy+r3vDt9UCg6Zuj6dOna9q0aY1/V1ZWupuw19VJb7998Lbd5aZK4LgaEuStoWplWJaGb14jScr49vw3XLOjPkHe0/zjR3jshjfckxesUuZhjx3LG25eBNOL0+fbjnbieFtzeuxKoHzMwALNnzhIc59/P6wP5wez9eMhPXXfG59FPawbRx+jRe9tDvuWXX4wW7/54QDN/vs6bQ1VO770erwOHfsy9+5RsHSZJKlzn071F3VrkMDY13DNsWjXBEvkV7SHjunJxLS5th7ra8bJvTqm9HXW7Q8Kk2kvYbz6/qMFLY0hM4oK6z+4qapKeVxMfU3gvQ/iEW3MT+b1BM7xY6596JgU6f1Bgy4dsn35WpdyCbyfiCs3NzAnsesxYnpf0sz+cX124oBkx3yn8wSn93XicZLiUDuP5TxlBCTLinz5n1jaYUM/mFW8tkmOHtYPIrAz9km/XkTpp8m087ycVtpRdSChz0mT/Zw1ntfUTFnN554xxMjJ+sUiahuw4xgSYMrnk0aMdS4hz4EJ6Ktp+IvxvLw8bd++PWzbtm3blJ2drWAw2OT+bdq0UW5ubtg/eEOy3xaNpuENd9dgm7DtsSzvY/ISrLCf0+c7mWXB072tjRlYoDemndb49xNXDtG7t56h6844JqZzdt0Zx0RcYuzcE7pFHX9aKuvYrlWL5zMj0Pwv0wOSOrVr1eLjOzX2/XHiIM258HhHnjuWMb2luEVr606/ZiQq2fEjlv2dbC9+19wY4uby8qa+JvDeB/EwdUxGy/yYazN2eUMyubmfJPq+xO0xN9nndzpPiEUsY0VL4UuHsSTaeQpIuvr7fZstl2Jrh2MGFkTM0aP1AzvyJifbmV3t/I6xA1t8jGT7Wkv7O/2amor6Od0GnB6P3f58Mh3Gumjcfs0FJPqqlIYT44MGDdK//vUv7dixo3HbsmXLNGzYMGVkpF04fM/pBNmriSdSy+nzHcvjO/XcfnDosQ876ghlZgTiOmeZGQGNOPoIjT2pu0YcfUTj4zWMP5GujfXHiYP0xxbKWppcjuUDg7suPL7Zx3d67GvpuJN97mgxTXZS3sQPVVPxQaHT7cXvIo0hbjL1NYH3PoiXk68ncIYfc23GLu8w8ctqbkj0fYnb74OTHfOdzhOiiWWsuPr7fRvzOSfq4AXRzvP0cwttee1vLkePtk8yeVMq2pkd7fzcE7ol1deTGStS8ZrqdP1S0QacHI9N+HwyHca6aMhz4Db6qhSwDl/rLA2MHTtW3bp100MPPaSdO3fqjDPO0O23364LLrgg6r6VlZUKBoMKhULufKO9qkpq377+9u7dUk6OveWmSvK4anftVmZuB0nSin9u0snH9Qzv2C3t72BMS9aUNVniqSCGJZ7gTU6f75YeX5K7bc3psSuZ8hbK7DhntXWWSjdU6Jtd1erS4dslqb8df1oqi/bcsdStpcdPJi6xlEd97iQkE7eYHr+l1wyXXmeTPS7T24unGRoXU18TeO+DeDn5emI313NFA/g11y5ZU6a5z7+vt2YWSZIG3PicOh7ZMXzs8vNrXaqYnDOkotyAOkT97MRhyY75TucJ0diRw7kuBe082nl287U/2bzJlteLJHLtWNtYUp+TJrl/SmLkcP2SbgN2HEMS3Px80pixzgBeynPgT17qq3bnimk5Mb59+3ZdddVVWrZsmXJycnTzzTfruuuui2lfk5N1W8pNZeikWUzlUfAimF6cPt+JTsI6zu0PmZLo427GzfEPDAyd0EuWX+Pi5AeFMTE0Lq4zOC6mvibw3gd+5XquaAA/59rJTiIgBibnDKkoN6EOPm/HqXgPYvKkb0xoQ8nnXcm+XqTic0bTv4Rjev2iiGl/g3NFLzw+AHt4pa/anStm2VAnz+ncubMWL17sdjUASQeXeEJ6cPp8t/T4tLXEuBm3aM/NOY3Mr3FJ9rj8Ghc0z9TXBNoi4F9+zrUPX6K6xQsGAzBSKt6DkMN5nx15VwM3Xi+80MbcjlE0ydbP9OOT3P18EoA50rWvpuXEuOe1a+dsuamcPu6Wyv0aUyCV3OzD0crTuQ8z9kVGXCIjLpERFwDwh3TNtU1ics6QinIT6kA7Bm0oeV6IodtjidfLo0nFeA8ASEhaLqWeDNeXdwMAAAAAGIdcMTnEDwAAAABwOLtzxQwb6gQAAAAAAAAAAAAAgLGYGAcAAAAAAAAAAAAA+BoT415TXS398If1/6qr7S83ldPH3VK5X2MKpJKbfThaeTr3Yca+yIhLZMQlMuICAP6Qrrm2SUzOGVJRbkIdaMegDSXPCzF0eyzxenk0qRjvAQAJ4xrjcXL9umdVVVL79vW3d++WcnLsLTeV08fdUrlfYwqkkpt9OFp5Ovdhxr7IiEtkxCUy4gLgW67nih7nevzSNdc2ick5QyrKTagD7Ri0oeR5IYZujyVeL48mFeM9AKQRrjEOAAAAAAAAAAAAAEAcmBgHAAAAAAAAAAAAAPgaE+MAAAAAAAAAAAAAAF9jYhwAAAAAAAAAAAAA4GtMjAMAAAAAAAAAAAAAfC3L7Qp4jWVZkqTKykp3KlBVdfB2ZaVUW2tvuamcPu6Wyv0aUyCV3OzD0crTuQ8z9kVGXCIjLpERFwDfasgRG3JGxIdcG0bnDKkoN6EOtGPQhpLnhRi6PZZ4vTyaVIz3AJBG7M61AxZZe1z+/e9/q2fPnm5XAwAAAABgoM2bN6tHjx5uV8NzyLUBAAAAAM2xK9dmYjxOdXV1+uqrr9ShQwcFAgG3qxNRZWWlevbsqc2bNys3N9ft6sDHaGtIJdobUon2hlShrSGVaG/OsixLu3btUrdu3ZSRwVXL4kWuDcSGdgi30QZhAtohTEA7hNvSpQ3anWuzlHqcMjIyPPPt/9zcXF93BpiDtoZUor0hlWhvSBXaGlKJ9uacYDDodhU8i1wbiA/tEG6jDcIEtEOYgHYIt6VDG7Qz1+Zr7AAAAAAAAAAAAAAAX2NiHAAAAAAAAAAAAADga0yM+1CbNm00Y8YMtWnTxu2qwOdoa0gl2htSifaGVKGtIZVob0By6EMwAe0QbqMNwgS0Q5iAdgi30QYTE7Asy3K7EgAAAAAAAAAAAAAAOIVfjAMAAAAAAAAAAAAAfI2JcQAAAAAAAAAAAACArzExDgAAAAAAAAAAAADwNSbGAQAAAAAAAAAAAAC+xsS4z+zdu1eTJk1S79691aNHD/3iF7+QZVluVws+sGTJEo0cOVL9+vXT0UcfrYceeqixbOPGjTrrrLPUu3dv9evXTwsWLHCxpvCTyZMn6zvf+U7j3x988IGGDx+u3r17q7CwUK+//rqLtYOflJaW6pRTTlHv3r3VrVs3vfDCC5Joc7DXli1bVFRUpO7du+uoo47S7NmzG8toa7CDZVl66qmnNGLEiLDt0drX/fffr379+ql79+4aN26cysvLU1ltwBPIteEG8nCYhPwcbiJnh9vI5+EGcnyHWPCVyZMnW1dddZV14MABa+fOndbJJ59sPfjgg25XCz5www03WJ988ollWZb1xRdfWN27d7deffVVq6amxho4cKD1+OOPW5ZlWR9//LHVqVMn64MPPnCvsvCFL7/80mrXrp117LHHWpZlWZWVlVb37t2t119/3bIsy1q6dKkVDAatsrIyN6sJH1i3bp1VUFDQ2Lb27dtnff3117Q52O6MM86wfvGLX1h1dXVWeXm5deKJJ1qPP/44bQ22ePXVV62BAwdaRx99dONrp2VFf/185plnrO9+97tWeXm5VVNTY11zzTXWhRde6MoxACYj14YbyMNhCvJzuImcHSYgn0eqkeM7J2BZfMXZL3bv3q2uXbtq8+bNysvLkyS98MILmj17tj744AOXawe/mTZtmrKysjR69GjdeuutYW3shhtuUGZmpu677z4XawivGz9+vPLz8/XGG2/ok08+0Z/+9Ce9+uqrevHFFxvvc/755+vMM8/UlClTXKwpvO6iiy7SySefrOnTp4dtp83Bbnl5efrf//1fDRw4UJJ02223aefOnTrhhBNoa0ja888/r7Zt26pdu3a65ppr9Mknn0iKPpZ973vf06233qqxY8dKkrZv366CggJ9/fXXjTkFkO7ItWEK8nC4hfwcbiJnhwnI55Fq5PjOYSl1H3n//ffVt2/fsMY9bNgwrVmzRrW1tS7WDH60bds2BYNBLV++XCNHjgwrGzZsmFavXu1OxeALf//731VeXq7x48c3bqOtwQnV1dV6+eWXdeWVVzYpo83BbuPHj9cf/vAH7d+/X5s2bdLixYs1fvx42hpscdFFF+ncc89tsr2l9lVTU6OVK1eGlXfu3Fl9+vTRRx995HidAa8g14YpyMPhBvJzuImcHaYgn0eqkeM7h4lxHykrK1PXrl3DtnXp0kU1NTUKhUIu1Qp+VFpaqpdffln/8R//0Wy747oVSFR5ebluuOEGzZ8/P2w7bQ1O+PTTT9W2bVu99dZbOuGEE3TUUUfp5z//uSorK2lzsN2dd96pkpISderUSX379tXpp5+u0047jbYGR7XUvrZv367a2lp17tw5YjmAeuTaMAF5ONxAfg63kbPDFOTzMAU5fvKYGPeRmpoaHb4yfsO31wOBgBtVgg8tWrRI559/vp588kn17du32XZHm0MiLMvSVVddpalTp+o73/lOWBltDU7YtWtX47cpS0tL9eGHH2rbtm2aMmUKbQ62qq2t1bnnnqupU6cqFAppy5Yt+vDDD/XAAw/Q1uColtpXTU2NJNH+gCjIteE28nC4gfwcJiBnhwnI52EScvzkZbldAdgnLy9P27dvD9u2bds2ZWdnKxgMulQr+EVtba2uv/56vfXWW3rttdd04oknSmq+3eXn57tRTXjcnDlzdODAAV133XVNymhrcELnzp114MABzZkzR61atVJ2drZmzpyp008/XWeeeSZtDrZZsmSJ9u/fr6lTp0qSCgoKNG/ePJ1//vkaOXIkbQ2Oaen1s1OnTrIsSzt27AhbIpr2B4Qj14ZbyMPhJvJzmICcHSYgn4dJyPGTxy/GfWTQoEH617/+pR07djRuW7ZsmYYNG6aMDE41kjN16lStX79eK1eubEzGJWnw4MFatmxZ2H2XLVumESNGpLqK8IEHH3xQ77zzjjp16qSOHTvqvPPO02effaaOHTvS1uCI3r17q3Xr1qqurm7clpGRoezsbNocbLV//35lZYV/J7VVq1bav38/bQ2Oaql95eTk6Nhjjw0rLysr09dffx32fg9Id+TacAt5ONxEfg4TkLPDBOTzMAk5vg0s+Mr5559vXXPNNdaBAwesbdu2Wccff7z14osvul0teNzevXutzMxM66uvvmpSVlVVZRUUFFh/+ctfLMuyrPfee88qKCiwNm/enOpqwofeeust69hjj7Usy7I2b95sdezY0XrzzTcty7Ksv//971bv3r2t3bt3u1lF+MC1115rXX311daBAwes6upq68ILL7R+8Ytf0OZgq507d1rdunWznn76acuyLGvXrl3WeeedZ11zzTW0Ndjq0NdOy4r++jlv3jzr5JNPtnbs2GHt27fP+slPfmJNnTrVlboDJiPXRqqRh8M05OdwCzk73EY+DzeR49uPpdR95s9//rOuuuoqFRQUKCcnRzfffLMuuOACt6sFj1u/fr3q6uqafNPt2GOP1Wuvvabi4mJdffXVmjZtmvLz8/X000+rR48eLtUWftWjRw8tWrRI1157rSoqKtSvXz8VFxcrJyfH7arB4+bOnavJkyere/fu6tChgy666CLNnj1brVu3ps3BNsFgUK+99pqmTZum6dOnKyMjQ2PHjtWdd96pdu3a0dbgmGivn1OmTNGWLVvUv39/ZWVlaezYsZozZ47LtQbMQ66NVCMPh8nIz5FK5OxwG/k8TEKOn7yAZR12FXYAAAAAAAAAAAAAAHyEi2EBAAAAAAAAAAAAAHyNiXEAAAAAAAAAAAAAgK8xMQ4AAAAAAAAAAAAA8DUmxgEAAAAAAAAAAAAAvsbEOAAAAAAAAAAAAADA15gYBwAAAAAAAAAAAAD4GhPjAAD42K9+9Ss9/vjjTbYvXbpUo0aNiuuxHn30UV1xxRVx1+G2227TzJkz49rnjTfe0GmnnRb3cwEAAAAAkArk2wAAeA8T4wAA+MzGjRv1+eef6/PPP9fmzZu1adOmxr+3bNkSdf/TTjtNS5cujft5+/Tpo40bN8Z03xtvvFGdO3cO+xcIBPTpp5/G/bwAAAAAAKQC+TYAAN6W5XYFAACAva655hpt37698e9169bp5ZdfliQNHjxY//Vf/+VW1Rrdd999uu+++xr/3rhxowYPHqyjjz7axVoBAAAAANA88m0AALyNiXEAAHympKREUv3ybe+9955at26tU089VSeddJJqamq0e/du7d27t9n9d+3apcrKyrifN9H9JGn+/Pm65JJLlJmZmdD+AAAAAAA4jXwbAABvY2IcAAAfuuKKK/TFF1/oRz/6kfbt26dLL71Ul19+uXr16qXf/OY32rt3r/r27Rtx3y+++CLuJdZ27typiooKffrppzrhhBPi2vcf//iHHn/8cf3zn/9sUo+bb75Z3/nOd/Szn/0srscEAAAAAMAJ5NsAAHgXE+MAAPjM559/rjfffFPr169Xq1atJNUn7n379lVFRYUuueQSLV26VLfddluTfd9++221atVKixYt0s033xzzcy5evFidO3fWwoULNX78+Jj3e/fdd/WjH/1ICxYsUH5+flhZu3bt9J3vfEc9e/aM+fEAAAAAAHAK+TYAAN6W4XYFAACAvdq3b6/q6uqwZda++eYbZWdnq6qqSp9//rm2bNkScd+Ga5FZlqVXXnklpuerq6vTgw8+qIULF+q9997TRx99FHWfAwcO6MEHH9S4ceP02GOP6Qc/+EGT+xQUFOhnP/uZzj777JjqAQAAAACAk8i3AQDwNn4xDgCAz+Tn5+u3v/2thgwZotNPP1379+/XO++8oz//+c96++23dffddysUCikYDIbt95e//EXbt2/XpZdeqsLCQo0dO1b/+Mc/1L179xaf784779R3vvMdjR49Wv/5n/+piy++WCtWrFCHDh0i3n/jxo067bTT1LdvXy1btkzHHHOMbccOAAAAAIBTyLcBAPA2JsYBAPCh66+/Xj/+8Y+1Zs0atWrVSg8//HBj4jx27NgmS7sVFxdr5syZWrp0qQKBgAYNGqTZs2fr+9//vv77v/+72euY/elPf9Kzzz6rd999V5JUVFSk999/X6eccooWL16sXr16NdmnT58+Ki4u1sCBA1VXV+fA0QMAAAAA4AzybQAAvIul1AEA8KmlS5fqwIEDGjVqVJNvk2dnZ6ugoECSFAqFdPvtt+vFF18Mu77YFVdcoV//+tdatWpVxMffsGGDHn30Uf39738P+zb8zJkzdeGFF+qTTz5ptm7HH3+83n77bZ166qkRy7t166YxY8bEfKwAAAAAAKQK+TYAAN7EL8YBAPCpFStWKD8/P+L1xIYPH66//e1vkqRgMKj33nsv4mNcddVVzT5+3759VVpaGrHsN7/5TQI1PqiwsFCFhYVJPQYAAAAAAE4g3wYAwJv4xTgAAAAAAAAAAAAAwNf4xTgAAD52++2365577mm2/IMPPmhc4s0N//jHP9SxY8dmy9euXatu3bqlrkIAAAAAAMSAfBsAAO8JWJZluV0JAABgvoqKCu3evVu9evWKa7+tW7dKkvLz852oFgAAAAAAnka+DQBAajAxDgAAAAAAAAAAAADwNa4xDgAAAAAAAAAAAADwNSbGAQAAAAAAAAAAAAC+xsQ4AAAAAAAAAAAAAMDXmBgHAAAAAAAAAAAAAPgaE+MAAAAAAAAAAAAAAF9jYhwAAAAAAAAAAAAA4GtMjAMAAAAAAAAAAAAAfI2JcQAAAAAAAAAAAACArzExDgAAAAAAAAAAAADwNSbGAQAAAAAAAAAAAAC+xsQ4AAAAAAAAAAAAAMDXmBgHAAAAAAAAAAAAAPgaE+MAAAAAAAAAAAAAAF9jYhwAAAAAAAAAAAAA4GtMjAMAkEJTpkzRySef7HY1AAAAAADwDXJtAAAQCybGAQBIoe7du+voo4+Oe7+ysjI9+uijDtTIHH369FEgEAj7d9ppp4XdZ//+/frlL3+pbt26qW3btho1apTef//9Zh+zpqZG/fv310knnRS2/YknnmjyXIFAQEuXLrX/wAAAAAAAjiLXbl4qc21Jqqur07x58zRgwABlZ2erc+fOuu+++2w+KgAAEpPldgUAAEgnv/jFLxLa75lnntH999+vn/3sZzbXyCy33Xabrrrqqsa/s7Ozw8qvueYa/d///Z+efPJJ5efn63e/+53OOussffzxxyooKGjyeE8++aQ+++wznXjiiU3K2rdvr48++ihsW35+vk1HAgAAAABIFXLtlqUy177yyiu1YsUK3XHHHTr++OO1Y8cO7d+/3/6DAgAgAUyMAwCQRurq6hq/IW6iY489Vn369IlYtm7dOj3xxBN6//339d3vfldSfTJ+zDHHaP78+br99tvD7l9RUaHbbrtNZ599trZu3drk8bp27drscwEAAAAAECty7XqLFy/WK6+8onXr1qlz586OHAsAAMlgKXUAAFJo6tSpYUuWzZw5UyeddJJWrVql733ve2rXrp2OP/54vfHGG4336dOnj2688UZt2rSpSaJdWVmpa6+9VkceeaTatWunc845R1988UVj+dKlSxUIBPThhx9qxIgRatWqlf71r3+1WMeGfT7//HP96Ec/UocOHdSnTx/de++9Te67evVqFRUVqWPHjsrOztbJJ5+sxYsXN5ZXVVWpT58+euCBB2KKT9euXZste+mllzRgwIDGRF2SWrdurQsuuECvv/56k/vffPPNGjt2rIYPHx73cwEAAAAAvINcu2WpyrUfeOAB3XDDDUyKAwCMxcQ4AAAu2759uyZPnqxf//rXevfdd3XMMcdo3LhxKi8vlyS9++67+s1vfqPu3btrw4YN2rBhg6T6a3qde+65evvtt/XXv/5Vb7/9trKysvTDH/5QtbW1Yc9x0003adq0aXr//fcjLoMWyU9+8hOdeeaZWrZsma688krdfPPNeu211xrLV61apZEjRyo3N1fFxcV65513dNppp+nCCy/U888/L0nKyspSz549dcQRR8T0nOPHj1dubq4GDhyo3//+92HHsWbNGh1//PFN9iksLNTnn38etu2///u/VVJSojlz5jT7XCtXrlRubq66du2qcePGNVlWHQAAAADgXeTaB6Ui166urtY777yjwYMHa+LEiTryyCPVvXt3TZ06VdXV1THVEwAAp7GUOgAALvvqq6/0yiuv6IQTTpAkPfrooyooKNCrr76qiRMnqkePHsrLy1NWVlbY0mcLFy7UqlWrtG7dOvXu3VuS9PTTT6tnz5568cUXNX78+Mb7nnvuuZowYUJc9frxj3+sn//855Kk448/Xi+//LL+9re/6eyzz5Yk3XLLLfr+97+vv/71r437DBkyRDt37tT06dN10UUXqU2bNnrnnXdier6//vWvatu2rfbt26elS5fq9ttv1xdffKH/+q//kiRt27ZNRx99dJP98vLyFAqFGv/evHmzrr76ai1atEgdO3aM+FxnnXWW3nzzTeXm5mrTpk265557NHLkSK1cuVL9+/ePqb4AAAAAAHORa9dLVa792WefqaamRjNnztT555+vKVOmaO3atbr55ptVVVWlRx55JOYYAQDgFH4xDgCAy3r06NGYqEv1yWfPnj21efPmFvd79dVXNXr06MZEXZI6dOigk046SR9++GHYfc8555y46/XDH/4w7O8TTzyxsU7V1dV6++23ddVVVzXZ79JLL9Vnn32msrKyuJ5v5MiRGjRokEaMGKHp06froYce0qOPPqqvvvpKUv239jMymr51OXTJu+rqao0fP16TJk3SmWee2exzde/eXaNGjdIJJ5ygoqIi/c///I8KCgo0b968uOoMAAAAADATuXa9VOXalZWVkqTzzjtPt912m4YMGaKf/OQn+sMf/qDHHntMX3/9dVz1BgDACUyMAwDgsry8vCbb2rdvr3379rW437Zt2/TKK68oOzs77N8777zTmOA2SOR62ofX69A6lZeXq7a2Vj179myyX8PycTt27Ij7OQ81duxY1dXV6Z///KckKTc3N+zb6g127tzZuHzcVVddpXbt2un222+P67natGmjs88+W6tXr06qzgAAAAAAM5BrR+ZUrt2qVStJ9b+iP9To0aNVV1entWvXJlVvAADswFLqAAB4VMeOHVVUVKS77rqrSVkwGAz7O9K3v5MRDAYVCAS0ZcuWJmVbt26VJB155JFJPcf+/fsl1U9aS1L//v21ZMmSJvdbt26dBg4cqE2bNunpp5+WVH+9tcMFAgE9/vjjuuKKK5p9vobnAgAAAACkJ3LtevHm2g2/hN+5c2eTcgAATMHEOAAAHtCqVasm32ofNWqUHnzwQfXt2zflE7rt27fX8OHD9dhjj+miiy4KK1u4cKEGDRqUdLK+aNEitW3bVoMGDZIknX322br77rv1+eefq1+/fpKkAwcO6MUXX9RNN92kgoICffDBB00e549//KPeeustPfPMM+rVq1fE59q9e7f+/ve/6/LLL0+qzgAAAAAA7yDXti/XzsvL00knnaSFCxdq9OjRjff7+9//rrZt22rw4MFJ1RsAADswMQ4AgAf0799fW7du1XPPPacePXpo+PDhuvLKKzVv3jydd955+uUvf6mCggJ9/vnneuSRR7RgwYIm32S32+9//3udccYZmjhxoiZPnqw2bdro2Wef1VNPPaXXXntNUv030c8991z97Gc/049//ONmH+vVV19VSUmJxo8fr9zcXL3yyiuaNWuWZsyY0Xgcp59+ukaNGqXx48frwQcfVMeOHXXXXXepdevWuuqqq9S6dWuddNJJTR47Pz9fbdu2DSu7/PLL9YMf/EAnnXSStmzZopkzZ0qSpk6dald4AAAAAACGI9e2N9eeNWuWxo0bp27dumn8+PH65z//qRtuuEG//OUvlZuba2ucAABIBBPjAAB4wOjRo3XVVVfpyiuvVF5enjZt2qTc3Fy9/fbbuvnmm3XhhRfKsiz169dPV111lTp06OB4nUaNGqWlS5fqtttu0w9+8AMFAgENHz5cS5Ys0YgRIyTVf8v8X//6l77++usWH6tXr14qLS3VE088oerqag0YMEB//OMfmyx7/sILL2jKlCkqKiqSZVk6++yz9eabbyo7Ozuuuvfq1Uu//OUv9c033ygYDGrMmDH629/+lvQ37wEAAAAA3kGuXc+uXPv888/XX//6V82ePVtz585V9+7d9dvf/lY33nhjXI8DAIBTApZlWW5XAgAAAAAAAAAAAAAAp2S4XQEAAJBaP/jBD5SdnR3x31/+8he3qwcAAAAAgOeQawMAYD5+MQ4AQJr58ssvtWfPnohlBQUFjl8vDQAAAAAAvyHXBgDAfEyMAwAAAAAAAAAAAAB8jaXUAQAAAAAAAAAAAAC+xsQ4AAAAAAAAAAAAAMDXmBgHAAAAAAAAAAAAAPhaltsV8Jq6ujp99dVX6tChgwKBgNvVAQAAAAAYwLIs7dq1S926dVNGBt9Bjxe5NgAAAADgcHbn2kyMx+mrr75Sz5493a4GAAAAAMBAmzdvVo8ePdyuhueQawMAAAAAmmNXrs3EeJw6dOggqf4E5ObmulwbAAAAAIAJKisr1bNnz8acEfEh1wYAAAAAHM7uXJuJ8Tg1LOmWm5tLsg4AAAAACMMy4Ikh1wYAAAAANMeuXJuJca+qrZXeeaf+9ve/L2VmJrYdZonn/NnVBkza7lb7dSsGMItJbTJedvQzt3ihP7lRRy/EBc6jHcTPy+MhAHPEOmYwjpgr0XMoJX7u7XqsSPs5zYQ4pPL4TO7TTsbPjX5hFy+dQ78xsU87zdSxGgBgi4BlWZbblfCSyspKBYNBhUIhd7/FXlUltW9ff3v3biknJ7HtMEs858+uNmDSdrfar1sxgFlMapPxsqOfucUL/cmNOnohLnAe7SB+Xh4P4XnG5IoeZVT8Yh0zGEfMleg5lBI/93Y9VqT9nGZCHFJ5fCb3aSfj50a/sIuXzqHfmNinnWbqWA0AacruXDHDhjoBAAAAAAAAAAAAAGAsJsYBAAAAAAAAAAAAAL7GxDgAAAAAAAAAAAAAwNeYGAcAAAAAAAAAAAAA+BoT4wAAAAAAAAAAAAAAX2NiHAAAAAAAAAAAAADga1luVwAJatVK+v3vD95OdDvMEs/5s6sNmLTdrfbrVgxgFpPaZLzs6Gdu8UJ/cqOOXogLnEc7iJ+Xx0MA5oh1zGAcMVcy5zDR/ex8LBPe76Y6Dk7yUp92Mn5utGW7eOkc+o2Jfdpppo7VAABbBCzLstyuhJdUVlYqGAwqFAopNzfX7eoAAAAAAAxArpgc4gcAAAAAOJzduSJLqQMAAAAAAAAAAAAAfI2l1L2qtlZatar+9qBBUmZm/eYDNfr45be0Y89+tR4yREP7HanMjECz94dhmjtPkbbHc1+vbI/3MeziVgxgFpPaZLzs6Gdu8UJ/cqOOXogLnEc7iJ+Xx0MA5ogwPkTMta06xhFTxTruH75NSmw/Ox8r0n5OMyEOqTy+eI4n1ZyMnxv9wi5eOod+Y2KfdpqpYzUAwBYspR4nY5Z3q6qS2revv717t5STo5I1ZZr7/Pt6a2aRJGnAjc+p45EdNaOoUGP65ja5PwwU4bw2uz2e+3ple7yPYRe3YgCzmNQm42VHP3OLF/qTG3X0QlzgPNpB/Lw8HsLzjMkVPcqo+B02PpRsqIyYa99+Zh+dNaxf4/0YRwwS67h/+DYpsf3sfKxI+znNhDik8vjiOZ5UczJ+bvQLu3jpHPqNiX3aaaaO1QCQplhKHRGVrCnT5AWrtDW0L2z71lC1Ji9Ypdc/3upSzQAAAAAA8KbXP97abK49ZdFqdyoFAAAAAEgIE+M+UFtnaVbxWkX66X/Dtt+9ui6VVQIAAAAAwPN+9+q6FnNtAAAAAIB3MDHuAys3VqgsVN1suSU1+XY7AAAAAABoWUu5NJPjAAAAAOAtRk6Mv/rqq+rTp0/Yv65du6pDhw6SpA8++EDDhw9X7969VVhYqNdffz1s//vvv1/9+vVT9+7dNW7cOJWXlzeWlZeXa8KECerVq5d69+6te++9N6XH5oRtu5n0BgAAAAAAAAAAAIDmGDkxfs4552jjxo1h/8aNG6cpU6Zo165dKioq0h133KFNmzZp/vz5mjBhgrZurb+G9rPPPqunnnpKpaWl+vLLL5Wfn69JkyY1PvZll12mgQMHatOmTVq+fLkeeughFRcXu3WotjiyfRu3qwAAAAAAAAAAAAAAxjJyYvxw69ev14svvqhbbrlFCxcu1JAhQzR69GhJ0qmnnqpTTjlFzzzzjKT6X4vPmDFDeXl5yszM1OzZs/XSSy+poqJCn376qVauXKlf//rXCgQC6tatm2644QY99thjbh5e0k7uk6eCYLYCzZQHJOUHmTwHAAAAACAe+cE2LebaAAAAAADvyHK7ArGYM2eO/t//+38KBoNavny5Ro4cGVY+bNgwrV69WjU1NVq5cmVYeefOndWnTx999NFH2rhxo4YOHaqsrKywfR966KFmn3vfvn3at+/gUuWVlZU2HlkSWrWSZsyQJGW2aa0ZRYWavGCVajMzdf/ISyRJNZmZjYn6L88/XrJmHNwXZjrkvIadp0jb47mvV7bH+xh2cSsGMItJbTJedvQzt3ihP7lRRy/EBc6jHcTPy+MhkAKvvvqqJk+eHLZt79692rNnj3bt2qUPPvhAkydPVllZmXJycvTAAw/orLPOarzv/fffrz/84Q/au3evhg4dqkcffVRHHHGEpPrLll1zzTVasWKFAoGAbrjhBt10000pPT7bHDI+/PL843XNM2si5to1mZn6fPI09evSgXHENLGO+5G2JbqfnY9lwvvdVMfBScnUPdWcjJ8bbdkuXjqHfmNin3aaqWM1AMAWAcuyLLcr0ZJt27apX79++uyzz9SlSxeNGTNGl156qS677LLG+zzyyCMqLi7Wn/70J3Xv3l21tbVhjzFy5EjddNNN+vTTT/XZZ5/pz3/+c2PZZ599psGDBzc74T1z5kzNmjWryfZQKKTc3FybjtIeJWvKNKt4rcpC1Y3bCoLZmlFUqDEDC1ysGQAAAAD4W2VlpYLBoJG5YkuuueYade7cWbfeeqsGDBigJ554QqNHj9bbb7+tsWPH6pNPPlF+fr6effZZzZkzR2+88YaCwaCuu+46ffPNN3r++eclSeeee66GDRum3/72tyorK9P3vvc9PfTQQyoqKoqpHibHj1wbAAAAANxhd65o/C/G//KXv2jcuHHq0qWLJKmmpkaHz+XX1tYqEAiopqZGkmRZlgKBQMTy5vZtzvTp0zVt2rTGvysrK9WzZ8+kj8sJYwYW6KzCfJVuqNA3u6rVpUO2hvbNU2YGC7wBAAAAAMI1XLbs008/bfGyZVOmTAm7bJkkzZ49WwUFBaqoqND27du1cuVKvfTSS00uWxbrxLjJyLUBAAAAwB+Mnxh//PHHNW/evMa/8/LytH379rD7bNu2Tfn5+erUqZMsy9KOHTsak/VDy8vKylRaWhpx3+a0adNGbdoYeH3uujpp3br62wMGSBn1l4vPlKUR1VulVpL6DpAaEvVm7g/DNHeeIm2P575e2R7vY9jFrRjALCa1yXjZ0c/c4oX+5EYdvRAXOI92ED8vj4eAC7hsWTMijA8Rc23GEXPFOu4fvk1KbD87HyvSfk4zIQ6pPL54jifVnIyfG/3CLl46h35jYp92mqljNQDAFkYvpb569WqdeeaZ+vrrrxsT7Llz5+q9997Tc88913i/c845RxdffLGuuOIKDRgwQHfffbfOO+88SVJZWZmOOeYYffPNN/roo490/vnnq6ysTBnfvljNnTtX69at0xNPPBFTnYxZ3q2qSmrfvv727t1STk5i22GWeM6fXW3ApO1utV+3YgCzmNQm42VHP3OLF/qTG3X0QlzgPNpB/Lw8HsLzjMkVY8Rly1oQ65jBOGKuRM+hlPi5t+uxIu3nNBPikMrjM7lPOxk/N/qFXbx0Dv3GxD7tNFPHagBIU3bn2kZ/lamkpESnnHJK2LfOL730Ur355ptasmSJJOmVV17RunXrNGHCBEnSpEmTNGvWLO3cuVP79+/X9OnTdfXVV6tdu3YaOnSoCgoKNHfuXNXV1Wn9+vV6+OGHdf3117tyfAAAAAAAuCHRy5Y1V57IZctCoVDjv82bN9txWABSqLbuYL9fsb487G8AAADAREZPjK9YsUKDBg0K29ajRw8tWrRI1157rbp06aI77rhDxcXFyvn2W1lTpkzRqaeeqv79+6tPnz5q27at5syZI0kKBAJ64YUX9Nprr6lr164aM2aM7rnnHg0ePDjlxwYAAAAAgFsef/xxXXrppY1/x3rZskjlLe3bnDZt2ig3NzfsHwDvKFlTptHzljb+fcXj72nU3CV6/eOt7lUKAAAAiMLoa4y/+OKLEbefffbZ+uSTTyKWZWRk6J577tE999wTsfyoo47S0qVL7aoiAAAAAACesnr1an311Vc6/fTTG7cNHjxYy5Yt07Rp0xq3LVu2TBdffLFycnJ07LHHatmyZWGXLfv666914oknKiMjQ7NmzVJdXV3jZcuWLVumESNGpPbAAKTE6x9v1eQXPlH2/n1h27eGqjVl0WqtdaleAAAAQDRG/2IcAAAAAADYi8uWAUjG715dp0iLprOQOgAAAExn9C/GAQAAAACAvaJdtqyiokL9+vVrctmyLVu2qH///srKytLYsWObXLbspz/9qebNm6dOnTpx2TLAx7aG9kmtsyOWMTkOAAAAkzExDgAAAABAGuGyZQAAAACAdMTEuFe1aiXdfPPB24luh1niOX92tQGTtrvVft2KAcxiUpuMlx39zC1e6E9u1NELcYHzaAfx8/J4CMAcsY4ZjCPmSuYcJrqfnY9lwvvdZur51c69qsnMlCTVZGbqv4Ze2Hj70G1FJxSoWzxxcJKX+nSi7SjRx3a6LdvFS+fQb5xsk6YydawGANgiYFkWqxzFobKyUsFgUKFQSLm5uW5XBwAAAABgAHLF5BA/wBtq6yyNmrtEW0PVEZdND0jKD2br3VvPUGZGINXVAwAAgM/YnStm2FAnAAAAAAAAAD6XmRHQjKJCSfWT4Idq+HtGUSGT4gAAADASS6l7VV2d9OWX9bd79ZIyMhLbDrPEc/7sagMmbXer/boVA5jFpDYZLzv6mVu80J/cqKMX4gLn0Q7i5+XxEIA5Yh0zGEfMleg5lBI/93Y9VqT9nBZn3ccU9tL8iYN0++I1yvj3ZknSltwjld+xnWb88Dsa036ftHFjfHFI5fGZ3KcTbUeJPHYq+oVdvHQO/cbJNmkqU8dqAIAtWEo9TsYs71ZVJbVvX397924pJyex7TBLPOfPrjZg0na32q9bMYBZTGqT8bKjn7nFC/3JjTp6IS5wHu0gfl4eD+F5xuSKHmVU/GIdMxhHzJXoOZQSP/d2PVak/ZyWYN1rd+1WZm4HSdKKf27Sycf1VObePYnFIZXHZ3KfTrQdJfLYqegXdvHSOfQbJ9ukqUwdqwEgTdmdK/KLcQAAAAAAAABxOXS59GFHHSGxfDoAAAAMxxofAAAAAAAAAAAAAABfY2IcAAAAAAAAAAAAAOBrTIwDAAAAAAAAAAAAAHyNiXEAAAAAAAAAAAAAgK8xMQ4AAAAAAAAAAAAA8LUstyuABGVlSddee/B2otthlnjOn11twKTtbrVft2IAs5jUJuNlRz9zixf6kxt19EJc4DzaQfy8PB4CMEesYwbjiLmSOYeJ7mfnY5nwfjfVcXCSl/q0k/Fzoy3bxUvn0G9M7NNOM3WsBgDYImBZluV2JbyksrJSwWBQoVBIubm5blcHAAAAAGAAcsXkED8AAAAAwOHszhVZSh0AAAAAAAAAAAAA4Gus8+FVliVt315/u3NnKRBIbDvMEs/5s6sNmLTdrfbrVgxgFpPaZLzs6Gdu8UJ/cqOOXogLnEc7iJ+Xx0MA5oh1zGAcMVei51BK/Nzb9ViR9nOaCXFI5fGZ3KedjJ8b/cIuXjqHfmNin3aaqWM1AMAWLKUeJ2OWd6uqktq3r7+9e7eUk5PYdpglnvNnVxswabtb7detGMAsJrXJeNnRz9zihf7kRh29EBc4j3YQPy+Ph/A8Y3JFjzIqfrGOGYwj5kr0HEqJn3u7HivSfk4zIQ6pPD6T+7ST8XOjX9jFS+fQb0zs004zdawGgDTFUuoAAAAAAAAAAAAAAMSBiXEAAAAAAAAAAAAAgK8xMQ4AAAAAAAAAAAAA8DUmxgEAAAAAAAAAAAAAvsbEOAAAAAAAAAAAAADA15gYBwAAAAAAAAAAAAD4WpbbFUCCsrKkn/zk4O1Et8Ms8Zw/u9qASdvdar9uxQBmMalNxsuOfuYWL/QnN+rohbjAebSD+Hl5PARgjljHDMYRcyVzDhPdz87HMuH9bqrj4CQv9Wkn4+dGW7aLl86h35jYp51m6lgNALBFwLIsy+1KeEllZaWCwaBCoZByc3Pdrg4AAAAAwADkiskhfgAAAACAw9mdK7KUOgAAAAAAAAAAAADA11jnw6ssS9qzp/52u3ZSIJDYdpglnvNnVxswabtb7detGMAsJrXJeNnRz9zihf7kRh29EBc4j3YQPy+PhwDMEeuYwThirkTPoZT4ubfrsSLt5zQT4pDK4zO5TzsZPzf6hV28dA79xsQ+7TRTx2oAgC2YGPeqPXuk9u3rb+/eLeXkJLYdZonn/NnVBkza7lb7dSsGMItJbTJedvQzt3ihP7lRRy/EBc6jHcTPy+MhAHPEOmYwjpgr0XMoJX7u7XqsSPs5zYQ4pPL4TO7TTsbPjX5hFy+dQ78xsU87zdSxGgBgC5ZSBwAAAAAAAAAAAAD4GhPjAAAAAAAAAAAAAABfY2IcAAAAAAAAAAAAAOBrTIwDAAAAAAAAAAAAAHyNiXEAAAAAAAAAAAAAgK8xMQ4AAAAAAAAAAAAA8LUstyuABGVmSuPHH7yd6HaYJZ7zZ1cbMGm7W+3XrRjALCa1yXjZ0c/c4oX+5EYdvRAXOI92ED8vj4cAzBHrmME4Yq5kzmGi+9n5WCa83011HJzkpT7tZPzcaMt28dI59BsT+7TTTB2rAQC2CFiWZbldCS+prKxUMBhUKBRSbm6u29UBAAAAABiAXDE5xA8AAAAAcDi7c0WWUgcAAAAAAAAAAAAA+BoT4wAAAAAAAAAAAAAAX2Ni3KuqqqRAoP5fVVXi22GWeM6fXW3ApO1utd9mHr921+7G7Ss++lK1dZa9MYBZTGqT8bKjn7nFC/3JjTp6IS5wHu0gfl4eDwGYI9Yxg3HEXImew2TOvV2PZcL7XTfikMrji2dbqjkZPzf6hV1MqEO6MrFPO83UsRoAYAsmxgEggpI1ZRo9b2nj31c8/p5GzV2ikjVl7lUKAAAAAAAAAAAACWFiHAAOU7KmTJMXrNLW0L6w7VtD1Zq8YJVe/3irSzUDAAAAAAAAAABAIoyeGC8tLdUpp5yi3r17q1u3bnrhhRckSR988IGGDx+u3r17q7CwUK+//nrYfvfff7/69eun7t27a9y4cSovL28sKy8v14QJE9SrVy/17t1b9957b0qPCYDZausszSpeKytCWcO23726LpVVAgAAAAAAAAAAQJKMnRj/5JNPdMEFF+i3v/2tNm3apI0bN2rUqFHatWuXioqKdMcdd2jTpk2aP3++JkyYoK1b63/B+eyzz+qpp55SaWmpvvzyS+Xn52vSpEmNj3vZZZdp4MCB2rRpk5YvX66HHnpIxcXFbh0mAMOs3FihslB1s+WW1OSX5AAAAAAAAAAAADCbsRPjv/71r3X99ddr9OjRkqTWrVurS5cuWrhwoYYMGdK4/dRTT9Upp5yiZ555RlL9r8VnzJihvLw8ZWZmavbs2XrppZdUUVGhTz/9VCtXrtSvf/1rBQIBdevWTTfccIMee+wx144TgFm27WbSGwAAAP7G6mwAAAAAgHRk5MR4dXW1Xn75ZV155ZVNypYvX66RI0eGbRs2bJhWr16tmpoarVy5Mqy8c+fO6tOnjz766CMtX75cQ4cOVVZWVpN9m7Nv3z5VVlaG/QPgX0e2b+N2FQAAAADHsDobAAAAACBdZUW/S+p9+umnatu2rd566y3ddddd2r17t8466yzdfffdKisr0xlnnBF2/y5dumjFihXavn27amtr1blz5ybl5eXlKisrU9euXSOWNeeuu+7SrFmz7Ds4u2RmSueee/B2otthlnjOn11twKTtbrXfQx7/5KOPVEEwW1tD1arLyNCSo06WJNVl1H+PKCCpS8d2ss45V4FAjPWk/3mDSW0yXnb0M7d44fXMjTp6IS5wHu0gfl4eD4EUaW51tj/96U/Nrs42ZcqUsNXZJGn27NkqKChQRUWFtm/frpUrV+qll15qsjpbUVGRa8easFjHDMYRcyVzDhPdz87HMuH9bqrj4CQv9Wkn4+dGW7aLl86h35jYp51m6lgNALBFwLIsy+1KHO7//u//dPbZZ+vnP/+57rzzTh04cEA/+clPFAwGtXnzZl1++eW6/PLLG+//xz/+Ua+++qr+8z//U71791ZNTY0CgUBj+fDhw3Xrrbfq448/1vr168OWTv/kk080bNgwhUKhiHXZt2+f9u07uLRyZWWlevbsqVAopNzcXAeOHoDbStaUafKCVZLqryneoGFUmT9xkMYMLEh5vQAAAGCuyspKBYNBo3PF6upqBYNBbdq0Sfn5+WFlV155pY477jjdfPPNjdvuvPNOff7553rkkUfUrl07ffXVV2FfRD/mmGP06KOPauPGjfrb3/6ml19+ubHs//7v/zRx4kRt2LAhYl3ItQEAAAAA0didaxu5lHrnzp114MABzZkzR9nZ2erQoYNmzpypl156SXl5edq+fXvY/bdt26b8/Hx16tRJlmVpx44dEctb2rc5bdq0UW5ubtg/AP42ZmCB5k8cpPxgdtj2/GA2k+IAAADwrENXZzvhhBN01FFH6ec//7kqKytbXGHNqdXZgsFg47+ePXvad6AAAAAAAERg5MR479691bp1a1VXVzduy8jIUHZ2tgYPHqxly5aF3X/ZsmUaMWKEcnJydOyxx4aVl5WV6euvv9aJJ56owYMHa8WKFaqrq2uyLwAcaszAAr176xlaePVwPfDjk7Tw6uF699YzmBQHAACAZ+3atUs1NTVauXKlSktL9eGHH2rbtm2aMmWKampqdPiCcrW1tQoEAqqpqZGkFsubK2vO9OnTFQqFGv9t3rzZpqMEAAAAACAyIyfGs7Ozdfnll+umm25STU2N9u3bpxkzZmjixIm69NJL9eabb2rJkiWSpFdeeUXr1q3ThAkTJEmTJk3SrFmztHPnTu3fv1/Tp0/X1VdfrXbt2mno0KEqKCjQ3LlzVVdXp/Xr1+vhhx/W9ddf7+bhJqaqSsrJqf9XVZX4dpglnvNnVxswabtb7beZx8/cu0cjTuilsSP7a0R+tjIzAvbGAGYxqU3Gy45+5hYv9Cc36uiFuMB5tIP4eXk8BFKA1dliFOuYwThirkTPYTLn3q7HMuH9rhtxSOXxxbMt1ZyMnxv9wi4m1CFdmdinnWbqWA0AsEWW2xVozty5czV58mR1795dHTp00EUXXaTZs2erdevWWrRoka699lpVVFSoX79+Ki4uVk5OjiRpypQp2rJli/r376+srCyNHTtWc+bMkSQFAgG98MIL+ulPf6p58+apU6dOuueeezR48GA3DzVxe/bYsx1mief82dUGTNruVvt1KwYwi0ltMl529DO3eKE/uVFHL8QFzqMdxM/L4yHgsENXZ2vVqpWkpquzTZs2rfH+y5Yt08UXX6xDV2c777zzJIWvzpaRkaFZs2aprq5OGRkZjft6enW2WMcMxhFzJXoOkzn3dj2WCe933YiDk7zUp52Mnxv9wi4m1CFdmdinnWbqWA0ASJqxE+Pt27fXX/7yl4hlZ599tj755JOIZRkZGbrnnnt0zz33RCw/6qijtHTpUruqCQAAAACAJxy6OtvDDz+s2trasNXZ5syZoyVLluiMM85odnW2UaNGqV27ds2uznbrrbdq48aNevjhh/XCCy+4fMQAAAAAABxk5FLqAAAAAADAfnPnztXevXvVvXt3HXfccerXr59mz56tHj16NK7O1qVLF91xxx1NVmc79dRT1b9/f/Xp00dt27Ztsjrba6+9pq5du2rMmDHeXp0NAAAAAOBLxv5iHAAAAAAA2IvV2QAAAAAA6YpfjAMAAAAAAAAAAAAAfI2JcQAAAAAAAAAAAACAr7GUuldlZEinnnrwdqLbYZZ4zp9dbcCk7W61X7diALOY1CbjZUc/c4sX+pMbdfRCXOA82kH8vDweAjBHrGMG44i5kjmHie5n52OZ8H431XFwkpf6tJPxc6Mt28VL59BvTOzTTjN1rAYA2CJgWZbldiW8pLKyUsFgUKFQSLm5uW5XBwAAAABgAHLF5BA/AAAAAMDh7M4V+ToTAAAAAAAAAAAAAMDXmBgHAAAAAAAAAAAAAPgaE+NeVVUlHXlk/b+qqsS3wyzxnD+72oBJ291qv27FAGYxqU3Gy45+5hYv9Cc36uiFuMB5tIP4eXk8BGCOWMcMxhFzJXoOkzn3dj2WCe933YhDKo8vnm2p5mT83OgXdjGhDunKxD7tNFPHagCALbLcrgCSsH27PdthlnjOn11twKTtbrVft2IAs5jUJuNlRz9zixf6kxt19EJc4DzaQfy8PB4CMEesYwbjiLkSPYfJnHu7HsuE97tuxMFJXurTTsbPjX5hFxPqkK5M7NNOM3WsBgAkjV+MAwAAAAAAAAAAAAB8jYlxAAAAAAAAAAAAAICvMTEOAAAAAAAAAAAAAPA1JsYBAAAAAAAAAAAAAL7GxDgAAAAAAAAAAAAAwNey3K4AEpSRIZ188sHbiW6HWeI5f3a1AZO2u9V+3YoBzGJSm4yXHf3MLV7oT27U0QtxgfNoB/Hz8ngIwByxjhmMI+ZK5hwmup+dj2XC+91Ux8FJXurTTsbPjbZsFy+dQ78xsU87zdSxGgBgi4BlWZbblfCSyspKBYNBhUIh5ebmul0dAAAAAIAByBWTQ/wAAAAAAIezO1fk60wAAAAAAAAAAAAAAF9jYhwAAAAAAAAAAAAA4GtMjHvVnj1Snz71//bsSXw7zBLP+bOrDZi03a3261YMYBaT2mS87OhnbvFCf3Kjjl6IC5xHO4ifl8dDAOaIdcxgHDFXoucwmXNv12OZ8H7XjTik8vji2ZZqTsbPjX5hFxPqkK5M7NNOM3WsBgDYIsvtCiBBliVt2nTwdqLbYZZ4zp9dbcCk7W61X7diALOY1CbjZUc/c4sX+pMbdfRCXOA82kH8vDweAjBHrGMG44i5kjmHie5n52OZ8H431XFwkpf6tJPxc6Mt28VL59BvTOzTTjN1rAYA2IJfjAMAAAAAAAAAAAAAfI2JcQAAAAAAAAAAAACArzExDgAAAAAAAAAAAADwNSbGAQAAAAAAAAAAAAC+xsQ4AAAAAAAAAAAAAMDXstyuABIUCEiFhQdvJ7odZonn/NnVBkza7lb7dSsGMItJbTJedvQzt3ihP7lRRy/EBc6jHcTPy+MhAHPEOmYwjpgrmXOY6H52PpYJ73dTHQcnealPOxk/N9qyXbx0Dv3GxD7tNFPHagCALQKWZVluV8JLKisr9f/Zu/f4KKr7/+PvDQFCAllAhIRrEBRFqApyq1RBoVIrWi9412qpVPgq4KVavHwR0SpWRcRfsS0VL1S0rVjFKkhFvHxBEAQrCN64iBKUBEkgQCDJ/P6IWbLJJtnZzOycmbyej0cebM7uzH7mnPM5zMmZnQ2HwyooKFBmZqbX4QAAAAAADMBcsX6oPwAAAABAVU7PFbmVOgAAAAAAAAAAAAAg0FgYBwAAAAAAAAAAAAAEGgvjfrVvn3T88eU/+/YlXg6z2Gk/p/qASeVe9V+v6gBmMalP2uVEnnnFD/nkRYx+qBe4j35gn5/HQwDmiHfMYBwxV6JtWJ+2d2pfJpzvelEPyTw+O2XJ5mb9eZEXTjEhhobKxJx2m6ljNQDAEaleB4AEWZb0ySeHHydaDrPYaT+n+oBJ5V71X6/qAGYxqU/a5USeecUP+eRFjH6oF7iPfmCfn8dDAOaId8xgHDFXfdow0e2c3JcJ57vJrgc3+Smn3aw/L/qyU/zUhkFjYk67zdSxGgDgCD4xDgAAAAAAAAAAAAAINBbGAQAAAAAAAAAAAACBxsI4AAAAAAAAAAAAACDQWBgHAAAAAAAAAAAAAAQaC+MAAAAAAAAAAAAAgEBL9ToAJCgUkrp0Ofw40XKYxU77OdUHTCr3qv96VQcwi0l90i4n8swrfsgnL2L0Q73AffQD+/w8HgIwR7xjBuOIuerTholu5+S+TDjfTXY9uMlPOe1m/XnRl53ipzYMGhNz2m2mjtUAAEeELMuyvA7CTwoLCxUOh1VQUKDMzEyvwwEAAAAAGIC5Yv1QfwAAAACAqpyeK3IrdQAAAAAAAAAAAABAoLEwDgAAAAAAAAAAAAAINBbG/Wr/fqlfv/Kf/fsTL4dZ7LSfU33ApHKv+q9XdQCzmNQn7XIiz7zih3zyIkY/1AvcRz+wz8/jIQBzxDtmMI6YK9E2rE/bO7UvE853vaiHZB6fnbJkc7P+vMgLp5gQQ0NlYk67zdSxGgDgCL5j3CZjvvesqEhq3rz88d69UkZGYuUwi532c6oPmFTuVf/1qg5gFpP6pF1O5JlX/JBPXsToh3qB++gH9vl5PITvGTNX9Cmj6i/eMYNxxFyJtqGUeNs7ta9Y27nNhHpI5vGZnNNu1p8XeeEUP7Vh0JiY024zdawGgAaqQXzH+PXXX69wOKycnJzIz9atWyVJa9as0cCBA9WlSxf17NlTixcvjtr20UcfVffu3dWhQwedd955ys/PjzyXn5+vUaNGqXPnzurSpYsefvjhpB4XAAAAAAAAAAAAACD5jFwYl6SJEydqy5YtkZ8uXbpoz549GjlypO69915t3bpVs2bN0qhRo7Rjxw5J0t///nc988wzWrlypb766itlZWVpzJgxkX1eeeWV6tWrl7Zu3arly5dr5syZWrBggVeHCAAAAAAAAAAAAABIAmMXxlu2bFmtbN68eerXr5+GDRsmSTrttNN06qmn6oUXXpBU/mnxyZMnq3Xr1mrUqJGmTp2qV155Rbt27dJnn32mVatW6Y477lAoFFL79u01fvx4Pfnkk8k8LAAAAAAAPMMd2gAAAAAADZWvFsaXL1+uU045JapswIABWrt2rUpKSrRq1aqo59u0aaOcnBx9/PHHWr58ufr376/U1NRq29amuLhYhYWFUT8AAAAAAPgVd2gDAAAAADRExi6MT5o0SZ07d9bQoUP1xhtvSJJyc3PVrl27qNe1bdtW+fn5ysvLU2lpqdq0aRPz+dq2rc3999+vcDgc+enUqZMDRwcAAAAAgDe4QxsAAAAAoCFKrfslyffYY4/p8ccfV2lpqRYtWqSLLrpIb775pkpKSmRZVtRrS0tLFQqFVFJSIkmyLEuhUCjm8zVtW5tJkybppptuivxeWFhozuJ4lYsAEi6HWey0n1N9wKRyr/qvV3UAs5jUJ+1yIs+84od88iJGP9QL3Ec/sM/P4yGQJE7foW3Lli0x79A2c+bMGmMoLi5WcXFx5Hfj7s4W75jBOGKuRNuwPm3v1L5MON/1oh7c5KecdrP+vMgLp5gQQ0NlYk67zdSxGgBQbyGr6mqxgcaOHas2bdro008/1cCBA6MWqqdOnaqvv/5ajzzyiFq0aKG8vDy1bt068ny3bt00d+5crVmzRgsXLtQrr7wSee7dd9/Vr3/9a3366adxx1JYWKhwOKyCggJlZmY6c4AAAAAAAF/zy1zx+uuv1z//+U81adJE3bp106RJk/TTn/5UI0aM0OWXX64rr7wy8tq//OUvWrBggf785z+rQ4cOKi0tjdrXKaecoptvvlmfffaZPv/8c/31r3+NPPf555+rb9++NS5433333ZoyZUq1ctPrDwAAAACQPE7PtY29lXplJSUlatKkifr27atly5ZFPbds2TINGjRIGRkZ6tGjR9Tzubm5+vbbb3XCCSeob9++WrFihcrKyqptCwAAAABAQ/DYY49px44d2rx5s37729/qoosu0urVq+O+Q1tNz9u9Q9ukSZNUUFAQ+dm2bZtDRwgAAAAAQGxGLowvWrQosoD9xhtv6MUXX9QFF1ygyy+/XG+++aaWLFkiSXrttde0YcMGjRo1SpI0ZswYTZkyRbt379bBgwc1adIkXXvttUpPT1f//v2VnZ2tadOmqaysTJs2bdIf//hH3XDDDZ4dJwAAAAAAyZSSUv5ngEaNGumss87SpZdeqn/9619q3bq18vLyol67c+dOZWVlqVWrVrIsS99//33M52vbtiZNmzZVZmZm1A8AAAAAAG4ycmF8+vTpysrKUk5Oju6991699NJL6tmzpzp27Kjnn39e48aNU9u2bXXvvfdqwYIFysjIkCRNmDBBp512mo455hjl5OSoWbNmeuCBByRJoVBI8+fP16JFi9SuXTuNGDFCDz30kPr27evloSZu/35pyJDyn/37Ey+HWey0n1N9wKRyr/qvV3UAs5jUJ+1yIs+84od88iJGP9QL3Ec/sM/P4yHgEe7QFkO8YwbjiLkSbcP6tL1T+zLhfNeLekjm8dkpSzY368+LvHCKCTE0VCbmtNtMHasBAI7wxXeMm8SY740rKpKaNy9/vHev9MPFAbbLYRY77edUHzCp3Kv+61UdwCwm9Um7nMgzr/ghn7yI0Q/1AvfRD+zz83gI3zNmrliHRYsWafjw4UpJSdEbb7yhSy65RO+9954yMzPVu3dvvfjiizr99NP12muvady4cVq/fr0yMjI0ffp0Pffcc1q8eLHS09M1ZswYtWrVStOnT5dlWTrppJN08cUX67bbbtOWLVs0dOhQzZ8/P+6L0Y2qv3jHDMYRcyXahlLibe/UvmJt5zYT6iGZx2dyTrtZf17khVP81IZBY2JOu83UsRoAGiin54qpDsQEAAAAAAB8YPr06bryyiuVnp6uzp07R+7QJilyh7Zdu3ape/fu1e7Q9s033+iYY45Ramqqzj333Gp3aPvVr36lRx55RK1atfL3HdoAAAAAAIHEwjgAAAAAAA3EwoULa3zuzDPP1MaNG2M+l5KSooceekgPPfRQzOePOuooLV261IkQAQAAAABwhZHfMQ4AAAAAAAAAAAAAgFNYGAcAAAAAAAAAAAAABBoL4wAAAAAAAAAAAACAQOM7xv0sPd2ZcpjFTvs51QdMKveq/3pVBzCLSX3SLifyzCt+yCcvYvRDvcB99AP7/DweAjBHvGMG44i5Em3D+rS9U/sy4XzXi3pwk59y2s368yIvnGJCDA2ViTntNlPHagBAvYUsy7K8DsJPCgsLFQ6HVVBQoMzMTK/DAQAAAAAYgLli/VB/AAAAAICqnJ4rcit1AAAAAAAAAAAAAECgsTAOAAAAAAAAAAAAAAg0Fsb96sAB6ec/L/85cCDxcpjFTvs51QdMKveq/3pVBzCLSX3SLifyzCt+yCcvYvRDvcB99AP7/DweAjBHvGMG44i5Em3D+rS9U/sy4XzXi3pI5vHZKUs2N+vPi7xwigkxNFQm5rTbTB2rAQCO4DvGbTLme8+KiqTmzcsf790rZWQkVg6z2Gk/p/qASeVe9V+v6gBmMalP2uVEnnnFD/nkRYx+qBe4j35gn5/HQ/ieMXNFnzKq/uIdMxhHzJVoG0qJt71T+4q1ndtMqIdkHp/JOe1m/XmRF07xUxsGjYk57TZTx2oAaKD4jnEAAAAAAAAAAAAAAGxgYRwAAAAAAAAAAAAAEGgsjAMAAAAAAAAAAAAAAo2FcQAAAAAAAAAAAABAoLEwDgAAAAAAAAAAAAAINBbGAQAAAAAAAAAAAACBFrIsy/I6CD8pLCxUOBxWQUGBMjMzvQ4HAAAAAGAA5or1Q/0BAAAAAKpyeq7IJ8YBAAAAAAAAAAAAAIHGwjgAAAAAAAAAAAAAINBYGPerAwekUaPKfw4cSLwcZrHTfk71AZPKveq/XtUBzGJSn7TLiTzzih/yyYsY/VAvcB/9wD4/j4cAzBHvmME4Yq5E27A+be/Uvkw43/WiHpJ5fHbKks3N+vMiL5xiQgwNlYk57TZTx2oAgCP4jnGbjPnes6IiqXnz8sd790oZGYmVwyx22s+pPmBSuVf916s6gFlM6pN2OZFnXvFDPnkRox/qBe6jH9jn5/EQvmfMXNGnjKq/eMcMxhFzJdqGUuJt79S+Ym3nNhPqIZnHZ3JOu1l/XuSFU/zUhkFjYk67zdSxGgAaKL5jHAAAAAAAAAAAAAAAG1gYBwAAAAAAAAAAAAAEGgvjAAAAAAAAAAAAAIBAY2EcAAAAAAAAAAAAABBoLIwDAAAAAAAAAAAAAAKNhXEAAAAAAAAAAAAAQKCFLMuyvA7CTwoLCxUOh1VQUKDMzEzvArEsad++8sfp6VIolFg5zGKn/ZzqAyaVe9V/vaoDmMWkPmmXE3nmFT/kkxcx+qFe4D76gX1+Hg/he8bMFX3KqPqLd8xgHDFXom0oJd72Tu0r1nZuM6Eeknl8Jue0m/XnRV44xU9tGDQm5rTbTB2rAaCBcnquyMK4TUZN1gEAAAAARmCuWD/UHwAAAACgKqfnitxKHQAAAAAAAAAAAAAQaCyM+1VxsXT11eU/xcWJl8MsdtrPqT5gUrlX/derOoBZTOqTdjmRZ17xQz55EaMf6gXuox/Y5+fxEIA54h0zGEfMlWgb1qftndqXCee7XtRDMo/PTlmyuVl/XuSFU0yIoaEyMafdZupYDQBwBLdSt8mY27sVFUnNm5c/3rtXyshIrBxmsdN+TvUBk8q96r9e1QHMYlKftMuJPPOKH/LJixj9UC9wH/3APj+Ph/A9Y+aKPmVU/cU7ZjCOmCvRNpQSb3un9hVrO7eZUA/JPD6Tc9rN+vMiL5zipzYMGhNz2m2mjtUA0EBxK3UAAAAAAAAAAAAAAGxgYRwAAAAAAAAAAAAAEGgsjAMAAAAAAAAAAAAAAo2FcQAAAAAAAAAAAABAoLEwDgAAAAAAAAAAAAAINBbGAQAAAAAAAAAAAACBlup1AEhQerr03XeHHydaDrPYaT+n+oBJ5V71X6/qAGYxqU/a5USeecUP+eRFjH6oF7iPfmCfn8dDAOaId8xgHDFXfdow0e2c3JcJ57vJrgc3+Smn3aw/L/qyU/zUhkFjYk67zdSxGgDgiJBlWZbXQfhJYWGhwuGwCgoKlJmZ6XU4AAAAAAADMFesH+oPAAAAAFCV03NFbqUOAAAAAAAAAAAAAAg0Fsb9qrhY+p//Kf8pLk68HGax035O9QGTyr3qv17VAcxiUp+0y4k884of8smLGP1QL3Af/cA+P4+HAMwR75jBOGKuRNuwPm3v1L5MON/1oh6SeXx2ypLNzfrzIi+cYkIMDZWJOe02U8dqAIAjjL+V+tixY/XWW29p48aNkqQ1a9Zo7Nixys3NVUZGhmbMmKHhw4dHXv/oo4/q8ccf1/79+9W/f3/Nnj1bRxxxhCQpPz9f1113nVasWKFQKKTx48fr5ptvthWPMbd3KyqSmjcvf7x3r5SRkVg5zGKn/ZzqAyaVe9V/vaoDmMWkPmmXE3nmFT/kkxcx+qFe4D76gX1+Hg/he8bMFX3KqPqLd8xgHDFXom0oJd72Tu0r1nZuM6Eeknl8Jue0m/XnRV44xU9tGDQm5rTbTB2rAaCBalC3Ut+2bZueeeaZyO979uzRyJEjde+992rr1q2aNWuWRo0apR07dkiS/v73v+uZZ57RypUr9dVXXykrK0tjxoyJbH/llVeqV69e2rp1q5YvX66ZM2dqwYIFST8uAAAAAAAAAAAAAEDyGL0wfuONN+qaa66J/D5v3jz169dPw4YNkySddtppOvXUU/XCCy9IKv+0+OTJk9W6dWs1atRIU6dO1SuvvKJdu3bps88+06pVq3THHXcoFAqpffv2Gj9+vJ588klPjg0AAAAAAC+NHTtWxx57bOT3NWvWaODAgerSpYt69uypxYsXR73+0UcfVffu3dWhQwedd955ys/PjzyXn5+vUaNGqXPnzurSpYsefvjhpB0HAAAAAADxMHZh/N///rfy8/N14YUXRsqWL1+uU045Jep1AwYM0Nq1a1VSUqJVq1ZFPd+mTRvl5OTo448/1vLly9W/f3+lpqZW27Y2xcXFKiwsjPoBAAAAAMDPuEMbAAAAAKChMXJhPD8/X+PHj9esWbOiynNzc9WuXbuosrZt2yo/P195eXkqLS1VmzZtYj5f27a1uf/++xUOhyM/nTp1qseRAQAAAADgPe7QBgAAAABoaIxbGLcsS6NHj9bEiROjbukmSSUlJbIsK6qstLRUoVBIJSUlke1rer6m52ozadIkFRQURH62bduW6KEBAAAAAOA5E+7Qxt3ZAAAAAADJZtzC+AMPPKBDhw7p+uuvr/Zc69atlZeXF1W2c+dOZWVlqVWrVrIsS99//33M52vbtjZNmzZVZmZm1A8AAAAAAH5kyh3auDsbAAAAACDZUut+SXI99thjKioqUqtWrSSVf0p8//79atmypSZNmqRly5bppptuirx+2bJluvjii5WRkaEePXpo2bJlOvvssyWVT+y//fZbnXDCCUpJSdGUKVNUVlamlJSUyLaDBg1K/kE6oVkzafPmw48TLYdZ7LSfU33ApHKv+q9XdQCzmNQn7XIiz7zih3zyIkY/1AvcRz+wz8/jIZAEVe/QVvH94VL8d2irfNe1+tyhbdKkSVFz+8LCQnMWx+MdMxhHzFWfNkx0Oyf3ZcL5brLrwU1+ymk368+LvuwUP7Vh0JiY024zdawGADgiZFWdvRpm6dKluu6667Rx40Z9/fXX6t27t1588UWdfvrpeu211zRu3DitX79eGRkZmj59up577jktXrxY6enpGjNmjFq1aqXp06fLsiyddNJJuvjii3Xbbbdpy5YtGjp0qObPn6++ffvGHU9hYaHC4bAKCgr49DgAAAAAQJI/5or333+/3nvvPb366qsKhUJR8+2LLrpIAwcOjFqsnjp1qr7++ms98sgjatGihfLy8tS6devI8926ddPcuXO1Zs0aLVy4UK+88krkuXfffVe//vWv9emnn8YVmx/qDwAAAACQXE7PFY27lXptOnbsqOeff17jxo1T27Ztde+992rBggXKyMiQJE2YMEGnnXaajjnmGOXk5KhZs2Z64IEHJEmhUEjz58/XokWL1K5dO40YMUIPPfSQrUVxAAAAAAD86rHHHtO7776rVq1aqWXLljr77LP1+eefq2XLlurbt6+WLVsW9fqKu6xVvkNbhcp3aOvbt69WrFihsrKyatsCAAAAAGAK4xfGhwwZoo0bN0Z+P/PMM7Vx40Z99913WrZsmXr37h15LiUlRQ899JC+++47bd++XbNmzVLTpk0jzx911FFaunSpdu7cqc8++0yjRo1K6rE46uBB6be/Lf85eDDxcpjFTvs51QdMKveq/3pVBzCLSX3SLifyzCt+yCcvYvRDvcB99AP7/DweAkmQm5urwsJC7d69W7t379arr76qo48+Wrt379bll1+uN998U0uWLJEkvfbaa9qwYUNk3jxmzBhNmTJFu3fv1sGDBzVp0iRde+21Sk9PV//+/ZWdna1p06aprKxMmzZt0h//+EfdcMMNXh5u4uIdMxhHzJVoG9an7Z3alwnnu17UQzKPz05ZsrlZf17khVNMiKGhMjGn3WbqWA0AcITxt1I3jTG3dysqkpo3L3+8d6/0w6fmbZfDLHbaz6k+YFK5V/3XqzqAWUzqk3Y5kWde8UM+eRGjH+oF7qMf2Ofn8RC+Z8xc0YbKt1KXpEWLFmnChAnatWuXunfvrj/96U+Ri9HLysp066236plnnlFqaqrOPfdcPfroo5GL0Tdt2qRf/epXWr9+vVq1aqX77rvP1sXoRtVfvGMG44i5Em1DKfG2d2pfsbZzmwn1kMzjMzmn3aw/L/LCKX5qw6AxMafdZupYDQANlNNzxVQHYgIAAAAAAD5T0x3aYqm4Q9tDDz0U8/mKO7QBAAAAAGAq42+lDgAAAAAAAAAAAABAfbAwDgAAAAAAAAAAAAAINBbGAQAAAAAAAAAAAACBxsI4AAAAAAAAAAAAACDQWBgHAAAAAAAAAAAAAARaqtcBIEHNmknr1h1+nGg5zGKn/ZzqAyaVe9V/vaoDmMWkPmmXE3nmFT/kkxcx+qFe4D76gX1+Hg8BmCPeMYNxxFz1acNEt3NyXyac7ya7Htzkp5x2s/686MtO8VMbBo2JOe02U8dqAIAjQpZlWV4H4SeFhYUKh8MqKChQZmam1+EAAAAAAAzAXLF+qD8AAAAAQFVOzxW5lToAAAAAAAAAAAAAINCSeiv1AQMGaMWKFcl8y+A6eFD6/e/LH99+u9SkSWLlMIud9nOqD5hU7lX/9aoOYBaT+qRdTuSZV/yQT17E6Id6gfvoB/b5eTwE6oG5tsPiHTMYR8yVaBtKibe9U/uKtZ3bTKiHZB6fyTntZv15kRdO8VMbBo2JOe02U8dqAIAjXL2V+qFDh9S4cePI79nZ2crNzXXr7ZLCmNu7FRVJzZuXP967V8rISKwcZrHTfk71AZPKveq/XtUBzGJSn7TLiTzzih/yyYsY/VAvcB/9wD4/j4fwvWTOFZlruyzeMYNxxFyJtqGUeNs7ta9Y27nNhHpI5vGZnNNu1p8XeeEUP7Vh0JiY024zdawGgAbK2Fupn3baadXKOnToEPV7KBRy6u0AAAAAAAg85toAAAAAADjDsYXxDRs2VCtz8cPoAAAAAAAEHnNtAAAAAACc4djCeCxctQ4AAAAAgLOYawMAAAAAYF+qmzu3LEvz58+PPC4uLnbz7QAAAAAACDzm2gAAAAAA2OfqwrgkzZkzJ/J4//79br8dAAAAAACBx1wbAAAAAAB7XF0YD4VCWrBgQeT37OxsN98OAAAAAIDAY64NAAAAAIB9rn9ivDK+B81BaWnSypWHHydaDrPYaT+n+oBJ5V71X6/qAGYxqU/a5USeecUP+eRFjH6oF7iPfmCfn8dDoB6Yazss3jGDccRc9WnDRLdzcl8mnO8mux7c5KecdrP+vOjLTvFTGwaNiTntNlPHagCAI0KWZVlO7Khx48bq3bt35HfLsrR+/XodPHgwUta+fXtt377dibfzTGFhocLhsAoKCpSZmel1OAAAAAAAA7g1V2SuDQAAAABoqJyeKzr2ifH333/fqV0BAAAAAAAx1wYAAAAAwCmOLYz37du3ztc49OF0SNLBg9KMGeWPJ0yQmjRJrBxmsdN+TvUBk8q96r9e1QHMYlKftMuJPPOKH/LJixj9UC9wH/3APj+Ph0ANmGt7IN4xg3HEXIm2oZR42zu1r1jbuc2Eekjm8Zmc027Wnxd54RQ/tWHQmJjTbjN1rAYAOMKxW6nHY/ny5Ro0aFCy3s4VxtzerahIat68/PHevVJGRmLlMIud9nOqD5hU7lX/9aoOYBaT+qRdTuSZV/yQT17E6Id6gfvoB/b5eTyE73k5V2Su7bB4xwzGEXMl2oZS4m3v1L5ibec2E+ohmcdnck67WX9e5IVT/NSGQWNiTrvN1LEaABoop+eKKQ7EFLeKiXp+fn4y3xYAAAAAgMBirg0AAAAAQN0cuZX60KFDFQqFan3NOeeco4kTJ0qSevfure3btzvx1gAAAAAABBJzbQAAAAAAnOPIwvidd95Z52s6duwYecz3nwEAAAAAUDvm2gAAAAAAOMeRhfEzzjjD1uvruuIdAAAAAICGjrk2AAAAAADOcWRhXJLeeeedmOXHHXecjjzySKfeBgAAAACABoO5NgAAAAAAznBsYXzy5MmSpA0bNqh9+/YKh8PasmWL7rvvPl122WVOvQ0AAAAAAA0Gc20AAAAAAJzh2ML4W2+9JUm69NJLNXbsWJ166qm66667nNo9qkpLk36oc6WlJV4Os9hpP6f6gEnlXvVfr+oAZjGpT9rlRJ55xQ/55EWMfqgXuI9+YJ+fx0OgBsy1PRDvmME4Yq76tGGi2zm5LxPOd5NdD27yU067WX9e9GWn+KkNg8bEnHabqWM1AMARIcuyLCd3WHWyftxxx1W7ir19+/bavn27k2+bNIWFhQqHwyooKFBmZqbX4QAAAAAADOD2XJG5NgAAAACgoXF6rujYJ8Zrs23bNl111VUKhUKyLEu7du1KxtsCAAAAABBYzLUBAAAAAIifYwvj77zzjiRp586dWrt2rSTpq6++0nHHHac2bdrozjvvdOqtIEmHDkl//nP54zFjpMaNEyuHWey0n1N9wKRyr/qvV3UAs5jUJ+1yIs+84od88iJGP9QL3Ec/sM/P4yFQA+baHoh3zGAcMVeibSgl3vZO7SvWdm4zoR6SeXwm57Sb9edFXjjFT20YNCbmtNtMHasBAI5w7FbqQ4cOjVl+55136owzznDiLYxgzO3dioqk5s3LH+/dK2VkJFYOs9hpP6f6gEnlXvVfr+oAZjGpT9rlRJ55xQ/55EWMfqgXuI9+YJ+fx0P4nltzRebaHoh3zGAcMVeibSgl3vZO7SvWdm4zoR6SeXwm57Sb9edFXjjFT20YNCbmtNtMHasBoIEy9lbqb731llO7AgAAAAAAYq4NAAAAAIBTUrwOAAAAAAAAAAAAAAAAN7EwDgAAAAAAAAAAAAAINBbGAQAAAAAAAAAAAACBxsI4AAAAAAAAAAAAACDQWBgHAAAAAAAAAAAAAARaqtcBIEFNm0qvvnr4caLlMIud9nOqD5hU7lX/9aoOYBaT+qRdTuSZV/yQT17E6Id6gfvoB/b5eTwEYI54xwzGEXPVpw0T3c7JfZlwvpvsenCTn3Lazfrzoi87xU9tGDQm5rTbTB2rAQCOCFmWZXkdhJ8UFhYqHA6roKBAmZmZXocDAAAAADAAc8X6of4AAAAAAFU5PVfkVuoAAAAAAAAAAAAAgEAz9lbqDz74oGbPnq0DBw4oHA7rvvvu0znnnCNJWrNmjcaOHavc3FxlZGRoxowZGj58eGTbRx99VI8//rj279+v/v37a/bs2TriiCMkSfn5+bruuuu0YsUKhUIhjR8/XjfffLMnx1gvhw5Jf/tb+ePLL5caN06sHGax035O9QGTyr3qv17VAcxiUp+0y4k884of8smLGP1QL3Af/cA+P4+HAMwR75jBOGKuRNtQSrztndpXrO3cZkI9JPP4TM5pN+vPi7xwip/aMGhMzGm3mTpWAwCcYRlq6dKl1sGDBy3Lsqy3337bSktLs/Ly8qzCwkKrQ4cO1uLFiyOvC4fDVm5urmVZlvXCCy9YJ510kpWfn2+VlJRY1113nXX++edH9vuzn/3Muvvuu62ysjLrm2++sbp06WK98sorccdVUFBgSbIKCgocPNoE7N1rWVL5z969iZfDLHbaz6k+YFK5V/3XqzqAWUzqk3Y5kWde8UM+eRGjH+oF7qMf2Ofn8RC+Z8xcsQ7Tpk2zjj76aKtTp05Wr169rJdffjny3IcffmgNGDDA6ty5s3XcccdZb7zxRtS206dPt7p162a1b9/e+sUvfmHl5eVFnsvLy7MuvPBCq1OnTlbnzp2thx56yFZcRtVfvGMG44i5Em3D+rS9U/sy4XzXi3pI5vHZKUs2N+vPi7xwigkxNFQm5rTbTB2rAaCBcnquaOyt1E877TQ1/uFKq1NPPVXp6enauXOn5s2bp379+mnYsGGR15166ql64YUXJJV/Wnzy5Mlq3bq1GjVqpKlTp+qVV17Rrl279Nlnn2nVqlW64447FAqF1L59e40fP15PPvmkZ8cJAAAAAECyDBgwQOvXr9dXX32l//f//p8uvvhi5efna8+ePRo5cqTuvfdebd26VbNmzdKoUaO0Y8cOSdLf//53PfPMM1q5cqW++uorZWVlacyYMZH9XnnllerVq5e2bt2q5cuXa+bMmVqwYIFXhwkAAAAAQDXGLoxXOHDggB599FH169dPxx57rJYvX65TTjkl6jUDBgzQ2rVrVVJSolWrVkU936ZNG+Xk5Ojjjz/W8uXL1b9/f6WmplbbtibFxcUqLCyM+gEAAAAAwI+4CB0AAAAA0FAZuzD+5ZdfqlOnTkpPT9fzzz+vP/7xj5Kk3NxctWvXLuq1bdu2VX5+vvLy8lRaWqo2bdrEfL62bWty//33KxwOR346derk0BECAAAAAOANLkIHAAAAADQ0xi6Md+vWTdu2bdO+ffs0fvx4DRo0SJ9//rlKSkpkWVbUa0tLSxUKhVRSUiJJtT5f03M1mTRpkgoKCiI/27Ztc+gIAQAAAABILi5CBwAAAAA0VMYujFdIS0vTZZddprPPPltPP/20Wrdurby8vKjX7Ny5U1lZWWrVqpUsy9L3338f8/natq1J06ZNlZmZGfUDAAAAAIAfcRE6AAAAAKChMn5hvELTpk3VrFkz9e3bV8uWLYt6btmyZRo0aJAyMjLUo0ePqOdzc3P17bff6oQTTlDfvn21YsUKlZWVVdsWAAAAAICGgovQAQAAAAANTWrdL0m+b775Ru+8845GjRql1NRUvfPOO3rppZf09ttvKz09XQ888ICWLFmi008/Xa+99po2bNigUaNGSZLGjBmjKVOmaPDgwUpPT9ekSZN07bXXKj09Xf3791d2dramTZum2267TVu2bNEf//hHzZ8/3+MjTkDTptLf/374caLlMIud9nOqD5hU7lX/9aoOYBaT+qRdTuSZV/yQT17E6Id6gfvoB/b5eTwEPFL1IvSbbrop8tyyZct08cUXR12EfvbZZ0uKvgg9JSVFU6ZMUVlZmVJSUiLb+vYi9HjHDMYRc9WnDRPdzsl9mXC+m+x6cJOfctrN+vOiLzvFT20YNCbmtNtMHasBAI4IWVXvd2aAvLw8XXLJJfrvf/+rFi1aKCcnR/fdd58GDhwoSVq0aJEmTJigXbt2qXv37vrTn/6k3r17S5LKysp066236plnnlFqaqrOPfdcPfroo2r6w39QmzZt0q9+9SutX79erVq10n333RdZVI9HYWGhwuGwCgoKuKIdAAAAACDJH3PFWBehX3zxxZGL0Hv37q0XX3wxchH6uHHjtH79emVkZGj69Ol67rnntHjxYqWnp2vMmDFq1aqVpk+fLsuydNJJJ+niiy+OXIQ+dOhQzZ8/X3379o0rNj/UHwAAAAAguZyeKxq5MG4yJusAAAAAgKr8MFfkInQAAAAAgJ+wMO4xYybrJSXSSy+VPz7vPCk1NbFymMVO+znVB0wq96r/elUHMItJfdIuJ/LMK37IJy9i9EO9wH30A/v8PB7C94yZK/qUUfUX75jBOGKuRNtQSrztndpXrO3cZkI9JPP4TM5pN+vPi7xwip/aMGhMzGm3mTpWA0ADxcK4x4yZrBcVSc2blz/eu1fKyEisHGax035O9QGTyr3qv17VAcxiUp+0y4k884of8smLGP1QL3Af/cA+P4+H8D1j5oo+ZVT9xTtmMI6YK9E2lBJve6f2FWs7t5lQD8k8PpNz2s368yIvnOKnNgwaE3PabaaO1QDQQDk9V0xxICYAAAAAAAAAAAAAAIzFwjgAAAAAAAAAAAAAINBYGAcAAAAAAAAAAAAABBoL4wAAAAAAAAAAAACAQGNhHAAAAAAAAAAAAAAQaCyMAwAAAAAAAAAAAAACLdXrAJCgJk2kOXMOP060HGax035O9QGTyr3qv17VAcxiUp+0y4k884of8smLGP1QL3Af/cA+P4+HAMwR75jBOGKu+rRhots5uS8TzneTXQ9u8lNOu1l/XvRlp/ipDYPGxJx2m6ljNQDAESHLsiyvg/CTwsJChcNhFRQUKDMz0+twAAAAAAAGYK5YP9QfAAAAAKAqp+eK3EodAAAAAAAAAAAAABBo3Erdr0pKpEWLyh+feaaUmppYOcxip/2c6gMmlXvVf72qA5jFpD5plxN55hU/5JMXMfqhXuA++oF9fh4PAZgj3jGDccRcibahlHjbO7WvWNu5zYR6SObxmZzTbtafF3nhFD+1YdCYmNNuM3WsBgA4glup22TM7d2KiqTmzcsf790rZWQkVg6z2Gk/p/qASeVe9V+v6gBmMalP2uVEnnnFD/nkRYx+qBe4j35gn5/HQ/ieMXNFnzKq/uIdMxhHzJVoG0qJt71T+4q1ndtMqIdkHp/JOe1m/XmRF07xUxsGjYk57TZTx2oAaKC4lToAAAAAAAAAAAAAADawMA4AAAAAAAAAAAAACDQWxgEAAAAAAAAAAAAAgcbCOAAAAAAAAAAAAAAg0FgYBwAAAAAAAAAAAAAEGgvjAAAAAAAAAAAAAIBAS/U6ACSoSRPp8ccPP060HGax035O9QGTyr3qv17VAcxiUp+0y4k884of8smLGP1QL3Af/cA+P4+HAMwR75jBOGKu+rRhots5uS8TzneTXQ9u8lNOu1l/XvRlp/ipDYPGxJx2m6ljNQDAESHLsiyvg/CTwsJChcNhFRQUKDMz0+twAAAAAAAGYK5YP9QfAAAAAKAqp+eK3EodAAAAAAAAAAAAABBo3Erdr0pLpXffLX/8k59IjRolVg6z2Gk/p/qASeVe9V+v6gBmMalP2uVEnnnFD/nkRYx+qBe4j35gn5/HQwDmiHfMYBwxV6JtKCXe9k7tK9Z2bjOhHpJ5fCbntJv150VeOMVPbRg0Jua020wdqwEAjuBW6jYZc3u3oiKpefPyx3v3ShkZiZXDLHbaz6k+YFK5V/3XqzqAWUzqk3Y5kWde8UM+eRGjH+oF7qMf2Ofn8RC+Z8xc0aeMqr94xwzGEXMl2oZS4m3v1L5ibec2E+ohmcdnck67WX9e5IVT/NSGQWNiTrvN1LEaABoobqUOAAAAAAAAAAAAAIANLIwDAAAAAAAAAAAAAAKNhXEAAAAAAAAAAAAAQKCxMA4AAAAAAAAAAAAACDQWxgEAAAAAAAAAAAAAgcbCOAAAAAAAAAAAAAAg0FK9DgAJatxYevDBw48TLYdZ7LSfU33ApHKv+q9XdQCzmNQn7XIiz7zih3zyIkY/1AvcRz+wz8/jIQBzxDtmMI6Yqz5tmOh2Tu7LhPPdZNeDm/yU027Wnxd92Sl+asOgMTGn3WbqWA0AcETIsizL6yD8pLCwUOFwWAUFBcrMzPQ6HAAAAACAAZgr1g/1BwAAAACoyum5IrdSBwAAAAAAAAAAAAAEGrdS96vSUunDD8sf9+kjNWqUWDnMYqf9nOoDJpV71X+9qgOYxaQ+aZcTeeYVP+STFzH6oV7gPvqBfX4eDwGYI94xg3HEXIm2oZR42zu1r1jbuc2Eekjm8Zmc027Wnxd54RQ/tWHQmJjTbjN1rAYAOIJbqdtkzO3dioqk5s3LH+/dK2VkJFYOs9hpP6f6gEnlXvVfr+oAZjGpT9rlRJ55xQ/55EWMfqgXuI9+YJ+fx0P4njFzRZ8yqv7iHTMYR8yVaBtKibe9U/uKtZ3bTKiHZB6fyTntZv15kRdO8VMbBo2JOe02U8dqAGiguJU6AAAAAAAAAAAAAAA2sDAOAAAAAAAAAAAAAAg0FsYBAAAAAAAAAAAAAIHGwjgAAAAAAAAAAAAAINBYGAcAAAAAAAAAAAAABBoL4wAAAAAAAAAAAACAQEv1OgAkqHFjafLkw48TLYdZ7LSfU33ApHKv+q9XdQCzmNQn7XIiz7zih3zyIkY/1AvcRz+wz8/jIQBzxDtmMI6Yqz5tmOh2Tu7LhPPdZNeDm/yU027Wnxd92Sl+asOgMTGn3WbqWA0AcETIsizL6yD8pLCwUOFwWAUFBcrMzPQ6HAAAAACAAZgr1g/1BwAAAACoyum5orG3Ul+yZIlOOeUUde/eXd26ddPMmTMjz23ZskXDhw9Xly5d1L17d82dOzdq23nz5um4445Tx44dNXToUG3evDny3P79+zVmzBh16dJFHTt21K233iquDQAAAAAAAAAAAACA4DJ2Yfzll1/Wk08+qS+++EKLFy/WtGnTtHDhQpWWlmrkyJG6/PLLtXXrVr3yyisaP3681q5dK0lavny5br/9di1atEhff/21hg8frlGjRkX2e/PNN6usrExffvml1q9fr7feekuPP/64R0dZD2Vl0vr15T9lZYmXwyx22s+pPmBSuVf916s6gFlM6pN2OZFnXvFDPnkRox/qBe6jH9jn5/EQSBIuQo9DvGMG44i5Em3D+rS9U/sy4XzXi3pI5vHZKUs2N+vPi7xwigkxNFQm5rTbTB2rAQCO8M2t1G+66SalpqZq2LBhuu2227RmzZrIc+PHj1ejRo00ffp0XXbZZRowYIAmTJggSSopKVG7du20ZMkSdevWTe3atdO2bdvUunVrSdL8+fM1derUqP3VxpjbuxUVSc2blz/eu1fKyEisHGax035O9QGTyr3qv17VAcxiUp+0y4k884of8smLGP1QL3Af/cA+P4+H8D1j5op1mDBhgsaNG6cePXpo06ZNOvXUUzV79mwNHz5cJ554om6++WZdffXV+uSTTzR48GAtWbJEJ554opYvX67LLrtMb7/9tjp37qzf//73mj9/vlatWiVJGjdunA4ePKgnnnhCRUVFGjZsmK666irdcMMNccVlVP3FO2Ywjpgr0TaUEm97p/YVazu3mVAPyTw+k3PazfrzIi+c4qc2DBoTc9ptpo7VANBANZhbqVe1c+dOhcNhLV++XKecckrUcwMGDIj6xHjl51NTU9WnTx+tXbtWq1evVteuXSOL4hXbrlu3TqWlpTHft7i4WIWFhVE/AAAAAAD40YwZM9SjRw9J0lFHHaWLLrpIS5Ys0ZtvvqnU1FRdffXVkqSePXvqiiuu0NNPPy1JmjlzpiZOnKjOnTtLkm699VZt3rxZH330kfbu3aunn35aDz74oFJTUxUOhzVp0iQ9+eSTnhwjAAAAAACx+GJhfOXKlXr11Vd12WWXKTc3V+3atYt6vm3btsrPz5ekWp+v6bmSkhIVFBTEfO/7779f4XA48tOpUycHjwwAAAAAAO9wEToAAAAAoKEwfmH8+eef1znnnKOnn35aXbt2VUlJSbXvKSstLVUoFJKkWp+v6TlJke2rmjRpkgoKCiI/27Ztc+rQAAAAAADwDBehAwAAAAAaEmMXxktLSzVu3DhNmTJFixYt0jnnnCNJat26tfLy8qJeu3PnTmVlZdX5fE3PpaWlKRwOx4yjadOmyszMjPoBAAAAAMDPuAgdAAAAANDQpHodQE0mTpyoTZs2adWqVcrIyIiU9+3bV3/4wx+iXrts2TINGjQo8vyyZcvUp08fSdLBgwe1evVqzZ49W82aNdOnn36q77//Xq1atYpsO2DAAKWkGHuNAAAAAAAAjigtLdUNN9ygt956S4sWLdIJJ5wgKf6L0Cu+Y7zy8+FwOKGL0Js2berkoQEAAAAAUCsjV4MPHDigWbNmac6cOVGL4pI0cuRIbd++XXPnzpUkrVq1Si+//LJ+/etfS5LGjBmjhx9+WF9//bVKS0s1depUDR06VF27dlVWVpZGjBih22+/XSUlJcrLy9N9992niRMnJvsQAQAAAABIusoXoVcsikuHLzKvLNZF6BUqLkIfOHCg+vTpE7kIvfK2XIQOAAAAADCJkZ8Y37Rpk8rKyiIT8Ao9evTQokWLtGDBAl177bW66aablJWVpeeee04dO3aUJJ133nn64osv1L9/f5WVlWnIkCF68sknI/v461//qtGjRys7O1sZGRm65ZZb9Itf/CKZh+eMxo2lW245/DjRcpjFTvs51QdMKveq/3pVBzCLSX3SLifyzCt+yCcvYvRDvcB99AP7/DweAklQcRH6tm3bYl6EfuONN2ru3Lm64oorIhehr1y5UlL5Reg33XSTfvGLXyg7OzvqInRJkYvQZ86cqd27d+u+++7TPffck/RjdES8YwbjiLnq04aJbufkvkw43012PbjJTzntZv150Zed4qc2DBoTc9ptpo7VAABHhKyqXwSGWhUWFiocDqugoIDvGwcAAAAASPLHXPGTTz5Rr169om6HLh2+CH316tW69tpr9fXXXysrK0uPPfaYhgwZEnndH/7wB02fPj1yEfqsWbMiX1OWl5en0aNHa9myZZGL0K+//vq4Y/ND/QEAAAAAksvpuSIL4zYxWQcAAAAAVMVcsX6oPwAAAABAVU7PFY28lTriUFYmffVV+ePOnaWK722zWw6z2Gk/p/qASeVe9V+v6gBmMalP2uVEnnnFD/nkRYx+qBe4j35gn5/HQwDmiHfMYBwxV6JtKCXe9k7tK9Z2bjOhHpJ5fCbntJv150VeOMVPbRg0Jua020wdqwEAjuAT4zYZcxV7UZHUvHn54717pYrvh7NbDrPYaT+n+oBJ5V71X6/qAGYxqU/a5USeecUP+eRFjH6oF7iPfmCfn8dD+J4xc0WfMqr+4h0zGEfMlWgbSom3vVP7irWd20yoh2Qen8k57Wb9eZEXTvFTGwaNiTntNlPHagBooJyeK3IpEwAAAAAAAAAAAAAg0FgYBwAAAAAAAAAAAAAEGgvjAAAAAAAAAAAAAIBAY2EcAAAAAAAAAAAAABBoLIwDAAAAAAAAAAAAAAKNhXEAAAAAAAAAAAAAQKCleh0AEpSaKo0bd/hxouUwi532c6oPmFTuVf/1qg5gFpP6pF1O5JlX/JBPXsToh3qB++gH9vl5PARgjnjHDMYRc9WnDRPdzsl9mXC+m+x6cJOfctrN+vOiLzvFT20YNCbmtNtMHasBAI4IWZZleR2EnxQWFiocDqugoECZmZlehwMAAAAAMABzxfqh/gAAAAAAVTk9V+RW6gAAAAAAAAAAAACAQOM+H35lWVJeXvnjNm2kUCixcpjFTvs51QdMKveq/3pVBzCLSX3SLifyzCt+yCcvYvRDvcB99AP7/DweAjBHvGMG44i5Em1DKfG2d2pfsbZzmwn1kMzjMzmn3aw/L/LCKX5qw6AxMafdZupYDQBwBLdSt8mY27sVFUnNm5c/3rtXyshIrBxmsdN+TvUBk8q96r9e1QHMYlKftMuJPPOKH/LJixj9UC9wH/3APj+Ph/A9Y+aKPmVU/cU7ZjCOmCvRNpQSb3un9hVrO7eZUA/JPD6Tc9rN+vMiL5zipzYMGhNz2m2mjtUA0EBxK3UAAAAAAAAAAAAAAGxgYRwAAAAAAAAAAAAAEGgsjAMAAAAAAAAAAAAAAo2FcQAAAAAAAAAAAABAoLEwDgAAAAAAAAAAAAAINBbGAQAAAAAAAAeVllmRxys25Uf9DgAAAMAbqV4HgASlpkq//OXhx4mWwyx22s+pPmBSuVf916s6gFlM6pN2OZFnXvFDPnkRox/qBe6jH9jn5/EQgDniHTMYR8xVnzZMdLtKZYs+3an7/r1B43udIUm6/ekPdcQRn+vuM7vpzERicJtL9WBrX27yU067WX9e5IVT/NSGQWNiTrst0bwAAPhCyLIsLlm1obCwUOFwWAUFBcrMzPQ6HAAAAACAAZgr1g/1h6BYuC5XY+d+qKp/bAv98O+sK/poRK/sZIcFAAAA+JLTc0VupQ4AAAAAAADUU2mZpSkLPqm2KC4pUjZlwSfcVh0AAADwCPf58CvLkvbtK3+cni6FQomVwyx22s+pPmBSuVf916s6gFlM6pN2OZFnXvFDPnkRox/qBe6jH9jn5/EQgDniHTMYR8yVaBtKibe9ZWnV+m3avXO31LipJKnZoWJJ0v7GTaVQSJZlaffO3Vq1fpsG9OoUfwxuc7geEtpXMo/P5Jx2s/68yAun+KkNg8bEnHZbonkBAPAFFsb9at8+qXnz8sd790oZGYmVwyx22s+pPmBSuVf916s6gFlM6pN2OZFnXvFDPnkRox/qBe6jH9jn5/EQgDniHTMYR8yVaBtKibf9vn0a8KMu2iDpuBv/KUnaMP1C6Yff9zdJU7NDxeVl023G4DaH6yGhfSXz+EzOaTfrz4u8cIqf2jBoTMxptyWaFwAAX+BW6gAcUflWcCs25XNrOAAAAAAAAAAAABiDhXEA9bZwXa6GPbI08vvVcz7Q4GlLtHBdrndBAYDLuCAIAAAAsdR0Q11utAsAAAB4i4VxAPWycF2uxs79UDsKiqPKdxQc0Ni5H2rx+h0eRQYA7uGCIAAAANSm6iI4i+IAAACA91gYB5Cw0jJLUxZ8olifkawo+/3rG5IZEgC4jguCAAAAUJsZl5yoduGmUWVZ4TTNuOREbwICAAAAIElK9ToAAP61assu5RYcqPF5S6q2cAQAflbXBUEhlV8QNDzJcQEAAMAcw4/P0unHtZPuLv/9qWv66eTjO6nR/n2exgUAAAA0dCyMA0jYzr0segNoWLggCAAAAPFolHL45ukDjjpCSuFm6gAAAIDXWBj3q0aNpAsvPPw40XKYxU77OdUH6lHeJpweKS5LSdG/e5wSeVy5PH/EOTqieRPnj8kpXtUlzGJSn7TLibHDK37Ip0rv+d2+Q5Hi2sa9b4b9XB1aNks8Rj/UC9xHP7DPz+MhAHPEO2YwjpirPm2Y6HZO7svD813P6sFNfsppN+vPi77sFD+1YdCYmNNuM3WsBgA4ImRZVqy7gaIGhYWFCofDKigoUGZmptfhAJ4qLbM0eNoS7Sg4EPO2wiGVf4/ae7edHnW1PAD41fIv83XpX96v83Xzrh2oQd2OSEJEAABTMFesH+oPAAAAAFCV03PFlLpfAgCxNUoJafLInpLKF8Erq/h98sieLIoDCIz+XVsrO5xWbcyrEJKUHU5T/66tkxkWAAAAAAAAAKAOLIwDqJcRvbI164o+ygqnRZVnhdM064o+GtEr26PIAMB5XBAEAAAAAAAAAP7EwrhfFRVJoVD5T1FR4uUwi532c6oPOFA+ole23rt+gLZMO1tbpp2tFy7vrfduO718UdzNY3KKV3UJs5jUJ+1yIs+84od8qvKeFRcE5TSzIuNes4MHDl8Q1DWz/jH6oV7gPvqBfX4eDwGYI94xg3HEXIm2YX3a3ql9GXC+60k9JPP47JQlm5v150VeOMWEGBoqE3PabaaO1QAAR6R6HQCAYKj86cgBRx0h8WlJAAE2ole2hncZIt1d/vtT1/TTycd3Kh8LmRQDAAAAAAAAgHH4xDgAAEACql4QxO3TAQAAAPhJaZkVebxiU37U7wAAAEHEwjgAAAAAAAAANCAL1+Vq2CNLI79fPecDDZ62RIvX7/AuKAAAAJdxK3UAAAAAAAAAaCAWr9+hsfM3Ku1gcVT5joIDmvD8Wn3iUVwAAABu4xPjAAAAAAAAAOqNW3P7w+9f36BYLUNrAQCAoOMT4wAAAAAAAADqZeG6XE17cbXe+uH3q+d8oKxw08jvMMeOgmKpSVrM51gcBwAAQcbCuF81aiSdddbhx4mWwyw1tFNpKEWFQ4apuKRMW7buVr9j09XIqT5gUrlX/derOoBZYrRTzNxLCZnXpk7kmVf8kE9exOiHeoH76Af2+Xk8BGCOeMcMxhFzxXtuH6sNE217J/dlwvmuzdjf2Pidxv7jEzUpOaQlR50sSSpLSdH2PeW/9+oQVluvcsdPOZ1oW9jY947CAypLKb+JaFlKSlR7VS7r2T5TWfXty07xUxsGjZt90lSmjtUAAEeELMsy9kJAy7L07LPPatasWVq+fHmkfM2aNRo7dqxyc3OVkZGhGTNmaPjw4ZHnH330UT3++OPav3+/+vfvr9mzZ+uII46QJOXn5+u6667TihUrFAqFNH78eN18881xx1RYWKhwOKyCggJlZmY6d7BADRauy9WUBZ8ot+BApCw7nKbJI3tqRK9sDyNDVaVlllZu3qXv9hxQ2xZp6t+1dfkiKnyJ3AMAAHYwV6wf6g9u4tzeXaVllgZPWxJVv5WFJGWF0/TebaczRzbA8i/zdelf3q/zdfOuHahB3Y5IQkQAAAA1c3quaOx3jC9cuFA/+tGPdM899+j777+PlO/Zs0cjR47Uvffeq61bt2rWrFkaNWqUduzYIUn6+9//rmeeeUYrV67UV199paysLI0ZMyay/ZVXXqlevXpp69atWr58uWbOnKkFCxYk/fiAeCxcl6uxcz+sNrncUXBAY+d+qIXrcj2KDFUtXJerwdOW6NK/vK8Jz6/VpX95X4OnLaGNfIrcAwAAQWZZlp555hkNGjQoqnzNmjUaOHCgunTpop49e2rx4sVRzz/66KPq3r27OnTooPPOO0/5+fmR5/Lz8zVq1Ch17txZXbp00cMPP5yUYwHqwrm9+1Zu3lXjorhUfmvu3IIDWrl5V/KCQo36d22t7HCaarpEIaTyC0f6d22dzLAAAACSwtiF8aKiIk2bNk2zZ8+OKp83b5769eunYcOGSZJOO+00nXrqqXrhhRcklU/UJ0+erNatW6tRo0aaOnWqXnnlFe3atUufffaZVq1apTvuuEOhUEjt27fX+PHj9eSTTyb9+IC6lJZZmrLgk5jf7VRRNmXBJyotM/amDw0Gf2gJFnIPAAAEGRehoyHh3D45vttT86J4Iq+DuxqlhDR5ZE9JqrY4XvH75JE9+XQ/AAAIJGMXxi+44AKdVfE9HZUsX75cp5xySlTZgAEDtHbtWpWUlGjVqlVRz7dp00Y5OTn6+OOPtXz5cvXv31+pqanVtq1JcXGxCgsLo36MUFQkZWSU/xQVJV4Os1Rqp1Xrt0UWWpsdPKBPHrlAnzxygZodLC9LO3hAb07+udS8ef36gEnlXvXfesReumdv5A8tVdup4k8r015cLYv8M19FuzZvrt07d0uKnXuWVP588+bmtKkTeeYVP/x/5kWMfqgXuI9+YJ+fx0MgSbgIPQ7xjhmMI+aK89y+2ry6Pm1ftczJ7ZJVXwnGfvaPj4nUadV6rvx7VqPSmveVzOOzU5ZsibaFzX2P6JqpWVf0UU4zK6q9ssJp+vP5x2rEgO7178tu1osXMTRUbvZJU5k6VgMAHJFa90vMkpubq9NPPz2qrG3btlqxYoXy8vJUWlqqNm3aVHs+Pz9fubm5ateuXcznanL//fdrypQpzh2Ak/btc6YcZvmhnXbuLY4qTj9UXO2l6YeKpUM178OX5V713wRjX7Ul+pZxVdvJkrSjoFgh8s8f9u1ToypFsXJPkhrtN6xNncgzr/jh/zMvYvRDvcB99AP7/DweAklwwQUXSJKWLl0aVV6fi9C3bNkS8yL0mTNn1hhHcXGxiosPn2cZcxF6hXjHDMYRc8V5bl9tXl2ftq9a5uR2bqtH7I0kZYWbasv+8qKq9Vzx+8k5raO2Syo/5XSibWFz3yN6ZWt4lyFqdHd5+zx1TT+dfHyn8rmuU33ZSSbE0FC52SdNZepYDQCoN2M/MV6TkpISWVb0La5KS0sVCoVUUlIiSbU+X9NzNZk0aZIKCgoiP9u2bXPoSIDaHdm8qdchIA5VL2AAAAAA/Ki2C8ndugg9HA5Hfjp16uTcwQBIutt/dpykmm/NLYlbcxuocpsMOOoI2ggAAASe7xbGW7durby8vKiynTt3KisrS61atZJlWVHfk1b5+dq2rUnTpk2VmZkZ9QMkw8k5rZUdTqs2qazAVMUMXMAQTFnhprXmXlaYdgcAAMHCRegIqrrO7eGM4cdnadYVfdSuylyp6u8AAACAl3y3MN63b18tW7YsqmzZsmUaNGiQMjIy1KNHj6jnc3Nz9e233+qEE05Q3759tWLFCpWVlVXbFjBNo5SQJo/sKan2K67hrXguYGAR1X/q+rRDxfMAAABBwUXoCKp4PskMZ4zola3/3DQk8vtT1/SL+h0AAADwmu8Wxi+//HK9+eabWrJkiSTptdde04YNGzRq1ChJ0pgxYzRlyhTt3r1bBw8e1KRJk3TttdcqPT1d/fv3V3Z2tqZNm6aysjJt2rRJf/zjH3XDDTd4eUhAjUb0yo55xXVWOE0zLjnRm6AQJZ4LGFhE9Z+aPu2QFU7TrCv6aPjxNf+RFwAAwI+4CB1BVdu5PfNq53FrbgAAAJjMdwvjHTt21PPPP69x48apbdu2uvfee7VgwQJlZGRIkiZMmKDTTjtNxxxzjHJyctSsWTM98MADkqRQKKT58+dr0aJFateunUaMGKGHHnpIffv29fKQgFrFuuL6vdtOZ2HOILVdwMAiqn/VlHsjemV7FxQAAIBLuAgdQca8GgAAAIAkpXodQF2GDBmijRs3RpWdeeaZ1coqpKSk6KGHHtJDDz0U8/mjjjpKS5cudTrM5EtJkU477fDjRMthlhraqVFqo0j5gO5HSikh5/qASeVe9V8HYh/RK1vDu56ugtd+rEOlZXpq9ACdfFyH8qvj9+8n//wgRrvGzL0aXuspJ/LMK374/8yLGP1QL3Af/cA+P4+HgMcqX4S+a9cude/evdpF6N98842OOeYYpaam6txzz612EfqvfvUrPfLII2rVqpW/L0KPd8xgHDFXvOf2sdow0bZ3cl8mnO8mux7c5KecdrP+vOjLTvFTGwaNiTntNlPHagCAI0KWZVleB+EnhYWFCofDKigo4DvQAAAAAACSmCvWF/UHAAAAAKjK6bkilzMBAAAAAAAAAAAAAAKNhXEAAAAAAAAAAAAAQKCxMO5XRUXSkUeW/xQVJV4Os9hpP6f6gEnlXvVfr+oAZjGpT9rlRJ55xQ/55EWMfqgXuI9+YJ+fx0MA5oh3zGAcMVeibViftndqXyac73pRD8k8PjtlyeZm/XmRF04xIYaGysScdpupYzUAwBGpXgeAesjLc6YcZrHTfk71AZPKveq/XtUBzGJSn7TLiTzzih/yyYsY/VAvcB/9wD4/j4cAzBHvmME4Yq5E27A+be/Uvkw43/WiHtzkp5x2s/68yAunmBBDQ2ViTrvN1LEaAFBvfGIcAAAAAAAAAAAAABBoLIwDAAAAAAAAAAAAAAKNhXEAAAAAAAAAAAAAQKCxMA4AAAAAAAAAAAAACDQWxgEAAAAAAAAAAAAAgZbqdQBIUEqKdPLJhx8nWg6z2Gk/p/qASeVe9V+v6gBmMalP2uVEnnnFD/nkRYx+qBe4j35gn5/HQwDmiHfMYBwxV33aMNHtnNyXCee7ya4HN/kpp92sPy/6slP81IZBY2JOu83UsRoA4IiQZVmW10H4SWFhocLhsAoKCpSZmYfiz/UAAMWgSURBVOl1OAAAAAAAAzBXrB/qDwAAAABQldNzRS5nAgAAAAAAAAAAAAAEGgvjAAAAAAAAAAAAAIBAY2Hcr/btk3Jyyn/27Uu8HGax035O9QGTyr3qv17VAcxiUp+0y4k884of8smLGP1QL3Af/cA+P4+HAMwR75jBOGKuRNuwPm3v1L5MON/1oh6SeXx2ypLNzfrzIi+cYkIMDZWJOe02U8dqAIAjUr0OAAmyLGnr1sOPEy2HWey0n1N9wKRyr/qvV3UAs5jUJ+1yIs+84od88iJGP9QL3Ec/sM/P4yEAc8Q7ZjCOmKs+bZjodk7uy4Tz3WTXg5v8lNNu1p8XfdkpfmrDoDExp91m6lgNAHAEnxgHAAAAAAAAAAAAAAQaC+MAAAAAAAAAAAAAgEBjYRwAAAAAAAAAAAAAEGgsjAMAAAAAAAAAAAAAAo2FcQAAAAAAAAAAAABAoKV6HQASFApJPXsefpxoOcxip/2c6gMGlZdaUnH3Hiops7Rh8y6d3DNdjVJC7vdfr+oAZnEiz7zixNjhFT/kkxcx1rAPz8ZJeMMP+WEaP4+HAMwR75jBOGKu+rRhots5uS+Pz3dLy6zq55xu14Ob/JTTbtafF33ZKX5qw6AxMafdZupYDQBwRMiyLMvrIPyksLBQ4XBYBQUFyszM9DocIDAWrsvVlAWfKLfgQKQsO5ymySN7akSvbA8jAwAzME4CgNmYK9YP9QeYgXNOALUpLbO0cvMufbfngNq2SFP/rq3LL9YGAMAlTs8VWRi3ick64LyF63I1du6HqjoYVZxWz7qiDxNwAA0a4yQAmI+5Yv1Qf4D3OOeEn7BAm3xcOAMA8ILTc0VupQ7AU6VllqYs+KTaxFuSLJVPwKcs+ETDe2YxwQHQIDFOAgAAwG2cc8JPWKBNvpounNlRcEBj537IhTMAAN9I8ToAJGjfPun448t/9u1LvBxmsdN+TvUBj8uLexyn7/N2S5LSDh3QG7PH6Y3Z45R2qHxyY0n6Pm+3insc517/9aoOYBYn8swrTowdXvFDPnkRY6V9rPrk68gffDwbJ+ENP+SHafw8HgIwR7xjBuOIuRJtw/q0vVP78uh8t7jHcXr64V8p7dCBmOecTQ8d0NMP/6r8nNONenD5+HyT027Wnxd54ZRK+37jgy81du6H+j5vd1Q/3VFwQDfOWaY93XswLjtp3z5Zxx+vY84YpKYxxgdL5fPUY84YJCso9W7qWA0AcASfGPcry5I++eTw40TLYRY77edUH/C4PF1S6IfikCUdk/9V5HGFkCWlf/Fp9X04xas6gFmcyDOvODF2eMUP+eRFjJX2sXPP4U9BeDZOwht+yA/T+Hk8BGCOeMcMxhFz1acNE93OyX15cL6b/sWnOkaHzzGrnnNGzkPz5U49uMlPOe1m/XnRl51Sad/3v7ZBlkLV5kbWD/+2+PIzd2JoqCxLoU8+0VGqeXyQJR313VbpOwWj3k0dqwEAjuAT4wAAAAY7snlTr0MAAAAAACPsKCiu8TmWJwEAQF1YGAfguaxwU9X0DWWhH54HgIbq5JzWyg6nMU4CAADAdbWdcwIAAAB+x8I4AM/d/rPjJFWfaIeqPA8ADVGjlJAmj+wpiXESAAAA7qvpnBNAw8aFMwCAIGBhHIDnhh+fpVlX9FG7Kp94zAqnadYVfTT8+CyPIgMAM4zolc04iYjSssM3iVyxKT/qdwAAgPqYccmJMc85Z1xyojcBAVXUdddBuIsLZwAAfsfCOICYkv1H9xG9svWfm4ZEfn/qmn5677bTNaJXtqvvCwB+wTgJSVq4LlfDHlka+f3qOR9o8LQlWrgu17ugfICLCQAAiM/w47NinnNyISZMUdddB+EeLpwBAARBqtcBIEGhkNSly+HHiZbDLHbar4bXllrSoQ6dVFZm6ePNu3Ryz3Q1SgnZ2vfCdbl64MUPNTezrSTpl099oFZtPtfkkT014qiwM30vRnmjRimRsgHd2kgptR+rY5zKJ/LP32zkmXFtamc88EnsRtW9FzHWsA/Pxkl4o0q7LlyXq7FzP1TTQ8X6+of/o62QtKPggMbO/VB/uuBY/bSh9wMb5zVThuVQXwBii/e8kP9/zVWfNkx0Oyf35fH5bqNGoernnG7Xg5v8lNNu1p8XfdkplfY9vFe2ZqWn64EXP4w6J84Kp2nKsGOl+YzLjqpS96f3zNKBv5T/neGpX/XXyT07qtGB/d7njpNMHasBAI4IWZbFxyVsKCwsVDgcVkFBgTIzM70OB4iycF2upiz4RLkFByJl2eG08gXtOD9RWPFH96oDQ8Up3qwr+vDpRMAHnBgPAJijtMzS4GlLonK6spDK/xj43m2nl18QB0mc1yC5mCvWD/UHPykts7Ry8y59t+eA2rZIU/+urfn/F0gy8hAAgIbB6bkinxgHAqKmP/xWfIosnj/8lpZZmrLgk2r7kCRL5X9EnrLgEw3vmcVkAzCYE+MBALOs3LyrxkVxqfz/6dyCA1q5eZcGdTsieYEZjPMaAIAbuAAVMEOjlBDnvQAAwDa+YxwIgLr+8CuV/+G3ru/TtPNHdwBmcmo8AGCW7/bU/P9zIq9rCDivAQA4reIC1Kr/v1RcgLpwXa5HkQF1Ky2ztPzLfL289hst/zKfOSEAAGiQWBj3q/37pX79yn/270+8HGax036VylZt+CYyMW96qFgvP32jXn76RjU9VCyp/A+/u/IKtP/EPrXuO2/n95HiWPupKD/2nDPq3/fqOKak9l+n8on88zeT+qRdNsaDJoeK9cRjY8vHA8NirxxPadE+7f3RSfr++BO1Yv3Xh/9o40Xde5HzjDOQoto1q/HhP1zW9n/0GVed3bD7gY3zmoqyY885o+HWF4DY4j0v5P9fY1Rb8CvaF1d7VTvnrGU7q18/PTB/jSxV/3+loqzziCGyKrZNtB+ZcL4bT12VWYkfT7KPsT7Hk2wu1d/Cdbk6497XlT54kHJ+NlRX//FtDZ62RG+s2uRcG7pZfybE0FCZmNNuM3WsBgA4glup+1VZmbRq1eHHiZbDLHbar1LZzsLDJ2AplqUTdnweeVy5vPnHa6vtu7SkVI1+2M+uwgNx7afVJx/FF2M9jimp/depfCL//M2kPmmXjfEgUrZDxsVeEc/Cdbma9uJqvfXDmHX1X1eo5ZEty29P2TUz+XXvRc4zzkCKateTO7dUdjhNOwoOxMztkKT2mU1i/l/foFSqs7YZTSLFvhgPAZgj3vNC/v81Qqxbm3dtZumtOtor1jlnVrhpjduFJH37k/1Sk7TY/xdblnp+85n0TaVtE+1HJpzv1lFXLY9sqXvOyNHwRI4n2bkTR9vXeDzJViXW0jIr8jebFV/s1MnHd1Ijm/VXcaeDtIMHovrtjoIDmvjcGn3iVBu62a6My94xMafdZupYDQBwBJ8YBwLgyOZNE9pu4bpcDXtkaeT3BxZ+qtq+YjMkKSuc2HshWLgFm7kSHQ9MUfFHmx0FxVHlFbenXLx+h0eRAd5qlBLS5JE9JZX/f1xZxe+3/+y4pMZkupNzWis7nFatvirwreIA4H813dr82yrnklUtXr8j5jlnXdu5ofJcasUm8+ZWNdXVjoIDmvD82jq3N+346ns8ybR4/Y6ov9lcPecDDZ62xNacKJ6v2gIAAGhIWBgHAiCeP/xWXdCuafGppjkqf3RHhYXrcjV42hJd+pf3NeH5tbr0L+9r8LQlfJ+eIfy8EBTPH21+//qGZIYEGGVEr2zNuqKP2lX5Pz0rnKZZV/TR8OOzPIrMTPFcTAAAMIfdi2/jXfCLtZ/fv74h7u3cXMiterH61XM+iPrdBPHUVU2cWNh1Wn2OJ9kmPL+23gv4KzfvqnbhSGWJHrdpFzwAAADEi4VxIADsfoqstj8gVKj6yfEg/9GdCV3Nqv5x6rX/bo/5iYyKT/OyOO49Py8ErdpS9x9tqv5hCGhoRvTK1n9uGhL5/alr+um9207XiF7Z3gVlsNouJphxyYneBAUAqCaRi2/rWvCrsGrLrmpl8ZxTrtqyq9rCdW3snmt79al1uxcg1FZXdc2cnVjYdULlY6zP8SSbEwv43+2pO0fsinVBh9sXPPB3G+9Q9wCAoOE7xoGAqPjD77QXV0eVZ4XTNHlkTw3vmhkpq2vxSYr+5PhT1/Qr/x6rlJBUVORo3PEoLbPU6IfHKzbl6+Tj08tjcUDku8V++P3qOR+o5ZGfH/4uY5fiKS2ztHLzLn2354DatkhT/66t1SglVGO5XXb3E+v1iz/ZUe27+lJCNU/OQ5KmLPhEw3tmOdY+SExt48E9ZxwrTfcosDrs3MuiNxCPymPsgKOOqH41G6KM6JWt4V2GSHeX/x45r9m/z8uwAAA/qLibWdV5RsXFt7Ou6BPzArB4F/wSPcdcsvFb/Xn1d0o7WPf28f5PXHkuOXnBeh3+7bCqn1qv/or4VZ3nfV9UrKn/3hA1x8sOp5V/t3Y93qcmTn8yO955buXXbckr0kvvfaql9XjfZIqnze3UYdsWafUJp5rF63do7PyN1fKi4oKHTxx9t3I1/d3GrX6Lw2LVfVa4aeR3AAD8iIVxIAanFicTed94F1xjvbbGP/ymhFS6Z2/k9e9vyrMVV+U/uttdFK7p9THLY2xf28L18J5ZthaXY/1R4H+eWxNzQjd27of68/nHVptkObGQnm8VxPxjxDknZOuVj3KrlU8e2bPGTwLGu6Bd234Wrsut9vqW6Y21e9+haq+t7cJgS1JuwQGt3LxLg7odUfMLkTA7Y5PdhSC3x7149p/o96MnI3anxr24x6wkxFjfi2ecfL0dJsVi0ns6GY9p8TvBzsUETl28FsR69AL1CJjF6ZyM53bot7/0sfYfKlNWZvT7xbvgl7+nOKEF5pfWbJcV55/NssJpuntoj8gFqCs25evknOhzuqpzye+LDklNao9q7vItumLY8ZJUrd7rKtuSV6R5K7/SjsLaF/bdXNCsSeX2rjh3laKPp2+XVlq99fs6F/Xv+vlxapXRtNbXNTt40HaMNZ1Tx8qBqrHHyot4tvu+qFh/eOlDW4uOdZ379+9a/lVbO2r4cESsrarOLU7q3EpNfvg9ngs6nFRx4Uy8C/Gx5kVS7X0rnnwK4jlIXeN5TXXv9l0t/MLND/EAQLI01Pl2g1wY379/vyZMmKBFixaptLRUl112maZNm6ZQyGcN3qaNM+WIEmuRsK7FSafed9qLq/XPZuWLq9UWXCu1X7yvrfjDb9XXP/H2ZqnJ4T8i5DeLvaB7qNURatwo+qQ43hhre/05J2TrjQ82VSu/54wcDa9ynBUn4ZVj3FFwQNfN/bDa4m1ti8uxyit/+rny/is+/fz71zdoWJs2kYlibfFEFtLjqIP9Tar/ASe34ID+9M7mauW1fUrCzoJ2Tfup6dMZsfYRLzdu1ZY0scZJQ8bUWsemGPkn/bAQVGU8kBQzV90c9+KNveL70Sv+aFN1bApJygo3lVUlL92O3alxL96xKfKpnTj7Xq0xxnkxjN2LZ5x8vR0mxeJUjHWq5/meH+rMcXbqLM76snvxWiDq0QDUo/8EZq4txX9e2IDm2W7kZDy3Q99VdEg3vrC22vtVXvCLtShXcS75wMJP9cTqbyPnV5bKzym37I9+XdXt9hwokZqkxnxNRVmzJo301DX9lG811gMvrdbJlc7HssJNtahVazVplBL1Kdua9lVT7NPf3y4peo7WMr1xXGXxqKi779PDapne+PBCaRx1FYq1naTilq21t7ikxuOrXHb1nA/UtOXGarGnhGq/MFsqn0ePe25N7S+KI4aa4qp6Tl3THLxq7FXzIt7tJKlZjD5iN87KKr5qa+zcDxWqsq+KNjv4Qz+tiLXq3CIlJL3zw++VL+ioGpf1Q1lmWmM1rhaJfVUvnKn6dxspuv/Fij2evhVvPgXpHKSu8byuus9vlqmUUEiZlS86Ctr/h7X8n794/Q79/vUNcc/BAcBEDXm+HbIsq8F9Mci4ceN08OBBPfHEEyoqKtKwYcN01VVX6YYbbqhz28LCQoXDYRUUFCgzM/ZiIvyrpkXCislCTbdwS+b72o2xptfXpnzxKU3v3XZ65Aoht9+36n5KyywNnrYkru+Mc9O8awdqULcj6ozHTp3Z5dS+q+7HrTquqDM4x82xye1xL9GxQ4r+1IET42GyYnci52Pt380YvXq9HSbF4lSMbvNDnZmkvucude2nodSjU/xYj8wVmWsHmVs5+fLab2x933TV96vp3NGp7eoy45IT1TQ1pda6+X+X9dHUf3/i+dw2HrHmcnbOzyss/zJfl/7lfRcjTY7Kxygp7vOERLdLVDx5GM8fv52az8y45ESde2KHeu4l/n4079qBKth/0Ih69oN4xvNwsyZx131D+/uPH89RAaAqv41lTs8VUxyIyVf27t2rp59+Wg8++KBSU1MVDoc1adIkPfnkk16HBo/Fcwu3KQs+UWldlyy7+L52Y6zt9TWpGPwmj+wZWYRNxvtW3U88nxxIhopPP9cVT+XbiEuJ1YHb+666H6frOKTyiXXFLcfgDDfHJrfHvUT2X/H96Fnh6DsrZIXTok7KTIvd6Zyvun+3Y/Ti9XaYFItTMbrND3VmEifOXeraT0OoR6dQj/7EXDu43MxJu99/XPX9ajp3dGq7urTJaFpn3dz18joj5rbxiHX3r3jPzyur+DS/D+8VEaVyv7n7lfVxnyckul2i4snDEb2y9d5tp2vetQM145ITNe/agXrvttPjml/Z5dT3msd7N7odBfsdi702QTgHiXc831GwP679+fqOgQngHBVAEDCWNcCF8dWrV6tr165q3frwws2AAQO0bt06lZaWVnt9cXGxCgsLo34QTHYXPr14X7sxJrLwGWtym4z3rbofU06uKyZ08cYT70J6Ipzad8V+nKzjWBdUwBlujk1uj3uJ7r+uP9qYGLvTOR9P/E7HmOzX22FSLE7F6DY/1JlJnDh3iWc/Qa9Hp1CP/sRcO7jczMlEFlCrvl/FueNdPz/Ole1iqbgoWCHVWTf5Rfa/39orNS1oxnN+XlnF7bul2N9hbZJfnNi+1ucr+k1d39Xu1HaJiicPG6WENKjbETr3xA4a1O2IqLm7E/MZpy+Wj3eBfVfRwaRdfOL3c5B4x/NdcY5bTl0E4RecowIIAsayBrgwnpubq3bt2kWVtW3bViUlJSooKKj2+vvvv1/hcDjy06lTp2SFWrv9+6UhQ8p/9u9PvBwRdhc+3XjfpoeK9fxzv9Pzz/1OTQ8VR5UfffHZOvrisyPldb1WQ4Yob+f3ce373demaNV/7tULV55weHJbqc/Eux+771u1vKLs6IvPVlZjq859OCXW/kOSctJDGjj6AmnIkLjiaXqoWEN+c1HcdWCX3UX6uvZTnwlM1bXv2j4t4BuxxkkDxtR42rty/tUZZw25Xd8YEt2uptgbFR/QoNEX6NyJl2tQ+/TDf7T5If7K46HbsTs17tlReTysqU3jfU+7F8Mk6/V2mBRLffdl6z3rcb5nN7+9Og9ynJ06S6C+ahK4evQY9ehPgZlrS/GfFzaQebabOVmfBdTK79coJaQ2LZpGfq9rvlnRXo2KD+jcGy+PvK627SrKQj+U/Xv+XepxycgaXxfPvuLdzm1ph4o1/++3l89/9++P2bdjnp/Xkhcjrr9Uf7rwOHVJD8VVD26K9X4Vx3zHQ+M8iyueWOPtRxVqzcNa2qu2vzfZzYtGpw91ZEysfOFMbW14zo2XJ70N/XoOEm/crZs3rbHuK36f//fb1T+rWfkGQfv/sIZcOfris+Maq/3aPwA0DMy3pVSvA0i2kpISVf1a9Yqr10Oh6tOwSZMm6aabbor8XlhYaMaEvaxMevvtw48TLUdEvIuETl8NWXl/KZalgdvWRR5XLm+zuvy7fVJOteJ+bduMJnHtu9PHH0iS2uS0OrziWanPxLsfu+9btTxStk1q1bmlssNp2lFwoMZ9OKXq/itGgjtG9FBocnkdnFxHPCFJ7TObKLxyWdx1EK+K7wavuOo60T5YdT8Vk8wdBQdsf5/q45f2UauMJvpuzwG1bVG+T99/UjzWOGnAmBpPe1fOvzrjrCG36xtDotvZir1SeRsdHg/rG0Nd2zk17tlReTysqV7ifU+7F8Mk6/V2mBRLffdl6z3rcb5nN7+9Og9ynJ06S6C+ahK4evQY9ehPgZlrS/GfFzaQebbbOVlxq+6q339s9/3qOn+LeX5VVqY2q98vP7f84XU1bvfD46xwmu4541i1fmR5eVktc/SK349IT1XuodivaVTLdm7Mf6sK/fA+fTb/V9qsw3WTaA5UKvvpce10Ro+2ajS59jp1W6w5f+VjruvvLMlUWz+Kp/5qzcNa2qvy/CqRGKrmhRNjYsWFM2PnflgtT7xuQ7+eg8Qbd1ZmWq11X/F75Ka7Qfv/sIZcqev/iwp+7R8AGgbm2w3wE+OtW7dWXl5eVNnOnTuVlpamcDhc7fVNmzZVZmZm1A+Cqa5buLn1/cnxvG9W+PCV71nhpnG/9uQce/uuid391PX6mlR+fTJvvVbTp5+HH58VVzwVv9/+s8O34Eu0Dqqq2L7yLcoTud1grP3Ec0wt0xtHlVfUzVk/yq7xFmxwlt0xwo54crs+456bsUt1j4fJjN2pnK+8/7rYbT+7/8+5/Xo7TIrFqRjd5nb/CJr6nLtQj86jHv2JuXZwJSMnK9+qe/pFJ6h1RhPb7xdPnLWJZ7unrumn9247PWquWNs5aYXJP6993hVvjG7ICqdpxiUnurb/ynPFeOoqGaoeczzziqxMe7Enul2s/VRwc/5T1/5riytWXjil4sKZdlXmjXba0El+PwexM57XVPdVf2+IOEcF4GfMtxvgwnifPn306aef6vvvD98ucdmyZRowYIBSUhpcdaCSeBYJ3fj+ZLsLrhWP43mt3X07FWMii9qxXlfTSXjFYq0Ti84hSY+MOjFSVjGhi3VL8NomZHYW0mPJDqfpN6d2Lf+euhj7rhxPfRa0qx5XxTFlxXjfJ67oo9V3Do/7e+TgDqfyONF912fcczP2ytuaELuTF/PEu73d9jPt9XaYFItTMbrND3Vmkvqcu1CPzqMe/Ym5dnAlKycrvv/4vD4d9fvzetl+v3jirEtd2w04qvpFwXWdk0rSmb3jW9yzE2sissNp+uNlfarN8dxY0IylprpyW+ULWmMt4sYzr7j7nONjviaWRLeLpXKfcXP+U9v+q4onL5w0ole2/nPTkMjvdtrQSUE4B7E7nseq+8q/N2ScowLwK+bbDXBhPCsrSyNGjNDtt9+ukpIS5eXl6b777tPEiRO9Dg0GqG2R0M3vT7az4Dr8+Ky4X2t3307FWNvrKxaAq35KtKar1GOdhK++c7ieiNFONS0u17XofGbvw7HXNaGraUJmZyG9pj9GTDqrZ+RTEnUtRDu5oF350xlVX1/xxyk+Ge6tusam+vwhy+1xz83YK8ZDt2N3atyzMzbF+6mdumK0czGMF6+3w6RYnIrRbX6oM5PUdPx2Ll6rbT8NpR6dQj36D3PtYEt2Tib6fvF+ujSWGZecmNB2Nc3Rq/4ez+JerBhapTeuduFzyxhlsV6XHU7TjcOOiZrneXn3r5rqKtbxVA0r1jz6j5f1iXmOXfV1les91py/rr+zjOiVXWOfjFXv8WwX65izw2l69KITI79XXYSMJ876qGn/se6y5+ZdBmKp3GZ22jBW+1Q9nlivqatd/czu+FpX3TdENf1/EYT+AaBhaOjz7ZBV9UvAGoC8vDyNHj1ay5YtU0ZGhm655RZdf/31cW1bWFiocDisgoICb2/1VlQkNW9e/njvXikjI7FyxFRaZmnl5l1J//7k0j171SizhSRpxX+36uTjO5W/b4z2s/Nau/uW5Nh+anp9zPL9++zFUkM72S13LJ/s1pkDvOqrgRSr/QwbUx3pwzbzyajYayh3PXanxj07Y5Pd8dDmOGO3ztx+vR0mxeL6ezr1/5AP6swxLo6HDaoeDeKnejRmruihQMy1pfjHjAY4z052Tib6fnHPN6u0YWmZldB2MefoOa0jv9vpR7FikFStHuIti6t9qsYlJZ4DcewrVvtUjb1vl1ZavfX7Oo8lrj4SZ+zxnFPHer946j3u7ar2tzjrL6F2jrMeTurcSk1aZka/X5x54Zh6tKFUd9+q+pp65ZNPxD2+Jjo++FmCY3WQ+geAhsEv822n54qpDsTkO23atNHLL7/sdRgwWMWnZL143woDjjqi+mWsCb42kde7/b5OxFNTO9ktd5tTdV/Tvr04JnjDzfZ2uy/5PfYK9R333BqbEonRznu6/Xo7TIrFpPesjR/qzCRO5WpDr0enUI/+wlw7+JKdk4m+X6JzsPrM3aptm6CaYohVD/GWmSbeY4znWJzsk/G0f03vV1cMiW6XaJz1UVtfduP9nFSfvuXXfEoU51j143YeAkAyNNT/CxrkwnhgpKc7Uw6z2Gk/p/qASeVe9V+v6gBmMalP2uVEnnnFD/nkRYx+qBe4j35gn5/HQwDmiHfMYBwxV6JtWJ+2d2pfJpzvelEPbvJTTrtZf17khVNMiKGhMjGn3WbqWA0AqLcGeSv1+jDq9m4AAAAAACMwV6wf6g8AAAAAUJXTc8UUB2ICAAAAAAAAAAAAAMBYLIwDAAAAAAAAAAAAAAKNhXG/OnBA+vnPy38OHEi8HGax035O9QGTyr3qv17VAcxiUp+0y4k884of8smLGP1QL3Af/cA+P4+HAMwR75jBOGKuRNuwPm3v1L5MON/1oh6SeXx2ypLNzfrzIi+cYkIMDZWJOe02U8dqAIAj+I5xm4z53rOiIql58/LHe/dKGRmJlcMsdtrPqT5gUrlX/derOoBZTOqTdjmRZ17xQz55EaMf6gXuox/Y5+fxEL5nzFzRp4yqv3jHDMYRcyXahlLibe/UvmJt5zYT6iGZx2dyTrtZf17khVP81IZBY2JOu83UsRoAGii+YxwAAAAAAAAAAAAAABtYGAcAAAAAAAAAAAAABBoL4wAAAAAAAAAAAACAQGNhHAAAAAAAAAAAAAAQaCyMAwAAAAAAAAAAAAACLdXrAPzGsixJUmFhobeBFBUdflxYKJWWJlYOs9hpP6f6gEnlXvVfr+oAZjGpT9rlRJ55xQ/55EWMfqgXuI9+YJ+fx0P4XsUcsWLOCHuMmWtL8Y8ZjCPmSrQNK7Pb9k7tK9Z2bjOhHtzkp5x2s/68yAun+KkNg8bEnHabqWM1ADRQTs+1Qxazdlu+/vprderUyeswAAAAAAAG2rZtmzp27Oh1GL7DXBsAAAAAUBOn5tosjNtUVlam7du3q0WLFgqFQl6HE1NhYaE6deqkbdu2KTMz0+tw4BDaNXho02CiXYOJdg0m2jWYaNfg8UubWpalPXv2qH379kpJ4VvL7GKuDa/QrsFEuwYPbRpMtGsw0a7BRLsGkx/a1em5NrdStyklJcU3V/9nZmYa25GRONo1eGjTYKJdg4l2DSbaNZho1+DxQ5uGw2GvQ/At5trwGu0aTLRr8NCmwUS7BhPtGky0azCZ3q5OzrW5jB0AAAAAAAAAAAAAEGgsjAMAAAAAAAAAAAAAAo2F8QBq2rSpJk+erKZNm3odChxEuwYPbRpMtGsw0a7BRLsGE+0aPLQpTEFfDCbaNZho1+ChTYOJdg0m2jWYaNdgaojtGrIsy/I6CAAAAAAAAAAAAAAA3MInxgEAAAAAAAAAAAAAgcbCOAAAAAAAAAAAAAAg0FgYBwAAAAAAAAAAAAAEGgvjAAAAAAAAAAAAAIBAY2E8YPbv368xY8aoS5cu6tixo2699VZZluV1WLBpyZIlOuWUU9S9e3d169ZNM2fOjDy3ZcsWDR8+XF26dFH37t01d+5cDyNFIsaOHatjjz028vuaNWs0cOBAdenSRT179tTixYs9jA52rVy5Uqeeeqq6dOmi9u3ba/78+ZJoVz/75ptvNHLkSHXo0EFHHXWUpk6dGnmOdvUXy7L0zDPPaNCgQVHldbXjo48+qu7du6tDhw4677zzlJ+fn8ywUYdY7Xro0CHdc8896t27tzp16qSf/OQnWrt2bdR28+bN03HHHaeOHTtq6NCh2rx5c5IjR01qytUKRUVFOvLII/XAAw9ElZOrSCbm2sFQ21y7V69eateunXJycpSTk1PjmASzXH/99QqHw5F2y8nJ0datWyVx7u5Xr7/+elR75uTkqF27dmrRooUkqXnz5urQoUPkuVGjRnkcMWrDnCyYEpmTrVq1So0aNYrK7YcfftiD6FGTmvK1rnGXfDVbrHYdPXp0tf9rMzIydMMNN0iS/vnPf6pp06ZRz7/wwgteHYLzLATK2LFjrdGjR1uHDh2ydu/ebZ188snWY4895nVYsGn8+PHWxo0bLcuyrC+//NLq0KGD9frrr1slJSVWr169rDlz5liWZVnr16+3WrVqZa1Zs8a7YGHLV199ZaWnp1s9evSwLMuyCgsLrQ4dOliLFy+2LMuyli5daoXDYSs3N9fLMBGnDRs2WNnZ2ZH2Ky4utr799lva1edOP/1069Zbb7XKysqs/Px864QTTrDmzJlDu/rM66+/bvXq1cvq1q1bZMy1rLrH3RdeeME66aSTrPz8fKukpMS67rrrrPPPP9+TY0B1NbXrunXrrLvuusvau3evZVmW9cQTT1gdO3a0Dh48aFmWZS1btszKycmxtm7dalmWZd13331W3759k38AqKamNq1s2rRpVqNGjaz7778/UkauItmYawdDTXNty7Ks448/3lqyZImX4SEB//M//2P97//+b7Vyzt2D5Te/+Y11xx13WJZlWRkZGdamTZs8jgjxYE4WTInOyT744AOrc+fOnsSMutU2L6tt3CVfzRbPfNuyLGvPnj1WVlZW5Dz5H//4h3XqqacmK8ykC1kWlzgHxd69e9WuXTtt27ZNrVu3liTNnz9fU6dO1Zo1azyODvVx0003KTU1VcOGDdNtt90W1Z7jx49Xo0aNNH36dA8jRLwuvPBCZWVl6T//+Y82btyoP//5z3r99df10ksvRV5zzjnn6IwzztCECRM8jBTxuOCCC3TyySdr0qRJUeW0q7+1bt1a77zzjnr16iVJuvPOO7V792796Ec/ol195MUXX1SzZs2Unp6u6667Ths3bpRUd37++Mc/1m233aZzzz1XkpSXl6fs7Gx9++23kfMreKemdo2ldevWeu+999SzZ09ddtllGjBgQCRXS0pK1K5dOy1ZskQnnHBCssJHDHW16fbt2zV06FD16tVL/fr10+9+9ztJIleRVMy1g6tirv3ggw+qV69eevbZZ3XSSSd5HRZsuP7669WtWzfdeOONUeXMyYJj06ZNGjRokD777DOFw2E1b95c27ZtU6tWrbwODXVgThZMic7JVq1apdGjR+ujjz5KYrSIV23tWtu4S76aLd58nTp1qjZv3qwnn3xSUvknxp999lm9/PLLyQw3abiVeoCsXr1aXbt2jRpwBgwYoHXr1qm0tNTDyFBfO3fuVDgc1vLly3XKKadEPTdgwIBqtwqFmf79738rPz9fF154YaSMNvWvAwcO6NVXX9U111xT7Tna1d8uvPBCPf744zp48KC2bt2ql19+WRdeeCHt6jMXXHCBzjrrrGrltbVjSUmJVq1aFfV8mzZtlJOTo48//tj1mFG3mtq1qn379mnfvn0Kh8OSqrd7amqq+vTpQ/4aoK42nThxom6//fbI7VMlkatIOubawVUx167QsmVL74JBwmK1G+fuwfHAAw/of/7nfyK5mpKSEpW3MBdzsmBKdE4m8f+syWpr15rGXfLVfPHk6969ezVz5kzdddddUeVBzlcWxgMkNzdX7dq1iypr27atSkpKVFBQ4FFUqK+VK1fq1Vdf1WWXXVZjG/O9HebLz8/X+PHjNWvWrKhy2tS/PvvsMzVr1kxvvfWWfvSjH+moo47Sb37zGxUWFtKuPnffffdp4cKFatWqlbp27aqhQ4dqyJAhtGtA1NaOeXl5Ki0tVZs2bWI+D/+44447NGTIEHXo0EES/9/61XPPPaf8/HxdddVVUeXkKpKNuXYwVZ5rS1IoFNKQIUN01FFH6aKLLtJnn33mcYSI16RJk9S5c2cNHTpUb7zxhiT+7w+KnTt36oUXXtB1110XKQuFQurWrZuOOeYYjR49Wtu3b/cwQiSCOVnDUHVOJpV/z3iXLl30ox/9SFOmTFFxcbGHESJeNY275GswzJkzR4MHD1bXrl2jyv/1r3+pc+fO6tu3r2bOnKkg3XychfEAKSkpqdY5K65eD4VCXoSEenr++ed1zjnn6Omnn1bXrl1rbGPa12yWZWn06NGaOHGijj322KjnaFP/2rNnT+TKyJUrV+qjjz7Szp07NWHCBNrVx0pLS3XWWWdp4sSJKigo0DfffKOPPvpIM2bMoF0DorZ2LCkpkSTa2ceKior0y1/+Um+//baeffbZSDn56z+bN2/WHXfcoaeeeqpaO5GrSDbm2sFTda4tSR999JG2bt2q9evX66STTtKwYcO0d+9ejyNFXR577DHt2LFDmzdv1m9/+1tddNFFWr16Nf/3B8Szzz6r8847T23bto2Uff/999q8ebM++OADpaena+TIkYH6Y31DwJws2Gqak/Xt21dFRUWRO/MtWbKk2lcTwkw1jbvkazDMnj1b48ePjyq74IILVFBQoK+++kpPPfWUnnjiCc2cOdOjCJ3HwniAtG7dWnl5eVFlO3fuVFpaGrcY8pnS0lKNGzdOU6ZM0aJFi3TOOedIqrmNs7KyvAgTcXrggQd06NAhXX/99dWeo039q02bNjp06JAeeOABpaWlqUWLFrr77rv1yiuv0K4+tmTJEh08eFATJ05UamqqsrOz9cgjj+jBBx+kXQOitnZs1aqVLMvS999/H/N5mO3LL79Uv3791LhxY7333ns68sgjI8+Rv/6yf/9+nX/++Zo2bZo6depU7XlyFcnGXDs4apprS+W3CZWkZs2aadKkScrIyNCKFSu8ChVxqmi3Ro0a6ayzztKll16qf/3rX/zfHxBz5szR5ZdfHlVW0ebhcFgzZszQp59+qk2bNnkRHhLEnCy4apuTVV4o7dq1qx588EH94x//8CJM2FTTuEu++t+qVauUn5+v0047Laq8cr727t1b//u//xuofGVhPED69OmjTz/9NGogWrZsmQYMGBAZvOAPEydO1KZNm7Rq1SqdcMIJkfK+fftq2bJlUa9dtmyZBg0alOwQYcNjjz2md999V61atVLLli119tln6/PPP1fLli1pUx/r0qWLmjRpogMHDkTKUlJSlJaWRrv62MGDB5WamhpV1rhxYx08eJB2DYja2jEjI0M9evSIej43N1fffvtt1P/HMM/u3bt1+umn68Ybb9Ts2bOVnp4e9XzVdj948KBWr16tgQMHJjtUxOHNN9/Uxo0bNWbMGLVs2VItW7bUc889pylTpmj48OHkKpKOuXZw1DTXjqWkpERNmjRJUmRwSkW7ce7uf2vXrtX27ds1dOjQGl9TVlamsrIyctVnmJMFU11zsqr4f9afKo+75Kv/zZ07V+eff36dn/APWr4ygwuQrKwsjRgxQrfffrtKSkqUl5en++67TxMnTvQ6NNhw4MABzZo1S3PmzFFGRkbUcyNHjtT27ds1d+5cSeVX9Lz88sv69a9/7UWoiFNubq4KCwu1e/du7d69W6+++qqOPvpo7d69W5dffrnefPNNLVmyRJL02muvacOGDRo1apTHUaMuaWlpuuqqq3TzzTerpKRExcXFmjx5sq644gra1ccGDx6sHTt2aN68eZKkvXv36o477tCFF15IuwZEXe04ZswYTZkyRbt379bBgwc1adIkXXvttXVO6uGtf/zjHzr22GN17bXXxnx+zJgxevjhh/X111+rtLRUU6dO1dChQ6t9hxbMcPbZZ2v//v2Rc6fdu3frsssu0+TJk7V48WJJ5CqSi7l2MNQ21/7uu+/04YcfSir/VPnvf/97paSkqF+/fl6EChsWLVqksrIySdIbb7yhF198URdccAHn7gGwcOFCnXrqqVEXLn/55Zf67LPPJEnFxcWaMGGC+vXrF/MOMzAXc7JgqmtOtmLFCu3atUuStGPHDt1222264oorkhkiElDXuEu++tvChQt1xhlnVCt/5513VFRUJEn64osvNHXq1EDla2rdL4Gf/PWvf9Xo0aOVnZ2tjIwM3XLLLfrFL37hdViwYdOmTSorK6t2FXOPHj20aNEiLViwQNdee61uuukmZWVl6bnnnlPHjh09ihb11bFjRz3//PMaN26cdu3ape7du2vBggXV/lADM02bNk1jx45Vhw4d1KJFC11wwQWaOnWqmjRpQrv6VDgc1qJFi3TTTTdp0qRJSklJ0bnnnqv77rtP6enptGsA1DXuTpgwQd98842OOeYYpaam6txzz9UDDzzgcdSoy+eff67ly5crJycnqvyOO+7Qtddeq/POO09ffPGF+vfvr7KyMg0ZMkRPPvmkN8HCEeQqko25tv/VNtf+y1/+oquuukr5+flKS0tTv379tGjRIqWlpXkULeI1ffp0XXnllUpPT1fnzp310ksvqWfPnpLEubvPrVixQn369Ikq27Vrly699FLt379fTZs21RlnnKF//vOfHkWIRDEnC6a65mT//e9/dd555yk1NVXNmjXTL3/5S916663eBIu41TXukq/+tXv3bn366afV/q+Vyr9qctSoUWratKkyMzN100036ZprrvEgSneELMuyvA4CAAAAAAAAAAAAAAC3cCt1AAAAAAAAAAAAAECgsTAOAAAAAAAAAAAAAAg0FsYBAAAAAAAAAAAAAIHGwjgAAAAAAAAAAAAAINBYGAcAAAAAAAAAAAAABBoL4wAAAAAAAAAAAACAQGNhHACAALv99ts1Z86cauVLly7V4MGDbe1r9uzZuvrqq23HcOedd+ruu++2tc1//vMfDRkyxPZ7AQAAAACQDMy3AQDwHxbGAQAImC1btuiLL77QF198oW3btmnr1q2R37/55ps6tx8yZIiWLl1q+31zcnK0ZcuWuF574403qk2bNlE/oVBIn332me33BQAAAAAgGZhvAwDgb6leBwAAAJx13XXXKS8vL/L7hg0b9Oqrr0qS+vbtqz/96U9ehRYxffp0TZ8+PfL7li1b1LdvX3Xr1s3DqAAAAAAAqBnzbQAA/I2FcQAAAmbhwoWSym/f9sEHH6hJkyY67bTTdOKJJ6qkpER79+7V/v37a9x+z549KiwstP2+iW4nSbNmzdKll16qRo0aJbQ9AAAAAABuY74NAIC/sTAOAEAAXX311fryyy910UUXqbi4WJdffrmuuuoqde7cWXfddZf279+vrl27xtz2yy+/tH2Ltd27d2vXrl367LPP9KMf/cjWtu+//77mzJmj//73v9XiuOWWW3Tsscfq17/+ta19AgAAAADgBubbAAD4FwvjAAAEzBdffKE333xTmzZtUuPGjSWVT9y7du2qXbt26dJLL9XSpUt15513Vtv27bffVuPGjfX888/rlltuifs9X375ZbVp00bz5s3ThRdeGPd27733ni666CLNnTtXWVlZUc+lp6fr2GOPVadOneLeHwAAAAAAbmG+DQCAv6V4HQAAAHBW8+bNdeDAgajbrH333XdKS0tTUVGRvvjiC33zzTcxt634LjLLsvTaa6/F9X5lZWV67LHHNG/ePH3wwQf6+OOP69zm0KFDeuyxx3TeeefpySef1E9/+tNqr8nOztavf/1rnXnmmXHFAQAAAACAm5hvAwDgb3xiHACAgMnKytL//u//ql+/fho6dKgOHjyod999V3/961/19ttv6w9/+IMKCgoUDoejtnv22WeVl5enyy+/XD179tS5556r999/Xx06dKj1/e677z4de+yxGjZsmP7f//t/uvjii7VixQq1aNEi5uu3bNmiIUOGqGvXrlq2bJmOPvpox44dAAAAAAC3MN8GAMDfWBgHACCAbrjhBl1yySVat26dGjdurD/+8Y+RifO5555b7dZuCxYs0N13362lS5cqFAqpT58+mjp1qn7yk5/oX//6V43fY/bnP/9Zf//73/Xee+9JkkaOHKnVq1fr1FNP1csvv6zOnTtX2yYnJ0cLFixQr169VFZW5sLRAwAAAADgDubbAAD4F7dSBwAgoJYuXapDhw5p8ODB1a4mT0tLU3Z2tiSpoKBA99xzj1566aWo7xe7+uqrdccdd+jDDz+Muf/Nmzdr9uzZ+ve//x11Nfzdd9+t888/Xxs3bqwxtt69e+vtt9/WaaedFvP59u3ba8SIEXEfKwAAAAAAycJ8GwAAf+IT4wAABNSKFSuUlZUV8/vEBg4cqH/84x+SpHA4rA8++CDmPkaPHl3j/rt27aqVK1fGfO6uu+5KIOLDevbsqZ49e9ZrHwAAAAAAuIH5NgAA/sQnxgEAAAAAAAAAAAAAgcYnxgEACLB77rlHDz30UI3Pr1mzJnKLNy+8//77atmyZY3Pf/LJJ2rfvn3yAgIAAAAAIA7MtwEA8J+QZVmW10EAAADz7dq1S3v37lXnzp1tbbdjxw5JUlZWlhthAQAAAADga8y3AQBIDhbGAQAAAAAAAAAAAACBxneMAwAAAAAAAAAAAAACjYVxAAAAAAAAAAAAAECgsTAOAAAAAAAAAAAAAAg0FsYBAAAAAAAAAAAAAIHGwjgAAAAAAAAAAAAAINBYGAcAAAAAAAAAAAAABBoL4wAAAAAAAAAAAACAQGNhHAAAAAAAAAAAAAAQaCyMAwAAAAAAAAAAAAACjYVxAAAAAAAAAAAAAECgsTAOAAAAAAAAAAAAAAg0FsYBAAAAAAAAAAAAAIHGwjgAAAAAAAAAAAAAINBYGAcAAAAAAAAAAAAABBoL4wAAAAAAAAAAAACAQGNhHACAJJowYYJOPvlkr8MAAAAAAAAAAKBBYWEcAIAk6tChg7p162Z7u9zcXM2ePduFiMyRk5OjUCgU9TNkyJCo1xw8eFC/+93v1L59ezVr1kyDBw/W6tWra9xnSUmJjjnmGJ144omRsqeeeqra+1T++b//+z+XjhAAAAAAAAAA4JWQZVmW10EAAIDaPfroo3r00Ue1ZcsWr0NxTU5Ojq688kqNHj06UpaWlqasrKzI77/61a/0f//3f3r88ceVlZWl3//+91q0aJHWr1+v7Ozsavv861//ql//+tc64YQTtHbtWknS3r17lZeXV+21M2bM0MKFC7Vu3To1atTI+QMEAAAAAAAAAHgm1esAAABA8pSVlUU+GW2iHj16KCcnJ+ZzGzZs0FNPPaXVq1frpJNOkiQ9/fTTOvroozVr1izdc889Ua/ftWuX7rzzTp155pnasWNHpLx58+Zq3rx51Gt3796tp59+Wn/5y19YFAcAAAAAAACAAOJW6gAAJNHEiROjbg9+991368QTT9SHH36oH//4x0pPT1fv3r31n//8J/KanJwc3Xjjjdq6dWu1Re3CwkKNGzdORx55pNLT0/Wzn/1MX375ZeT5pUuXKhQK6aOPPtKgQYPUuHFjffrpp7XGWLHNF198oYsuukgtWrRQTk6OHn744WqvXbt2rUaOHKmWLVsqLS1NJ598sl5++eXI80VFRcrJydGMGTPiqp927drV+Nwrr7yi4447LrIoLklNmjTRL37xCy1evLja62+55Rade+65GjhwYJ3v+8gjj6hbt2664IIL4ooTAAAAAAAAAOAvLIwDAOCxvLw8jR07VnfccYfee+89HX300TrvvPOUn58vSXrvvfd01113qUOHDtq8ebM2b94sqfz7s8866yy9/fbb+tvf/qa3335bqamp+vnPf67S0tKo97j55pt10003afXq1TFvOR7LL3/5S51xxhlatmyZrrnmGt1yyy1atGhR5PkPP/xQp5xyijIzM7VgwQK9++67GjJkiM4//3y9+OKLkqTU1FR16tRJRxxxRFzveeGFFyozM1O9evXSgw8+GHUc69atU+/evatt07NnT33xxRdRZf/617+0cOFCPfDAA3W+5549ezRz5kzdfvvtccUIAAAAAAAAAPAfbqUOAIDHtm/frtdee00/+tGPJEmzZ89Wdna2Xn/9dV1xxRXq2LGjWrdurdTU1KjbjM+bN08ffvihNmzYoC5dukiSnnvuOXXq1EkvvfSSLrzwwshrzzrrLI0aNcpWXJdccol+85vfSJJ69+6tV199Vf/4xz905plnSpJ++9vf6ic/+Yn+9re/Rbbp16+fdu/erUmTJumCCy5Q06ZN9e6778b1fn/729/UrFkzFRcXa+nSpbrnnnv05Zdf6k9/+pMkaefOnerWrVu17Vq3bq2CgoLI79u2bdO1116r559/Xi1btqzzff/yl7+oZcuWOuecc+KKEwAAAAAAAADgP3xiHAAAj3Xs2DGyKC6VL/R26tRJ27Ztq3W7119/XcOGDYssiktSixYtdOKJJ+qjjz6Keu3PfvYz23H9/Oc/j/r9hBNOiMR04MABvf322xo9enS17S6//HJ9/vnnys3NtfV+p5xyivr06aNBgwZp0qRJmjlzpmbPnq3t27dLKv+EfEpK9VOXyreXP3DggC688EKNGTNGZ5xxRp3vaVmWZs2apeuvv57vFgcAAAAAAACAAGNhHAAAj7Vu3bpaWfPmzVVcXFzrdjt37tRrr72mtLS0qJ933303sphcobbv7o43rsox5efnq7S0VJ06daq2XcWt2r///nvb71nZueeeq7KyMv33v/+VJGVmZkZ9MrzC7t27I7dqHz16tNLT03XPPffE9R5vvfWWNm/erCuvvLJesQIAAAAAAAAAzMat1AEA8KmWLVtq5MiRuv/++6s9Fw6Ho36P9Unr+giHwwqFQvrmm2+qPbdjxw5J0pFHHlmv9zh48KAkqWnTppKkY445RkuWLKn2ug0bNqhXr17aunWrnnvuOUnl321eVSgU0pw5c3T11VdHyv72t7/pJz/5idq2bVuvWAEAAAAAAAAAZmNhHAAAH2jcuHG1T5APHjxYjz32mLp27RpZPE6W5s2ba+DAgXryySd1wQUXRD03b9489enTp94L488//7yaNWumPn36SJLOPPNM/eEPf9AXX3yh7t27S5IOHTqkl156STfffLOys7O1Zs2aavt54okn9NZbb+mFF15Q586dI+VlZWV65ZVXdNddd9UrTgAAAAAAAACA+biVOgAAPnDMMcdox44d+uc//6n3339fknTNNdeopKREZ599tt5880198skneuWVVzRy5MiYtxx32oMPPqjFixfriiuu0P/93/9p1apVuvXWW/XMM89o+vTpkso/9T1s2DA9//zzte7r9ddf14QJE/Tuu+/qo48+0v3336/f/e53uuuuuyKffh86dKgGDx6sCy+8UO+8847++9//6qqrrlKTJk00evRoNWnSRCeeeGK1n6ysLDVr1kwnnnhi1O3h165dq7y8PP34xz92r5IAAAAAAAAAAEbgE+MAAPjAsGHDNHr0aF1zzTVq3bq1tm7dqszMTL399tu65ZZbdP7558uyLHXv3l2jR49WixYtXI9p8ODBWrp0qe6880799Kc/VSgU0sCBA7VkyRINGjRIUvknuj/99FN9++23te6rc+fOWrlypZ566ikdOHBAxx13nJ544omo255L0vz58zVhwgSNHDlSlmXpzDPP1Jtvvqm0tDTb8X/wwQdq3LixevfubXtbAAAAAAAAAIC/hCzLsrwOAgAAAAAAAAAAAAAAt3ArdQAAGpif/vSnSktLi/nz7LPPeh0eAAAAAAAAAACO4xPjAAA0MF999ZX27dsX87ns7OzId3oDAAAAAAAAABAULIwDAAAAAIAaWZalZ599VrNmzdLy5ctjvmbNmjUaO3ascnNzlZGRoRkzZmj48OFJjhQAAAAAgJqleh0AAAAAAAAw08KFC/Xb3/5W+/fvV2pq7D8h7NmzRyNHjtRTTz2lYcOG6e2339a5556rjRs3KisrK8kRAwAAAAAQG98xDgAAAAAAYioqKtK0adM0e/bsGl8zb9489evXT8OGDZMknXbaaTr11FP1wgsvJCtMAAAAAADqxCfGbSorK9P27dvVokULhUIhr8MBAAAAABjAsizt2bNH7du3V0pKcK5Bv+CCCyRJS5curfE1y5cv1ymnnBJVNmDAAK1du7bGbYqLi1VcXBz5vaysTLt27dIRRxzBXBsAAAAAIMn5uTYL4zZt375dnTp18joMAAAAAICBtm3bpo4dO3odRlLl5ubq9NNPjypr27atVqxYUeM2999/v6ZMmeJ2aAAAAACAAHBqrs3CuE0tWrSQVN4AmZmZHkcj6dAhac6c8sfXXFP+b22/N26c3PhMUp+6srtt5d+vuEKaOzf2fu3GWXVfbsZRH5WPoa6YveqTTuaOnTZzsv2r7svJOOLdr5dtampcVfkhHwAAQL0VFhaqU6dOkTljQ1JSUiLLsqLKSktLa/3k96RJk3TTTTdFfi8oKFDnzp3NmWsDAAAAADzn9Fw7ZFWdvaJWhYWFCofDKigoYLIOAAAAAJAU/Lni0qVLdd1112njxo3Vnrvooos0cODAqIXuqVOn6uuvv9af/vSnuPYf9PoDAAAAANjn9FwxOF98BgAAAAAAkq5v375atmxZVNmyZcs0aNAgjyICAAAAAKA6bqXud6Wl0rvvlj/+yU/K/63t90aNkhufSepTV3a3rfz7j38sVfyRKJ42qO29qu7LzTjqo/Ix1BWzV33Sydyx02ZOtn/VfTkZR7z79bJNTY2rKj/kAwAAQD1cfvnleuCBB7RkyRKdfvrpeu2117RhwwaNGjXK69AAAAAAAIjgVuo2GXd7t6IiqXnz8sd795b/W9vvGRnJjc8k9akru9tW/v3bb6V27WLv126cVfflZhz1UfkY6orZqz7pZO7YaTMn27/qvpyMI979etmmpsZVlR/yAQAA1Jtxc0WHVb2V+ty5c/XBBx9oxowZkqRFixZpwoQJ2rVrl7p3764//elP6t27d9z7D3r9AQAAAADsc3quyCfGAQAAAABArYYMGRL1/eJXXHGFrrjiisjvZ555ZszvHwcAAAAAwBR8xzgAAAAAAAAAAAAAINBYGAcAAAAAAAAAAAAABBoL4wAAAAAAAACA/8/encdHVd/7H39PEkhIICMxZkEgUKkUtNWyRdTiBi3tLaLX0sW9+jNVqoDirQX7u5QqBbzUpdjaui/83Fqxglel1LWWXBAKvYrgxqqGkAVmSIBAkvP7I2aYOUxm5uScyTkzeT0fj3lkvjNzPvM+3+/5Rg/fzBkAAIC0xsI4AAAAAAAAAAAAACCtsTAOAAAAAAAAAAAAAEhrWW4HgE09ekh33HHkvhS/3V3Z6avObNvezs21Ngax3itarWTlsCN8HxLJ7AYn547VMUtWLSdzJFrXzTH1ai6zVJgPAAAAAAAAAACkOZ9hGIbbIVJJMBiU3+9XIBBQfn6+23EAAAAAAB7AuaI99B8AAAAAwMzpc0U+MZ5mWloNrdlar937DqqoT47GDC5QZobP7VgAAAAAAAAAAAAA4BoWxlNdS4v0z39Kkl7pWarbXnxfx364UZL0XvEJKvXn6L9OaNHpJxRKI0ZImZlupnVXWF9pxIi2n7Ha4X1lddvw9imnSP/6V/S6VnOaayUzhx3h+xAvs1vHpJ3jwUqtZI6/uZaTORKt6+aYejWXWSrMBwAAAAAAAAAA0hyXUrfIc5d3a2yUeveWJA2/8c8yJG2663uSpGE3/lk+Se9/0VZDg5SX505OLwjrKzU0tP2M1Q7vK6vbhrerq6Xi4uh1reY010pmDjvC9yFeZreOSTvHg5VayRx/cy0ncyRa180x9Wous1SYDwAAwDbPnSumGPoPAAAAAGDm9LlihgOZ4BHR/sIh/LGWVv4GAgAAAAAAAAAAAED3w8J4N7J2W73bEQAAAAAAAAAAAACgy7Ew3o3UNDS5HQEAAAAAAAAAAAAAupwnF8ZffvllDRo0KOJWXFysPn36SJLWr1+v0047TWVlZRo+fLhWrlwZsf3dd9+tIUOG6Pjjj9eFF16ourq60HN1dXWaMmWKBg4cqLKyMv3mN7/p0n1z03G9s92OAAAAAAAAAAAAAABdzpML49/+9re1bdu2iNuFF16o6dOna9++fZo0aZJuv/12bd++Xffdd5+mTJmiXbt2SZKeffZZPf7441qzZo127NihkpISVVRUhGpfdtllOvnkk7V9+3ZVVlZq8eLFWr58uVu76ihfnOdHDSrokhwAAAAAAAAAAAAA4CVZbgdIxJYtW/T888/rww8/1FNPPaXRo0dr/PjxkqSzzjpL48aN0zPPPKPp06fr7rvv1pw5c1RQ0LYIfNttt6m0tFT19fWqra3V2rVrtWzZMvl8PvXr10/Tpk3Tww8/rEmTJrm5i44xL46HtzMz4i2dAwAAAAAAAAAAAED6SYmF8QULFuinP/2p/H6/KisrdcYZZ0Q8X15erg0bNqi5uVlr166NeL6wsFCDBg3Su+++q23btmnMmDHKysqK2Hbx4sUdvndTU5Oamo58N3cwGHRwzxzQo4c0Z44k6a7Jo3T7i5t09xk/kiQ1Z2aqJD9HH193k4YU9Wl7bXcW1lehvojXtrNtezs3t+O6VnNGq5WsHHaE70Mimd1g53iwUivZ45+sHInWdXNMvZrLLBXmAwAAAAAAAAAAac5nGIbhdohYampqNGTIEH300UcqKirSxIkTdckll+iyyy4LveaBBx7Q8uXLdf/99+v4449XS0tLRI0zzjhDM2fO1IcffqiPPvpIDz30UOi5jz76SCNHjuxwwfuXv/yl5s6de9TjgUBA+fn5Du2lc1paDa3ZWq/d+w6qqE+Oxgwu4JPiAAAAAJBkwWBQfr/fs+eKXkf/AQAAAADMnD5X9Pwnxp944gldeOGFKioqkiQ1NzfLvJbf0tIin8+n5uZmSZJhGPL5fFGf72jbjsyaNUs33XRTqB0MBjVgwADb+5UsmRk+jT3hWLdjAAAAAAAAAAAAAIBneH5h/JFHHtGdd94ZahcUFKi2tjbiNTU1NSopKVHfvn1lGIb27NkT+o7x8Oerqqq0Zs2aqNt2JDs7W9nZ2Q7tTRK0tkqbNrXdHzas7WesdkZG1+bzEjt9ZXXb8PbQodIHH0SvazWnuVYyc9gRvg/xMrt1TDo5d6yMmZPjb67lZI5E67o5pl7NZZYK8wEAAAAAAAAAgDTn6Uupb9iwQeedd56qq6tD3wu+cOFCvfPOO/rzn/8cet23v/1t/eAHP9CVV16pYcOG6b/+67/03e9+V5JUVVWlL3/5y9q9e7feffddnX/++aqqqlLGF4sPCxcu1KZNm/Too48mlMlzl3drbJR6926739DQ9jNWOy+va/N5iZ2+srpteLu6Wioujl7Xak5zrWTmsCN8H+JlduuYdHLuWBkzJ8ffXMvJHInWdXNMvZrLLBXmAwAAsM1z54ophv4DAAAAAJg5fa7o6Y+mvfLKKxo3blxoUVySLrnkEr366qt67bXXJEkvvfSSNm3apClTpkiSKioqNHfuXO3du1eHDh3SrFmzdM011yg3N1djxoxRaWmpFi5cqNbWVm3ZskW///3vdcMNN7iyfwAAAAAAAAAAAACA5PP0pdRXr16tESNGRDzWv39/Pf3005o6darq6+s1ZMgQLV++XHlffMpu+vTp+uyzz3TiiScqKytLkydP1oIFCyRJPp9PS5cu1VVXXaU777xTffv21aJFizRy5Mgu3zcAAAAAAAAAAAAAQNfw9ML4888/H/Xxb33rW9q8eXPU5zIyMrRo0SItWrQo6vNf+tKX9MYbbzgVEQAAAAAAAAAAAADgcZ6+lDoAAAAAAAAAAAAAAHaxMA4AAAAAAAAAAAAASGssjAMAAAAAAAAAAAAA0pqnv2McCejRQ7r55iP3pfjt7spOX3Vm2/Z2bq61MYj1XtFqJSuHHeH7kEhmNzg5d6yOWbJqOZkj0bpujqlXc5mlwnwAAAAAAAAAACDN+QzDMNwOkUqCwaD8fr8CgYDy8/PdjgMAAAAA8ADOFe2h/wAAAAAAZk6fK3IpdQAAAAAAAAAAAABAWuNS6qmutVXasaPt/sCBbT9jtTO68d9C2Okrq9uGt/v3lz79NHpdqznNtZKZw47wfYiX2a1j0sm5Y2XMnBx/cy0ncyRa180x9Wous1SYDwAAAAAAAAAApDkupW6R5y7v1tgo9e7ddr+hoe1nrHZeXtfm8xI7fWV12/B2dbVUXBy9rtWc5lrJzGFH+D7Ey+zWMenk3LEyZk6Ov7mWkzkSrevmmHo1l1kqzAcAAGCb584VUwz9BwAAAAAw41LqAAAAAAAAAAAAAABYwMI4AAAAAAAAAAAAACCtsTAOAAAAAAAAAAAAAEhrLIwDAAAAAAAAAAAAANIaC+MAAAAAAAAAAAAAgLTGwjgAAAAAAAAAAAAAIK1luR0ANmVlSVOnHrkvxW93V3b6qjPbtrdzcqyNQaz3ilYrWTnsCN+HRDK7wcm5Y3XMklXLyRyJ1nVzTL2ayywV5gMAAAAAAAAAAGnOZxiG4XaIVBIMBuX3+xUIBJSfn+92HAAAAACAB3CuaA/9BwAAAAAwc/pckUupAwAAAAAAAAAAAADSGtdtTXWGIdXWtt0vLGz7Gavt83VtPi+x01dWtw1vH3usVFcXva7VnOZaycxhR/g+xMvs1jHp5NyxMmZOjr+5lpM5Eq3r5ph6NZdZKswHAAAAAAAAAADSHAvjqW7/fqmoqO1+Q0Pbz1jtvLyuzecldvrK6rbh7epqqbg4el2rOc21kpnDjvB9iJfZrWPSybljZcycHH9zLSdzJFrXzTH1ai6zVJgPAAAAAAAAAACkOS6lDgAAAAAAAAAAAABIayyMAwAAAAAAAAAAAADSGgvjAAAAAAAAAAAAAIC0xsI4AAAAAAAAAAAAACCtsTAOAAAAAAAAAAAAAEhrLIwDAAAAAAAAAAAAANJaltsBYFNWlnTFFUfuS/Hb3ZWdvurMtu3tnBxrYxDrvaLVSlYOO8L3IZHMbnBy7lgds2TVcjJHonXdHFOv5jJLhfkAAAAAAAAAAECa8xmGYbgdIpUEg0H5/X4FAgHl5+e7HQcAAAAA4AGcK9pD/wEAAAAAzJw+V+RS6gAAAAAAAAAAAACAtMZ1W1OdYUj797fdz81t+xmr7fN1bT4vsdNXVrcNb/fqJR04EL2u1ZzmWsnMYUf4PsTL7NYx6eTcsTJmTo6/uZaTORKt6+aYejWXWSrMBwAAAAAAAAAA0hwL46lu/36pd++2+w0NbT9jtfPyujafl9jpK6vbhrerq6Xi4uh1reY010pmDjvC9yFeZreOSSfnjpUxc3L8zbWczJFoXTfH1Ku5zFJhPgAAAAAAAAAAkOa4lDoAAAAAAAAAAAAAIK2xMA4AAAAAAAAAAAAASGssjAMAAAAAAAAAAAAA0hoL4wAAAAAAAAAAAACAtMbCOAAAAAAAAAAAAAAgrbEwDgAAAAAAAAAAAABIa1luB4BNmZnS97535L4Uv91d2emrzmzb3u7Z09oYxHqvaLWSlcOO8H1IJLMbnJw7VscsWbWczJFoXTfH1Ku5zFJhPgAAAAAAAAAAkOZ8hmEYbodIJcFgUH6/X4FAQPn5+W7HAQAAAAB4AOeK9tB/AAAAAAAzp88VuZQ6AAAAAAAAAAAAACCtsTAOAAAAAAAAAAAAAEhrLIynusZGyedruzU2xm93Z3b6yuq24e3du62NgZVaycxhh5XMbnFy7rg1/snMkay+cpJXc8XK6dX5AAAAAAAAAABAmmNhHAAAAAAAAAAAAACQ1lgYBwAAAAAAAAAAAACkNU8vjK9Zs0bjxo1TWVmZ+vXrp6VLl0qS1q9fr9NOO01lZWUaPny4Vq5cGbHd3XffrSFDhuj444/XhRdeqLq6utBzdXV1mjJligYOHKiysjL95je/6dJ9AgAAAAAAAAAAAAB0Lc8ujG/evFkXXHCB/vM//1Pbt2/Xtm3bdOaZZ2rfvn2aNGmSbr/9dm3fvl333XefpkyZol27dkmSnn32WT3++ONas2aNduzYoZKSElVUVITqXnbZZTr55JO1fft2VVZWavHixVq+fLlbuwkAAAAAAAAAAAAASDLPLozfeuutuuGGGzR+/HhJUs+ePVVUVKSnnnpKo0ePDj1+1llnady4cXrmmWcktX1afM6cOSooKFBmZqZuu+02LVu2TPX19frwww+1du1a3XrrrfL5fOrXr5+mTZumhx9+2LX9BAAAAAAAAAAAAAAklycXxg8ePKgXX3xRP/7xj496rrKyUmeccUbEY+Xl5dqwYYOam5u1du3aiOcLCws1aNAgvfvuu6qsrNSYMWOUlZV11LYdaWpqUjAYjLgBAAAAAAAAAAAAAFJHVvyXdL0PP/xQvXr10uuvv6758+eroaFBEyZM0H/913+pqqpK5557bsTri4qKtHr1atXW1qqlpUWFhYVHPV9XV6eqqioVFxdHfa4j8+fP19y5c53bOadlZkrf+c6R+1L8dndlp686s217u2dPa2MQ672i1UpWDjvC9yGRzG5wcu5YHbNk1XIyR6J13RxTr+YyS4X5AAAAAAAAAABAmvMZhmG4HcLsH//4h771rW/pJz/5iebNm6fDhw/riiuukN/v186dO3X55Zfr8ssvD73+D3/4g15++WX97ne/U1lZmZqbm+Xz+ULPn3baabrlllu0ceNGbdmyJeLS6Zs3b1Z5ebkCgUDULE1NTWpqagq1g8GgBgwYoEAgoPz8/CTsPQAAAAAg1QSDQfn9fs4VO4n+AwAAAACYOX2u6MlLqRcWFurw4cNasGCBcnJy1KdPH/3yl7/UsmXLVFBQoNra2ojX19TUqKSkRH379pVhGNqzZ0/U52Nt25Hs7Gzl5+dH3AAAAAAA6A4OHDigiooKlZWVqX///vrZz36maH9f/5e//EUnnXSSBg4cqDFjxujtt992IS0AAAAAAB3z5MJ4WVmZevbsqYMHD4Yey8jIUE5OjkaOHKlVq1ZFvH7VqlUaO3as8vLyNHTo0Ijnq6qqVF1drVNOOUUjR47U6tWr1draetS2AAAAAAAg0syZM9Xa2qpPPvlEGzdu1Ouvv65777034jVbt27V5Zdfrscee0w7duzQvHnzdP7553d4ZTYAAAAAANzgyYXxnJwcXX755Zo5c6aam5vV1NSkOXPm6NJLL9Ull1yiV199Va+99pok6aWXXtKmTZs0ZcoUSVJFRYXmzp2rvXv36tChQ5o1a5auueYa5ebmasyYMSotLdXChQvV2tqqLVu26Pe//71uuOEGN3fXnsZGKS+v7dbYGL/dndnpK6vbhrd377Y2BlZqJTOHHVYyu8XJuePW+CczR7L6yklezRUrp1fnAwAAQBQNDQ167LHHdMcddygrK0t+v1+zZs2K+HoySXr33Xd14oknatSoUZKkCRMmKDc3Vx999JEbsQEAAAAAiCrL7QAdWbhwoa677jodf/zx6tOnjy666CLddttt6tmzp55++mlNnTpV9fX1GjJkiJYvX668vDxJ0vTp0/XZZ5/pxBNPVFZWliZPnqwFCxZIknw+n5YuXaqrrrpKd955p/r27atFixZp5MiRbu6qffv3W2t3Z3b6yuq24W2rY2ClVjJz2GEls1ucnDtujX8ycyRa125tO7yayywV5gMAAIDJunXrNHjwYBUUFIQeKy8v13vvvaeWlhZlZmZKkr7xjW9o9+7dWrlypSZMmKCnnnpKBQUF+trXvtZh7aamJjU1NYXawWAweTsCAAAAAIA8vDDeu3dvPfHEE1Gf+9a3vqXNmzdHfS4jI0OLFi3SokWLoj7/pS99SW+88YZTMQEAAAAASEtVVVUqLi6OeKyoqEjNzc0KBAKhBfP2Pzr/5je/qby8PB06dEh///vf1bNnzw5rz58/X3Pnzk1qfgAAAAAAwnnyUuoAAAAAAMBdzc3NMgwj4rGWlhZJbVdka7dmzRrNnj1b69ev1759+/TSSy/poosu0rZt2zqsPWvWLAUCgdBt586dSdkHAAAAAADasTAOAAAAAACOUlBQoNra2ojHampqlJOTI7/fH3rsnnvu0U9/+lOdeuqp8vl8Gj9+vC688EI98MADHdbOzs5Wfn5+xA0AAAAAgGRiYRwAAAAAABxlxIgR+uCDD7Rnz57QY6tWrVJ5ebkyMo78c8KhQ4eUlRX5TW09evTQoUOHuiwrAAAAAADxsDAOAAAAAACOUlJSookTJ2r27Nlqbm5WbW2t5s2bpxkzZkS8bsqUKVq8eLF27NghSdqwYYMef/xxXXjhhS6kBgAAAAAguqz4L4GnZWRIZ5115L4Uv91d2emrzmzb3s7KsjYGsd4rWq1k5bAjfB8SyewGJ+eO1TFLVi0ncyRa180x9Wous1SYDwAAAB146KGHdPXVV6u0tFR5eXm6+eabdcEFF2jJkiV65513dM899+j73/++gsGgJk6cqMbGRvXt21f333+/Tj/9dLfjAwAAAAAQ4jMMw3A7RCoJBoPy+/0KBAJ8BxoAAAAAQBLninbRfwAAAAAAM6fPFfl4GgAAAAAAAAAAAAAgrbEwDgAAAAAAAAAAAABIayyMp7rGRum449pujY3x292Znb6yum14e/dua2NgpVYyc9hhJbNbnJw7bo1/MnMkq6+c5NVcsXJ6dT4AAAAAAAAAAJDmstwOAAfU1lprd2d2+srqtuFtq2NgpVYyc9hhJbNbnJw7bo1/MnMkWtdubTu8msssFeYDAAAAAAAAAABpjE+MAwAAAAAAAAAAAADSGgvjAAAAAAAAAAAAAIC0xsI4AAAAAAAAAAAAACCtsTAOAAAAAAAAAAAAAEhrLIwDAAAAAAAAAAAAANJaltsBYFNGhjRq1JH7Uvx2d2WnrzqzbXs7K8vaGMR6r2i1kpXDjvB9SCSzG5ycO1bHLFm1nMyRaF03x9SrucxSYT4AAAAAAAAAAJDmfIZhGG6HSCXBYFB+v1+BQED5+fluxwEAAAAAeADnivbQfwAAAAAAM6fPFfl4GgAAAAAAAAAAAAAgrbEwDgAAAAAAAAAAAABIayyMp7r9+6VBg9pu+/fHb3dndvrK6rbh7dpaa2NgpVYyc9hhJbNbnJw7bo1/MnMkWtfNMfVqrlg5vTofAAAAAAAAAABIc1luB4BNhiFt337kvhS/3V3Z6avObNvebm21Ngax3itarWTlsCN8HxLJ7AYn547VMUtWLSdzJFrXzTH1ai6zVJgPAAAAAAAAAACkOT4xDgAAAAAAAAAAAABIayyMAwAAAAAAAAAAAADSGgvjAAAAAAAAAAAAAIC0xsI4AAAAAAAAAAAAACCtsTAOAAAAAAAAAAAAAEhrWW4HgE0+nzR8+JH7Uvx2d2WnrzqzbXs7I8PaGMR6r2i1kpXDjvB9SCSzG5ycO1bHLFm1nMyRaF03x9SrucxSYT4AAAAAAAAAAJDmfIZhGG6HSCXBYFB+v1+BQED5+fluxwEAAAAAeADnivbQfwAAAAAAM6fPFbmUOgAAAAAAAAAAAAAgrbEwDgAAAAAAAAAAAABIayyMp7r9+6WTTmq77d8fv92d2ekrq9uGt2trrY2BlVrJzGGHlcxucXLuuDX+ycyRrL5ykldzxcrp1fkAAAAAAAAAAECa4zvGLfLc9541Nkq9e7fdb2ho+xmrnZfXtfm8xE5fWd02vF1dLRUXR69rNae5VjJz2BG+D/Eyu3VMOjl3rIyZk+NvruVkjkTrujmmXs1llgrzAQAA2Oa5c8UUQ/8BAAAAAMz4jnEAAAAAAAAAAAAAACxgYRwAAAAAAAAAAAAAkNZYGAcAAAAAAAAAAAAApDUWxgEAAAAAAAAAAAAAaY2FcQAAAAAAAAAAAABAWstyOwBs8vmksrIj96X47e7KTl91Ztv2dkaGtTGI9V7RaiUrhx3h+5BIZjc4OXesjlmyajmZI9G6bo6pV3OZpcJ8AAAAAAAAAAAgzfkMwzDcDpFKgsGg/H6/AoGA8vPz3Y4DAAAAAPAAzhXtof8AAAAAAGZOnytyKXUAAAAAAAAAAAAAQFpjYRwAAAAAAAAAAAAAkNZYGE91Bw5Io0e33Q4ciN/uzuz0ldVtw9v19dbGwEqtZOaww0pmtzg5d9wa/2TmSFZfOcmruWLl9Op8AAAAAAAAAAAgzfEd4xZ57nvPGhul3r3b7jc0tP2M1c7L69p8XmKnr6xuG96urpaKi6PXtZrTXCuZOewI34d4md06Jp2cO1bGzMnxN9dyMkeidd0cU6/mMkuF+QAAAGzz3LliiqH/AAAAAABm3eI7xq+//nr5/X4NGjQodNu+fbskaf369TrttNNUVlam4cOHa+XKlRHb3n333RoyZIiOP/54XXjhhaqrqws9V1dXpylTpmjgwIEqKyvTb37zmy7dLwAAAAAAAAAAAABA1/PkwrgkzZgxQ9u2bQvdysrKtG/fPk2aNEm33367tm/frvvuu09TpkzRrl27JEnPPvusHn/8ca1Zs0Y7duxQSUmJKioqQjUvu+wynXzyydq+fbsqKyu1ePFiLV++3K1dBAAAAAAAAAAAAAB0Ac8ujB9zzDFHPfbUU09p9OjRGj9+vCTprLPO0rhx4/TMM89Iavu0+Jw5c1RQUKDMzEzddtttWrZsmerr6/Xhhx9q7dq1uvXWW+Xz+dSvXz9NmzZNDz/8cFfuFgAAAAAAAAAAAACgi6XUwnhlZaXOOOOMiMfKy8u1YcMGNTc3a+3atRHPFxYWatCgQXr33XdVWVmpMWPGKCsr66htY2lqalIwGIy4AQAAAAAAAAAAAABSh2cXxmfNmqWBAwfqnHPO0V//+ldJUlVVlYqLiyNeV1RUpLq6OtXW1qqlpUWFhYVRn4+1bSzz58+X3+8P3QYMGODA3gEAAAAAAAAAAAAAukpW/Jd0vd/+9re699571dLSohUrVuj73/++Xn31VTU3N8swjIjXtrS0yOfzqbm5WZJkGIZ8Pl/U5zvaNpZZs2bppptuCrWDwaD3FsdNfwwQt92d2ekrq9uGt62OgZVaycxhh5XMbnFy7rg1/snMkWhdu7Xt8Gous1SYDwAAAAAAAAAApDFPLoxnZLR9kD0zM1Pf+c539KMf/Uh/+ctfVFBQoNra2ojX1tTUqKSkRH379pVhGNqzZ48KCgqOer6qqkpr1qyJum0s2dnZys7OdmjPkiAvT6qpiXwsXru7stNXndk2vG1lDOK9V1flsMO8D148Jp2cO1bHLFm1nMxhpa6d2nZ4NZdZKswHAAAAAAAAAADSnGcvpR6uublZPXv21MiRI7Vq1aqI51atWqWxY8cqLy9PQ4cOjXi+qqpK1dXVOuWUUzRy5EitXr1ara2tR20LAAAAAAAAAAAAAEhfnlwYX7FiRWgB+69//auee+45XXTRRbrkkkv06quv6rXXXpMkvfTSS9q0aZOmTJkiSaqoqNDcuXO1d+9eHTp0SLNmzdI111yj3NxcjRkzRqWlpVq4cKFaW1u1ZcsW/f73v9cNN9zg2n4CAAAAAAAAAAAAAJLPkwvjd911l0pKSjRo0CDdfvvtev755zV8+HD1799fTz/9tKZOnaqioiLdfvvtWr58ufLy8iRJ06dP11lnnaUTTzxRgwYNUq9evbRgwQJJks/n09KlS7VixQoVFxdr4sSJWrRokUaOHOnmrtp34IB09tlttwMH4re7Mzt9ZXXb8HZ9vbUxsFIrmTnssJLZLU7OHbfGP5k5Eq3r5ph6NVesnF6dDwAAAAAAAAAApDmfYRiG2yFSSTAYlN/vVyAQUH5+vttxpMZGqXfvtvsNDW0/Y7W/+COCbslOX1ndNrxdXS0VF0evazWnuVYyc9gRvg/xMrt1TDo5d6yMmZPjb67lZI5E67o5pl7NZZYK8wEAANjmuXPFFEP/AQAAAADMnD5X9OQnxgEAAAAAAAAAAAAAcAoL4wAAAAAAAAAAAACAtMbCOAAAAAAAAAAAAAAgrbEwDgAAAAAAAAAAAABIayyMAwAAAAAAAAAAAADSWpbbAeCA3Fxr7e7MTl9Z3Ta8bXUMrNRKZg47rGR2i5Nzx63xT2aOROvarW2HV3OZpcJ8AAAAAAAAAAAgjfkMwzDcDpFKgsGg/H6/AoGA8vPz3Y4DAAAAAPAAzhXtof8AAAAAAGZOnytyKXUAAAAAAAAAAAAAQFpjYRwAAAAAAAAAAAAAkNZYGE91Bw9K//ZvbbeDB+O3uzM7fWV12/D23r3WxsBKrWTmsMNKZrc4OXfcGv9k5khWXznJq7li5fTqfAAAAAAAAAAAIM3xHeMWee57zxobpd692+43NLT9jNXOy+vafF5ip6+sbhverq6Wiouj17Wa01wrmTnsCN+HeJndOiadnDtWxszJ8TfXcjJHonXdHFOv5jJLhfkAAABs89y5Yoqh/wAAAAAAZnzHOAAAAAAAAAAAAAAAFrAwDgAAAAAAAAAAAABIayyMAwAAAAAAAAAAAADSGgvjAAAAAAAAAAAAAIC0xsI4AAAAAAAAAAAAACCtsTAOAAAAAAAAAAAAAEhrWW4HgE15eZJhRD4Wr91d2emrzmwb3rYyBvHeq6ty2GHeBy8ek07OHatjlqxaTuawUtdObTu8msssFeYDAAAAAAAAAABpjk+MAwAAAAAAAAAAAADSGgvjAAAAAAAAAAAAAIC0xsJ4qjt4UJoype128GD8dndmp6+sbhve3rvX2hhYqZXMHHZYyewWJ+eOW+OfzBzJ6isneTVXrJxenQ8AAAAAAAAAAKQ5n2Hw5aZWBINB+f1+BQIB5efnux1HamyUevduu9/Q0PYzVjsvr2vzeYmdvrK6bXi7uloqLo5e12pOc61k5rAjfB/iZXbrmHRy7lgZMyfH31zLyRyJ1nVzTL2ayywV5gMAALDNc+eKKYb+AwAAAACYOX2uyCfGAQAAAAAAAAAAAABpjYVxAAAAAAAAAAAAAEBaY2EcAAAAAAAAAAAAAJDWWBgHAAAAAABRHThwQBUVFSorK1P//v31s5/9TIZhHPU6wzB05513aujQoRo4cKCGDBmiw4cPu5AYAAAAAIDoWBgHAAAAAABRzZw5U62trfrkk0+0ceNGvf7667r33nuPet28efO0bNky/f3vf9eOHTv01ltvKTMz04XEAAAAAABEl+V2AAAAAAAA4D0NDQ167LHHtHPnTmVlZcnv92vWrFm67bbbdMMNN4ReV1NTowULFmjTpk0qKiqSJPXr18+t2AAAAAAARMXCeKrLzZUaGo7cl+K3uys7fdWZbdvbvXpZG4NY7xWtVrJy2BG+D4lkdoOTc8fqmCWrlpM5Eq3r5ph6NZdZKswHAACAKNatW6fBgweroKAg9Fh5ebnee+89tbS0hD4R/uKLL+rMM8/UgAEDEq7d1NSkpqamUDsYDDoXHAAAAACAKFgYT3U+n5SXF/lYvHZ3ZaevOrNteNvKGMR7r67KYYd5H7x4TDo5d6yOWbJqOZnDSl07te3wai6zVJgPAAAAUVRVVam4uDjisaKiIjU3NysQCIQWzN99912VlZXpJz/5if7617/K7/frpptu0uWXX95h7fnz52vu3LlJzQ8AAAAAQDi+YxwAAAAAABylublZhmFEPNbS0iJJ8vl8ocf27dun5cuXa8qUKdqyZYseffRR3XzzzXrzzTc7rD1r1iwFAoHQbefOncnZCQAAAAAAvsDCeKprapKuvLLt1tQUv92d2ekrq9uGt4NBa2NgpVYyc9hhJbNbnJw7bo1/MnMkWtfNMfVqrlg5vTofAAAAoigoKFBtbW3EYzU1NcrJyZHf7w89VlhYqIkTJ2r8+PHy+Xw69dRTdemll2rZsmUd1s7OzlZ+fn7EDQAAAACAZPIZ5j//RkzBYFB+v1+BQMAbJ+6NjVLv3m3327+nNla7O1+y105fWd02vF1dLbVffjCRMYj1XuZaycxhR/g+xMvs1jHp5NyxMmZOjr+5lpM5Eq3r5ph6NZdZKswHAABgm+fOFR2wa9culZWVadeuXerbt68k6ZlnntF9992nN954I/S6J554QsuWLdOf/vSn0GM333yzsrOzNW/evITeKx37DwAAAABgj9PninxiHAAAAAAAHKWkpEQTJ07U7Nmz1dzcrNraWs2bN08zZsyIeN33vvc9/eMf/9Df/vY3SdKmTZv05JNP6gc/+IELqQEAAAAAiI6FcQAAAAAAENVDDz2kzz//XKWlpRo1apQqKip0wQUXaMmSJZo+fbokqVevXnruuef0H//xH+rfv78uvvhiPfTQQ/ra177mcnoAAAAAAI7IcjsAAAAAAADwpsLCQr3wwgtHPX7ppZfq0ksvDbXHjh2r9evXd2U0AAAAAAAs4RPjAAAAAAAAAAAAAIC0xsI4AAAAAAAAAAAAACCtsTAOAAAAAAAAAAAAAEhrfMd4qsvNlXbvPnJfit/uruz0VWe2bW8fe6y1MYj1XtFqJSuHHeH7kEhmNzg5d6yOWbJqOZkj0bpujqlXc5mlwnwAAAAAAAAAACDN+QzDMNwOkUqCwaD8fr8CgYDy8/PdjgMAAAAA8ADOFe2h/wAAAAAAZk6fK3IpdQAAAAAAAAAAAABAWmNhPNU1NUk//Wnbrakpfrs7s9NXVrcNbweD1sbASq1k5rDDSma3ODl33Br/ZOZIVl85yau5YuX06nwAAAAAAAAAACDNef5S6tddd51ef/11bd68WZK0fv16XXfddaqqqlJeXp7uueceTZgwIfT6u+++W/fee68OHDigMWPG6MEHH9Sxxx4rSaqrq9O1116r1atXy+fzadq0aZo5c6alPJ67vFtjo9S7d9v9hoa2n7HaeXldm89L7PSV1W3D29XVUnFx9LpWc5prJTOHHeH7EC+zW8ekk3PHypg5Of7mWk7mSLSum2Pq1VxmqTAfAACAbZ47V0wx9B8AAAAAwKxbXUp9586devzxx0Ptffv2adKkSbr99tu1fft23XfffZoyZYp27dolSXr22Wf1+OOPa82aNdqxY4dKSkpUUVER2v6yyy7TySefrO3bt6uyslKLFy/W8uXLu3y/AAAAAAAAAAAAAABdx9ML4zfeeKN+/OMfh9pPPfWURo8erfHjx0uSzjrrLI0bN07PPPOMpLZPi8+ZM0cFBQXKzMzUbbfdpmXLlqm+vl4ffvih1q5dq1tvvVU+n0/9+vXTtGnT9PDDD7uybwAAAAAAAAAAAACAruHZhfH//u//Vl1dnb73ve+FHqusrNQZZ5wR8bry8nJt2LBBzc3NWrt2bcTzhYWFGjRokN59911VVlZqzJgxysrKOmrbWJqamhQMBiNuAAAAAAAAAAAAAIDU4cmF8bq6Ok2bNk333XdfxONVVVUqbv9u1i8UFRWprq5OtbW1amlpUWFhYdTnY20by/z58+X3+0O3AQMG2NgzAAAAAAAAAAAAAEBX89zCuGEYuvrqqzVjxgx95StfiXiuublZhmFEPNbS0iKfz6fm5ubQ9h0939FzscyaNUuBQCB027lzZ2d3DQAAAAAAAAAAAADgAs8tjC9YsECHDx/W9ddff9RzBQUFqq2tjXispqZGJSUl6tu3rwzD0J49e6I+H2vbWLKzs5Wfnx9xAwAAAAAAAAAAAACkjqz4L+lav/3tb9XY2Ki+fftKavuU+IEDB3TMMcdo1qxZWrVqlW666abQ61etWqUf/OAHysvL09ChQ7Vq1Sp997vfldR26fXq6mqdcsopysjI0Ny5c9Xa2qqMjIzQtmPHju36nXRSr17S1q1H7kvx292Vnb7qzLbt7YICa2MQ672i1UpWDjvC9yGRzG5wcu5YHbNk1XIyR6J13RxTr+YyS4X5AAAAAAAAAABAmvMZ5uuLe8wbb7yha6+9Vps3b9ann36qr371q3ruued07rnn6qWXXtLUqVO1ceNG5eXl6a677tKTTz6plStXKjc3VxUVFerbt6/uuusuGYahr3/96/rBD36gW265Rdu2bdM555yjpUuXauTIkQnnCQaD8vv9CgQCfHocAAAAACCJc0W76D8AAAAAgJnT54qe+8R4LP3799fTTz+tqVOnqr6+XkOGDNHy5cuVl5cnSZo+fbo+++wznXjiicrKytLkyZO1YMECSZLP59PSpUt11VVX6c4771Tfvn21aNEiS4viAAAAAAAAAAAAAIDU4/lPjHuN5/6K/dAh6dZb2+7Pm9f2M1a7Z8+uzecldvrK6rbh7TlzpLlzo9e1mtNcK5k57Ajfh3iZ3TomnZw7VsbMyfE313IyR6J13RxTr+YyS4X5AAAAbPPcuWKKof8AAAAAAGZOnyuyMG6R507WGxul3r3b7jc0tP2M1f7i0/Xdkp2+srpteLu6Wioujl7Xak5zrWTmsCN8H+JlduuYdHLuWBkzJ8ffXMvJHInWdXNMvZrLLBXmAwAAsM1z54ophv4DAAAAAJg5fa6Y4UAmAAAAAAAAAAAAAAA8i4VxAAAAAAAAAAAAAEBaY2EcAAAAAAAAAAAAAJDWWBgHAAAAAAAAAAAAAKQ1FsYBAAAAAAAAAAAAAGmNhXEAAAAAAAAAAAAAQFrLcjsAbOrVS3rvvSP3pfjt7spOX3Vm2/Z2QYG1MYj1XtFqJSuHHeH7kEhmNzg5d6yOWbJqOZkj0bpujqlXc5mlwnwAAAAAAAAAACDN+QzDMNwOkUqCwaD8fr8CgYDy8/PdjgMAAAAA8ADOFe2h/wAAAAAAZk6fK3bppdTLy8u78u0AAAAAAAAAAAAAAEjupdQPHz6sHj16hNo7duxI5tt1T4cOSb/+ddv92bPbfsZq9+zZtfm8xE5fWd02vH3zzdKiRdHrWs1prpXMHHaE70O8zG4dk07OHStj5uT4m2s5mSPRum6OqVdzmaXCfAAAAAAAAAAAIM05din1s846S2+++WbEY0VFRdq9e3eo3a9fP33++edOvJ1rPHd5t8ZGqXfvtvsNDW0/Y7Xz8ro2n5fY6Sur24a3q6ul4uLoda3mNNdKZg47wvchXma3jkkn546VMXNy/M21nMyRaF03x9SrucxSYT4AAADbPHeumGLoPwAAAACAmWcvpb5p06ajHuPrywEAAAAAAAAAAAAAbkvqd4z7fL5klgcAAAAAAAAAAAAAIK6kfse4YRhaunRp6H5TU1My3w4AAAAAAAAAAAAAgKMkdWFckh555JHQ/QMHDiT77QAAAAAAAAAAAAAAiJDUhXGfz6fly5eH2qWlpcl8OwAe1NJqKPOL+6u31GnUoIJQGwAAAAAAAAAAAOgKSf/EeDi+cxzofr67+O96+Yv7Vz7yjkr82Xrd1UQAAAAAAAAAAADobhxbGN+zZ49GjBgRahuGob179zpVHh3JyZHWrDlyX4rf7q7s9FVntm1vH3OMtTGI9V7RaiUrhx05OVr11Eta+PJmfdSUqfMvv1OS1JTVQzsaWzX58jt1y7e/otPdPCadnDtWxyxZtZzMkWhdN3/PeDWXWXjOROYwAAAAAAAAAABwnM8wDMOJQuvWrYv6+MiRI0P3+/Xrp88//9yJt3NNMBiU3+9XIBBQfn6+23EAT2ppNXTmwtdUFTgY9XmfpBJ/jt6+5VxlZnAlCQAAAKQ+zhXtof8AAAAAAGZOnys69onx8AXwjji0Bg/A49Zsre9wUVySDElVgYNas7VeY084tuuCAQAAAAAAAAAAoFvq0u8YX7p0aVe+Xfdw6JB0zz1t96dPb/sZq92zZ9fm8xI7fWV12/D2dddJ990Xva7VnOZaycxhQ019UBWrn5MkLfn6t3Xp+rZvGX9k1PmSpB+vXdb2uouGS24tjDs5d6yMmZPjb67lZI5E67r5e8aruczCc8abw935dzQAAAAAAAAAAEnk2KXUrairq9Oxx6bmp0Q9d3m3xkapd++2+w0NbT9jtfPyujafl9jpK6vbhrerq6Xi4uh1reY010pmDhtWv7tD5V8rkySNuH6J/nnvpZKkYTf+WZK06a7vtb3uf7er/KsDk5YjJifnjpUxc3L8zbWczJFoXTd/z3g1l1l4znhzuDv/jgYAIMV57lwxxdB/AAAAAAAzT15K/ZxzzpHPF/t7gs8//3zNmDFDkvTVr3415b9rHEDHRg0qcPR1AAAAAAAAAAAAgB2OLIz/4he/iPua/v37h+7zXeNAesvMOPKHMuY/mfF18DoAAAAAAAAAAAAgWRxZGD/vvPMsvT7ep8sBpI+i/OyIdrE/u4NXAgAAAAAAAAAAAMnhyMK4JL311ltRHx82bJiOO+44p94GQIp58YZvSL9uu//oj0e3XT79l65GAgAAAAAAAAAAQDfj2ML4nDlzJEmbNm1Sv3795Pf7tW3bNs2bN08XX3yxU28DIMWEXy69/EvHupgEAAAAAAAAAAAA3ZVjC+Ovv/66JOlHP/qRrrvuOo0bN07/9//+X6fKAwAAAAAAAAAAAADQKY4tjMMlOTnSF3+UoJyctp/x2t2Vnb7qzLbt7WOOsTYGsd4rWq1k5bAjfB8SyewGJ+eO1TFLVi0ncyRa180x9Wous1SYDwAAAAAAAAAApDmfYRiGkwXNnxgfNmyYvvGNb+jyyy+Xz+eTYRiqrKzUwYMHnXzbLhMMBuX3+xUIBJSfn+92HAAAAACAB3CuaA/9BwAAAAAwc/pc0bFPjL/11luSpJqaGm3YsEGStGPHDg0bNkyFhYX6xS9+4dRbAQAAAAAAAAAAAACQMMcWxufMmRO6//zzz+v555+XJBUXF6tXr14677zznHorhDt8WLr//rb7FRVtP2O1e/To2nxeYqevrG4b3v7xj6VHHole12pOc61k5rAjfB/iZXbrmHRy7lgZMyfH31zLyRyJ1nVzTL2ayywV5gMAAAAAAAAAAGnO8UuppzvPXd6tsVHq3bvtfkND289Y7by8rs3nJXb6yuq24e3qaqm4OHpdqznNtZKZw47wfYiX2a1j0sm5Y2XMnBx/cy0ncyRa180x9Wous1SYDwAAwDbPnSumGPoPAAAAAGDm9LlihgOZAAAAAAAAAAAAAADwLBbGAQAAAAAAAAAAAABpjYVxAAAAAAAAAAAAAEBaY2EcAAAAAAAAAAAAAJDWWBgHAAAAAAAAAAAAAKQ1FsYBAAAAAAAAAAAAAGkty+0AsCk7W3rxxSP3pfjt7spOX3Vm2/Z2fr61MYj1XtFqJSuHHeH7kEhmNzg5d6yOWbJqOZkj0bpujqlXc5mlwnwAAAAAAAAAACDN+QzDMNwOkUqCwaD8fr8CgYDy8/PdjgMAAAAA8ADOFe2h/wAAAAAAZk6fK3IpdQAAAAAAAAAAAABAWvPspdTvuOMOPfjggzp48KD8fr/mzZun888/X5K0fv16XXfddaqqqlJeXp7uueceTZgwIbTt3XffrXvvvVcHDhzQmDFj9OCDD+rYY4+VJNXV1enaa6/V6tWr5fP5NG3aNM2cOdOVfXTE4cPS//t/bfcvuaTtZ6x2jx5dm89L7PSV1W3D29//vvTss9HrWs1prpXMHHaE70O8zG4dk07OHStj5uT4m2s5mSPRum6OqVdzmaXCfAAAAAAAAAAAIM159lLqb775pk4//XT16NFDb731lr71rW/p008/Vc+ePTVs2DA9+uijGj9+vN58801NnjxZmzdvVklJiZ599lktWLBAf/vb3+T3+3X99ddr9+7deu655yRJ3/nOd1ReXq7//M//VFVVlU4//XQtXrxYkyZNSiiX5y7v1tgo9e7ddr+hoe1nrHZeXtfm8xI7fWV12/B2dbVUXBy9rtWc5lrJzGFH+D7Ey+zWMenk3LEyZk6Ov7mWkzkSrevmmHo1l1kqzAcAAGCb584VUwz9BwAAAAAw6zaXUj/rrLPU44tPzo0bN065ubmqqanRU089pdGjR2v8+PGh140bN07PPPOMpLZPi8+ZM0cFBQXKzMzUbbfdpmXLlqm+vl4ffvih1q5dq1tvvVU+n0/9+vXTtGnT9PDDD7u2nwAAAAAAAAAAAACA5PLswni7gwcP6u6779bo0aP1la98RZWVlTrjjDMiXlNeXq4NGzaoublZa9eujXi+sLBQgwYN0rvvvqvKykqNGTNGWVlZR23bkaamJgWDwYgbAAAAAAAAAAAAACB1eHZh/JNPPtGAAQOUm5urp59+Wr///e8lSVVVVSpuvwztF4qKilRXV6fa2lq1tLSosLAw6vOxtu3I/Pnz5ff7Q7cBAwY4tIcAAAAAAAAAAAAAgK7g2YXxE044QTt37tT+/fs1bdo0jR07Vh999JGam5tl/lr0lpYW+Xw+NTc3S1LM5zt6riOzZs1SIBAI3Xbu3OnQHgIAAAAAAAAAAAAAuoJnF8bb5eTk6OKLL9Z3v/tdPfbYYyooKFBtbW3Ea2pqalRSUqK+ffvKMAzt2bMn6vOxtu1Idna28vPzI24AAAAAAAAAAAAAgNTh+YXxdtnZ2erVq5dGjhypVatWRTy3atUqjR07Vnl5eRo6dGjE81VVVaqurtYpp5yikSNHavXq1WptbT1qWwAAAAAAAAAAAABAespyO0A0n332md566y1NmTJFWVlZeuutt/T888/rzTffVG5urhYsWKDXXntN5557rl566SVt2rRJU6ZMkSRVVFRo7ty5OvPMM5Wbm6tZs2bpmmuuUW5ursaMGaPS0lItXLhQt9xyi7Zt26bf//73Wrp0qct7bEN2tvTss0fuS/Hb3ZWdvurMtu3t/HxrYxDrvaLVSlYOO8L3IZHMbnBy7lgds2TVcjJHonXdHFOv5jJLhfkAAAAAAAAAAECa8xnmL932gNraWv3whz/U//7v/6pPnz4aNGiQ5s2bp9NOO02StGLFCk2fPl319fUaMmSI/vjHP+qrX/2qJKm1tVU/+9nP9PjjjysrK0uTJ0/W3XffrewvFhy2bNmiq666Shs3blTfvn01b9680KJ6IoLBoPx+vwKBAJdVBwAAAABI4lzRLvoPAAAAAGDm9LmiJxfGvYyTdQAAAACAGeeK9tB/AAAAAAAzp88VPXkpdVjQ3Cw9/3zb/QsvbPsZq53VjYfcTl9Z3Ta8PWmStHx59LpWc5prJTOHHeH7EC+zW8ekk3PHypg5Of7mWk7mSLSum2Pq1VxmqTAfAAAAAAAAAABIc3xi3CLP/RV7Y6PUu3fb/YaGtp+x2nl5XZvPS+z0ldVtw9vV1VJxcfS6VnOaayUzhx3h+xAvs1vHpJNzx8qYOTn+5lpO5ki0rptj6tVcZqkwHwAAgG2eO1d0yIEDBzR9+nStWLFCLS0tuvjii7Vw4UL5fL6or29sbNSgQYM0c+ZM/fznP0/4fdK1/wAAAAAAnef0uWKGA5kAAAAAAEAamjlzplpbW/XJJ59o48aNev3113Xvvfd2+Prf/e532rNnTxcmBAAAAAAgMSyMAwAAAACAozQ0NOixxx7THXfcoaysLPn9fs2aNUsPP/xw1Nd//vnneuihhzR58uQuTgoAAAAAQHwsjAMAAAAAgKOsW7dOgwcPVkFBQeix8vJyvffee2ppaTnq9TNmzNDs2bPVp0+fuLWbmpoUDAYjbgAAAAAAJBML4wAAAAAA4ChVVVUqLi6OeKyoqEjNzc0KBAIRjz/55JOqq6vT5ZdfnlDt+fPny+/3h24DBgxwLDcAAAAAANGwMA4AAAAAAI7S3NwswzAiHmv/pLjP5ws9tnXrVt1666169NFHIx6PZdasWQoEAqHbzp07nQsOAAAAAEAUWW4HAAAAAAAA3lNQUKDa2tqIx2pqapSTkyO/3y9JOnDggP793/9dCxcutPSp7+zsbGVnZzuaFwAAAACAWFgYT3U9e0qPPHLkvhS/3V3Z6avObNve7t3b2hjEeq9otZKVw47wfUgksxucnDtWxyxZtZzMkWhdN8fUq7nMUmE+AAAARDFixAh98MEH2rNnj/r27StJWrVqlcrLy5WR0XYBuldffVWbN29WRUWFKioqJEn79+9XZmamXn31Va1cudK1/AAAAAAAhPMZ5uuiIaZgMCi/369AIKD8/Hy34wAAAAAAPCBdzxUnT56sfv36afHixdq7d6/OPfdc/epXv9IFF1zQ4TZXXnmlvvKVr+jnP/95wu+Trv0HAAAAAOg8p88V+Y5xAAAAAAAQ1UMPPaTPP/9cpaWlGjVqlCoqKnTBBRdoyZIlmj59utvxAAAAAABIGJ8Yt8hzf8Xe3CytWNF2/1vfavsZq53Vja+eb6evrG4b3j7vPOnVV6PXtZrTXCuZOewI34d4md06Jp2cO1bGzMnxN9dyMkeidd0cU6/mMkuF+QAAAGzz3LliiqH/AAAAAABmTp8rsjBukedO1hsb276zVpIaGtp+xmrn5XVtPi+x01dWtw1vV1dLxcXR61rNaa6VzBx2hO9DvMxuHZNOzh0rY+bk+JtrOZkj0bpujqlXc5mlwnwAAAC2ee5cMcXQfwAAAAAAMy6lDgAAAAAAAAAAAACABSyMAwAAAAAAAAAAAADSGgvjAAAAAAAAAAAAAIC0xsI4AAAAAAAAAAAAACCtsTAOAAAAAAAAAAAAAEhrLIwDAAAAAAAAAAAAANJaltsBYFPPntK99x65L8Vvd1d2+qoz27a3e/e2Ngax3itarWTlsCN8HxLJ7AYn547VMUtWLSdzJFrXzTH1ai6zVJgPAAAAAAAAAACkOZ9hGIbbIVJJMBiU3+9XIBBQfn6+23EAAAAAAB7AuaI99B8AAAAAwMzpc0UupQ4AAAAAAAAAAAAASGtcSj3VtbRIf/972/1vfKPtZ6x2ZmbX5vMSO31lddvw9umnS6tWRa9rNae5VjJz2BG+D/Eyu3VMOjl3rIyZk+NvruVkjkTrujmmXs1llgrzAQAAAAAAAACANMel1C3y3OXdGhvbvrNWkhoa2n7GaufldW0+L7HTV1a3DW9XV0vFxdHrWs1prpXMHHaE70O8zG4dk07OHStj5uT4m2s5mSPRum6OqVdzmaXCfAAAALZ57lwxxdB/AAAAAAAzLqUOAAAAAAAAAAAAAIAFLIwDAAAAAAAAAAAAANIaC+MAAAAAAAAAAAAAgLTGwjgAAAAAAAAAAAAAIK2xMA4AAAAAAAAAAAAASGssjAMAAAAAAAAAAAAA0lqW2wFgU48e0h13HLkvxW93V3b6qjPbtrdzc62NQaz3ilYrWTnsCN+HRDK7wcm5Y3XMklXLyRyJ1nVzTL2ayywV5gMAAAAAAAAAAGnOZxiG4XaIVBIMBuX3+xUIBJSfn+92HAAAAACAB3CuaA/9BwAAAAAwc/pckUupAwAAAAAAAAAAAADSGpdST3UtLdI//9l2f8SItp+x2pmZXZvPS+z0ldVtw9unnCL961/R61rNaa6VzBx2hO9DvMxuHZNOzh0rY+bk+JtrOZkj0bpujqlXc5mlwnwAAAAAAAAAACDNcSl1izx3ebfGRql377b7DQ1tP2O18/K6Np+X2Okrq9uGt6urpeLi6HWt5jTXSmYOO8L3IV5mt45JJ+eOlTFzcvzNtZzMkWhdN8fUq7nMUmE+AAAA2zx3rphi6D8AAAAAgBmXUgcAAAAAAAAAAAAAwAIWxgEAAAAAAAAAAAAAaY2FcQAAAAAAAAAAAABAWmNhHAAAAAAAAAAAAACQ1lgYBwAAAAAAAAAAAACkNRbGAQAAAAAAAAAAAABpLcvtALCpRw9pzpwj96X47e7KTl91Ztv2dm6utTGI9V7RaiUrhx3h+5BIZjc4OXesjlmyajmZI9G6bo6pV3OZpcJ8AAAAAAAAAAAgzfkMwzDcDpFKgsGg/H6/AoGA8vPz3Y4DAAAAAPAAzhXtof8AAAAAAGZOnyt69lLqr732ms444wwNGTJEJ5xwghYvXhx6btu2bZowYYLKyso0ZMgQLVmyJGLbp556SsOGDVP//v11zjnnaOvWraHnDhw4oIqKCpWVlal///762c9+Jv42AAAAAAAAAAAAAADSl2cvpf7CCy/o4Ycf1tChQ7VlyxaNGzdOX/7ylzVhwgRNmjRJM2fO1JVXXqn3339fZ555pk4++WSdeuqpqqys1OzZs/Xmm29q4MCB+vWvf60pU6Zo7dq1kqSZM2eqtbVVn3zyiRobGzV+/Hjde++9uuGGG1ze405qbZU2bWq7P2xY289Y7QzP/i1E8tnpK6vbhreHDpU++CB6Xas5zbWSmcOO8H2Il9mtY9LJuWNlzJwcf3MtJ3MkWtfNMfVqLrNUmA8AAAAAAAAAAKS5lLmU+k033aSsrCyNHz9et9xyi9avXx96btq0acrMzNRdd92liy++WOXl5Zo+fbokqbm5WcXFxXrttdd0wgknqLi4WDt37lRBQYEkaenSpbrtttsi6sXiucu7NTZKvXu33W9oaPsZq52X17X5vMROX1ndNrxdXS0VF0evazWnuVYyc9gRvg/xMrt1TDo5d6yMmZPjb67lZI5E67o5pl7NZZYK8wEAANjmuXPFFEP/AQAAAADMus2l1M1qamrk9/tVWVmpM844I+K58vJybdiwQZKOej4rK0sjRozQhg0btG7dOg0ePDi0KN6+7XvvvaeWlpao79vU1KRgMBhxAwAAAAAAAAAAAACkjpRYGF+zZo1efPFFXXzxxaqqqlJx+6ftvlBUVKS6ujpJivl8R881NzcrEAhEfe/58+fL7/eHbgMGDHBwzwAAAAAAAAAAAAAAyeb5hfGnn35a559/vh577DENHjxYzc3NMl/9vaWlRT6fT5JiPt/Rc5JC25vNmjVLgUAgdNu5c6dTuwYAAAAAAAAAAAAA6AJZbgfoSEtLi2644Qa9/vrrWrFihU455RRJUkFBgWprayNeW1NTo5KSkojnBw4ceNTzfr8/6rY5OTny+/1Rc2RnZys7O9vJXQMAAAAAAAAAAAAAdCHPfmJ8xowZ2rJli9auXRtaFJekkSNHatWqVRGvXbVqlcaOHRv1+UOHDmndunU67bTTNGLECH3wwQfas2dPxLbl5eXKyPBsVwAAAAAAAAAAAAAAbPDkavDBgwd133336ZFHHlFeXl7Ec5MmTdLnn3+uJUuWSJLWrl2rF154Qf/n//wfSVJFRYV+85vf6NNPP1VLS4tuu+02nXPOORo8eLBKSko0ceJEzZ49W83NzaqtrdW8efM0Y8aMrt5FAAAAAAAAAAAAAEAX8eSl1Lds2aLW1tbQp8DbDR06VCtWrNDy5ct1zTXX6KabblJJSYmefPJJ9e/fX5J04YUX6uOPP9aYMWPU2tqqs88+Ww8//HCoxkMPPaSrr75apaWlysvL080336wLLrigK3fPWT16SDfffOS+FL/dXdnpq85s297OzbU2BrHeK1qtZOWwI3wfEsnsBifnjtUxS1YtJ3MkWtfNMfVqLrNUmA8AAAAAAAAAAKQ5n2EYhtshUkkwGJTf71cgEFB+fr7bcQAAAAAAHsC5oj30HwAAAADAzOlzRU9eSh0AAAAAAAAAAAAAAKd48lLqsKC1Vdqxo+3+wIFtP2O1M7rx30LY6Sur24a3+/eXPv00el2rOc21kpnDjvB9iJfZrWPSybljZcycHH9zLSdzJFrXzTH1ai6zVJgPAAAAAAAAAACkOS6lbpHnLu/W2Cj17t12v6Gh7Wesdl5e1+bzEjt9ZXXb8HZ1tVRcHL2u1ZzmWsnMYUf4PsTL7NYx6eTcsTJmTo6/uZaTORKt6+aYejWXWSrMBwAAYJvnzhVTDP0HAAAAADDjUuoAAAAAAAAAAAAAAFjAwjgAAAAAAAAAAAAAIK2xMI5uq6X1yLcIrN5SF9F2svY7W+sdq5uqOQAAAAAAAAAAAAA3sTCObmnlxl0af+cbofaVj7wT0Xay9k+WrHOkbqrmAAAAAAAAAAAAANzGwji6pelPb9CuQFPEY9WmtpO1263cuMuR90ilHAAAAAAAAAAAAIDbWBhHtxTtounhj9m5rHqsLX/98iZHL9meCjkAAAAAAAAAAAAAt2W5HQA2ZWVJU6ceuS/Fb3dXWVnadclV+uv71WrJyJQkPf71f5Oko9on7gzqtOG9I7aN168d1W7K7Bm6/9m+Zq3ZWq+xJxwbM2eH75WT03U57AjfhwQyu8LJuWN1zJJVy8kcidZ1c0y9msssFeYDAAAAAAAAAABpzmcYBh8btSAYDMrv9ysQCCg/P9/tOLDohQ2fafrTG+K+7p4fnqrJpx7vmdqpmAMAAADoTjhXtIf+AwAAAACYOX2uyKXU0a0U9clx9HVdVTsVcwAAAAAAAAAAAABewXVbU51hSLW1bfcLC9t+xmr7fF2bz0sMQ2N6t2hY5kFtbs6WIangQFCSVN+r7a9Mjj0QVFGfbI0Z1PeobeP1c4e1c/qo4OA++ST1LCnSmMEFcXN2+F7HHivV1XVNDjvC9yFeZreOSSfnjpUxi7e/dmo5mSPRum6OqVdzmaXCfAAAAAAAAAAAIM2xMJ7q9u+Xiora7jc0tP2M1c7L69p8XrJ/vzJLivWypOE3/lmS9M/Fl0iSht34Z/kkrfuirdmmvkqgnzuqPeL6JfrnvZdKklau/liZGXEWvmK9V3W1VFzcNTnsCN+HeJndOiadnDtWxize/tqp5WSOROu6OaZezWWWCvMBAAAAAAAAAIA0x6XU0S3d88NTVezPjnjM3HaydrsJJ5U48h6plAMAAAAAAAAAAABwGwvj6JYmnFSiv910dqj96I9HR7SdrP3HS0c6UjdVcwAAAAAAAAAAAABu41Lq6LbCLyVe/qVjk1Z7dDK/yztFcgAAAAAAAAAAAABu4hPjAAAAAAAAAAAAAIC0xsI4AAAAAAAAAAAAACCtsTAOAAAAAAAAAAAAAEhrfMd4qsvKkq644sh9KX67u7LTV53Ztr2dk2NtDGK9V7RaycphR/g+JJLZDU7OHatjlqxaTuZItK6bY+rVXGapMB8AAAAAAAAAAEhzPsMwDLdDpJJgMCi/369AIKD8/Hy34wAAAAAAPIBzRXvoPwAAAACAmdPnilxKHQAAAAAAAAAAAACQ1rhua6ozDGn//rb7ubltP2O1fb6uzecldvrK6rbh7V69pAMHote1mtNcK5k57Ajfh3iZ3TomnZw7VsbMyfE313IyR6J13RxTr+YyS4X5AAAAAAAAAABAmmNhPNXt3y/17t12v6Gh7Wesdl5e1+bzEjt9ZXXb8HZ1tVRcHL2u1ZzmWsnMYUf4PsTL7NYx6eTcsTJmTo6/uZaTORKt6+aYejWXWSrMBwAAAAAAAAAA0hyXUgcAAAAAAAAAAAAApDUWxgEAAAAAAAAAAAAAaY2FcQAAAAAAAAAAAABAWmNhHAAAAAAAAAAAAACQ1lgYBwAAAAAAAAAAAACkNRbGAY9raTVC99/ZWu9iEgAAAAAAAAAAACA1ZbkdADZlZkrf+96R+1L8dndlp686s217u2dPa2MQ9l5/3bxb8/57s3429AxJ0s+f+pfuOXmchpfmqyTZOewI769o7+uFY9LJuROrlo3xt1zLyRyJ1nVzTL2ayywV5gMAAEAHDhw4oOnTp2vFihVqaWnRxRdfrIULF8rn84Vec/jwYc2fP19/+tOftHfvXg0aNEiLFy/Wqaee6l5wAAAAAABMfIZhGPFfhnbBYFB+v1+BQED5+flux0Eae+W9Kl235J8yT9D2f36679IRmnhyaVfHAgAAABBFup4rTp06VYcOHdIf/vAHNTY2avz48br88st1ww03hF6zceNGPfPMM7rllluUl5enP/7xj7r99tu1ZcsW9ejRI6H3Sdf+AwAAAAB0ntPniiyMW8TJOrpCS6uhMxe+pqrAwajP+ySV+HP09i3nKjPDF/U1AAAAALpOOp4rNjQ0qLi4WDt37lRBQYEkaenSpbrtttu0fv36mNsWFBTo7bff1vDhwxN6r3TsPwAAAACAPU6fK3IpdcCD1myt73BRXJIMSVWBg1qztV5jTzi264IBavvDjTVb67V730EV9cnRmMEF/IEGAABAGlq3bp0GDx4cWhSXpPLycr333ntqaWlRZgdfBbN//37t379ffr+/w9pNTU1qamoKtYPBoHPBAQAAAACIIsPtALCpsVHy+dpujY3x292Znb6yum14e/dua2PQ2KixQwq1beF31evQQfU6dFDbFn5X2xZ+VwWNe0P3ex06qLrd9cnLYUes9/XKMenk3HF4/DtdK1njH1Zn5ZpPNP62/9bYIYWa/PX+uup3b2j8bf/tzpimyu+/VJgPAAAAUVRVVam4uDjisaKiIjU3NysQCHS43a233qqzzz5bxx9/fIevmT9/vvx+f+g2YMAAx3IDAAAAABANC+NACjuud7bbEdDNTH96g3YFmiIeqza1AQAAkB6am5tl/va1lpYWSZLPd/QVgxobG3XFFVfozTff1BNPPBGz9qxZsxQIBEK3nTt3OhccAAAAAIAoWBgHPCzWxalL/NkaNaggxisA5xlxHmtpjfYKAAAApKKCggLV1tZGPFZTU6OcnJyjLpP+ySefaPTo0erRo4fefvttHXfccTFrZ2dnKz8/P+IGAAAAAEAysTAOeFxHi+Ozvz2M73WG56zdVu92BAAAADhkxIgR+uCDD7Rnz57QY6tWrVJ5ebkyMo78c8LevXt17rnn6sYbb9SDDz6o3NxcN+ICAAAAABATC+OAh93zw1NV7I9+ufQJJ5V0cRogvpoGLqsOAACQLkpKSjRx4kTNnj1bzc3Nqq2t1bx58zRjxoyI1/3pT3/SV77yFV1zzTXuBAUAAAAAIAEsjAMeNuGkEv3tprND7T9eOtK9MEAC+N57AACA9PLQQw/p888/V2lpqUaNGqWKigpdcMEFWrJkiaZPny5J+uijj1RZWalBgwZF3B544AGX0wMAAAAAcESW2wEAxBZ+ufTRg/lOcbjLp+jfM96O770HAABIL4WFhXrhhReOevzSSy/VpZdeKkm64447dMcdd3R1NAAAAAAALGFhPNVlZkrf+c6R+1L8dndlp686s217u2dPa2MQ672i1UpWDjvC9yGRzG5wcu5YHbNk1XIyR5S6u/c1qeWL75J87UujJEmtYe2Tj/erqEcX/mclVX7/pcJ8AAAAAAAAAAAgzfkMw4j14T9XGYahJ554Qvfdd58qKytDj69fv17XXXedqqqqlJeXp3vuuUcTJkwIPX/33Xfr3nvv1YEDBzRmzBg9+OCDOvbYYyVJdXV1uvbaa7V69Wr5fD5NmzZNM2fOTDhTMBiU3+9XIBBQfn6+czsLACnglfeqNHf5+6oKHAw9VurP0ZxJwzXx5FIXkwEAALiLc0V76D8AAAAAgJnT54qe/cT4K6+8ov/4j//QgQMHlJV1JOa+ffs0adIkPfrooxo/frzefPNNTZ48WZs3b1ZJSYmeffZZPf7441qzZo38fr+uv/56VVRU6LnnnpMkXXbZZSovL9ezzz6rqqoqnX766TrxxBM1adIkt3YVgAe0tBpas7Veu/cdVFGfHI0ZXBBxGXu0mXhyqSYML6GvAAAAAAAAAABASvHsJ8afe+459erVS7m5ubr22mu1efNmSdL999+vl19+Wc8//3zoteeff77OO+88TZ8+XaeffrpuueUWTZ48WZJUW1ur0tJSVVdXq7a2VmeeeaY+//zz0GL7nXfeqb///e8R9WLhr9iB9MOnoAEAAGAX54r20H8AAAAAADOnzxUzHMiUFBdddJG+0/69q2EqKyt1xhlnRDxWXl6uDRs2qLm5WWvXro14vrCwUIMGDdK7776ryspKjRkzJuIT6O3bdqSpqUnBYDDi5imNjVJeXtutsTF+uzuz01dWtw1v795tbQys1EpmDjusZHbLFzmac3N108OrtLdmr96/8yK9f+dF6nXooAI1ezVuxGA15+bGz+nW+CczR6J13RxTr+aKldOr8wEAAAAAAAAAgDTn2Uupd6SqqkrnnntuxGNFRUVavXq1amtr1dLSosLCwqOer6urU1VVlYqLi6M+15H58+dr7ty5zu1AMuzfb63dndnpK6vbhretjoGVWsnMYYeVzG7Zv19Zktovm5F7uCn0lNHePtx2mfXMBGp12E7m+CczR6J17da2w6u5zFJhPgAAAAAAAAAAkMY8+4nxjjQ3N8t89feWlhb5fD41NzdLUsznO3quI7NmzVIgEAjddu7c6dCeAEgVa7fVux0BAAAAAAAAAAAANqTcwnhBQYFqa2sjHqupqVFJSYn69u0rwzC0Z8+eqM/H2rYj2dnZys/Pj7gB6F5qGprivwgAAAAAAAAAAACelXIL4yNHjtSqVasiHlu1apXGjh2rvLw8DR06NOL5qqoqVVdX65RTTtHIkSO1evVqtba2HrUtAHTkuN7ZbkcAAAAAAAAAAACADSm3MH7JJZfo1Vdf1WuvvSZJeumll7Rp0yZNmTJFklRRUaG5c+dq7969OnTokGbNmqVrrrlGubm5GjNmjEpLS7Vw4UK1trZqy5Yt+v3vf68bbrjBzV0C4LKOv0yhzahBBV2SAwAAAAAAAAAAAMmR5XYAq/r376+nn35aU6dOVX19vYYMGaLly5crLy9PkjR9+nR99tlnOvHEE5WVlaXJkydrwYIFkiSfz6elS5fqqquu0p133qm+fftq0aJFGjlypJu7BMADzIvj4e3MjHhL5wAAAAAAAAAAAPAyzy+Mn3322dq8eXPEY9/61reOeqxdRkaGFi1apEWLFkV9/ktf+pLeeOMNp2O6JyNDOuusI/el+O3uyk5fdWbb9nZWlrUxiPVe0WolK4cd4fuQSGY3hGW8++Kv69cvbdb/DDhZktTq86nUn6P6UWNVkNczfk6rY5asWk7mSLSum2Pq1VxmqTAfAAAAAAAAAABIcz7DMAy3Q6SSYDAov9+vQCCg/Px8t+MAcEhLq6E1W+u1e99BFfXJ0ZjBBXxSHAAAAAnjXNEe+g8AAAAAYOb0uaLnPzEOAF0hM8OnsScc63YMAAAAAAAAAAAAJAHXbQUAAAAAAAAAAAAApDUWxlNdY6N03HFtt8bG+O3uzE5fWd02vL17t7UxsFIrmTnssJLZLU7OHbfGP5k5ktVXTvJqrlg5vTofAAAAAAAAAABIc1xKPR3U1lprd2d2+srqtuFtq2NgpVYyc9hhJbNbnJw7bo1/MnMkWtdubTu8msssFeYDAAAAAAAAAABpjE+MAwAAAAAAAAAAAADSGgvjAAAAAAAAAAAAAIC0xsI4AAAAAAAAAAAAACCtsTAOAAAAAAAAAAAAAEhrLIwDAAAAAAAAAAAAANJaltsBYFNGhjRq1JH7Uvx2d2WnrzqzbXs7K8vaGMR6r2i1kpXDjvB9SCSzG5ycO1bHLFm1nMyRaF03x9SrucxSYT4AAAAAAAAAAJDmfIZhGG6HSCXBYFB+v1+BQED5+fluxwEAAAAAeADnivbQfwAAAAAAM6fPFfl4GgAAAAAAAAAAAAAgrbEwDgAAAAAAAAAAAABIayyMp7r9+6VBg9pu+/fHb3dndvrK6rbh7dpaa2NgpVYyc9hhJbNbnJw7bo1/MnMkWtfNMfVqrlg5vTofAAAAAAAAAABIc1luB4BNhiFt337kvhS/3V3Z6avObNvebm21Ngax3itarWTlsCN8HxLJ7AYn547VMUtWLSdzJFrXzTH1ai6zVJgPAAAAAAAAAACkOT4xDgAAAAAAAAAAAABIayyMAwAAAAAAAAAAAADSGgvjAAAAAAAAAAAAAIC0xsI4ADispfXId0W/s7XexSQAAAAAAAAAAACQWBgHAEet3LhL4+98I9T+yZJ17oUBAAAAAAAAAACAJCnL7QCwyeeThg8/cl+K3+6u7PRVZ7Ztb2dkWBuDWO8VrVayctgRvg+JZHaDk3Pni1r7mpo17ZkNMiR9eOxASVKrzxe6v+39Xfrm6BM6nyveGNrZtrOZ3BxTU66WVkNNQ4aqudXQpq31GjWoQJleO9a8Oh8AAAAAAAAAAEhzPsMwjPgvQ7tgMCi/369AIKD8/Hy34wDwiJZWQ2cufE1VgYNRn/dJKvHn6O1bzlVmBgugTnvlvSrNXf5+RP+X+nM0Z9JwTTy51MVkkVpaDa3ZWq/d+w6qqE+Oxgwu4HgAACBNcK5oD/0HAAAAADBz+lyRT4wDgAPWbK3vcFFckgxJVYGDWrO1XmNPOLbrgnUDr7xXpeuW/FPmv/LaFTio65b8U/ddOsITi+OpsngPAAAAAAAAAEA64jvGAcABu/d1vCjemdchMS2thuYuf/+oRXFJocfmLn9fLa3uXhylffHe/McT7Yv3r7xX5VIyAAAAAAAAAAC6BxbGU93+/dJJJ7Xd9u+P3+7O7PSV1W3D27W11sbASq1k5rDDSma3ODl39u/XhCnn6a8PTlXO4YPKOXxQf31wqv764FQdsz8Qup9zuO3y2Z3OFW8MkzX+Xv09s3+/moYO02O/ueqofm9vr3hwqh77zVVa+/6nXZfLpKWhUSeeN1YrohwP2V9kPPG8sWppaHQtIwAAAAAAAAAA6Y5Lqac6w5Def//IfSl+u7uy01ed2ba93dpqbQxivVe0WsnKYUf4PiSS2Q1Ozh3DUO7HH+hESRlG2yeVT6zbIUnKMIzQ/dL8bI0ZXND5XPHG0M62nc3k5piG9bvvi7dt72tz+0UXP6m/dmudyndvlxR5PJgzrt5ap/Kv5rmSEQAAAAAAAACAdMcnxgHAYb4OHp/97WHKzOjoWSTTcb2zXXvvmoYmR18HAAAAAAAAAACsY2EcABx0zw9PVbE/+iLshJNKujhN9xHvzw1GDYrzSf0kSnRR3s3FewAAAAAAAAAA0h0L4wDgoAknlehvN50dav/x0pHuhelmzIvj4W03P6mf6KK8m4v3AAAAAAAAAACkOxbGAcBh4Yuwo+N9pzgcEe2T+h19cr+rhR8PXl28BwAAAAAAAAAg3bEwDgAe1tJqhO6/s7XexSTeZv6k/qM/Hh3R9oqifG8u3gMAAAAAAAAAkO6y3A4Am3w+qazsyH0pfru7stNXndm2vZ2RYW0MYr1XtFrJymFH+D4kktkNTs4dq2OWYK2/vr9Lv35ps5bkF0mSrvl//9TLxxTrmNwe6hWtlpM5Eq3r5piacmVmHmmXn1DoXi6zsJwvTj9LBx8boNZWQ49eNabt8umPeCAjAAAAAAAAAABpzmcYhhH/ZWgXDAbl9/sVCASUn5/vdhwAaeqV96p03ZJ/yvwLun3p9L5LR2jiyaVdHQsAAAAd4FzRHvoPAAAAAGDm9Lkil1IHAI9paTU0d/n7Ry2KSwo9Nnf5+xGXWQcAAAAAAAAAAEDHuJQ60AktrYbWbK3X7n0HVdQnR2MGFygzo+svg+yVHHDWmq31qgoc7PB5Q1JV4KDWbK3X2BOO7bpgAAAAAAAAAAAAKYpPjKe6Awek0aPbbgcOxG93Z3b6Kuy5v67dovNuf1m5Z47VoG+foyt//6bOu/1lBU4+NXqt+nprYxArV1itpOewI9b7euWYdHLuJDhmiY7/V84/Ty88dqOyDzcp+3CTXnjsRr3w2I3K3x8M3c8+3KTd+w4etW34e7U07lfD176uPSedqjXrPpLR2X736u8Zr+aKldOr8wEAAAAAAAAAgDTHJ8ZTXWurtHbtkftS/HZ3Zaevwrad8eR6GZJO2fWRJCnDMLR77wH5N/4req3mZmtjECtnWK2k57AjfB+iva8Xjkkn506CY5bo+Pd9/1/qq7YxlY6McZbRGjHeRX1yOsyx8t3P9euXN+n1dzdIkq59dI3+2cl+b2luUeYX267+uEajBhWE2q6Oaar8/kuF+QAAAAAAAAAAQJrjE+OARbG+91lSl33vs1dyIHliXRS/xJ+tMYMLOnx++tMbtCvQFPW5lRt3JZzhlfeqNP7ON0LtKx95J6ItRR5rq7fUcewBAAAAAAAAAADPYWEccNjabfVuR5DknRywp6PF8dnfHhbz++RjLU3/+uVNCS1ev/Jela5b8s+jFtirw9orN+46auH8zIWv6ZX3quLWBwAAAAAAAAAA6CosjAMO+58ttZ74xGxNQ/RPC7draTVU+UmdXtjwmSo/Sc1P+drZh3ifco71fFf13T0/PFXF/uyoz004qaTTdXcFmrRma+w/nGhpNTR3+ftxr0wQ7ZPpuwIHdd2Sf7I4/oXw4+MdU7/zaXsAAAAAAAAAALoG3zEOdKCl1dCarfXave+gijKaNTbB7f7w5lb9ZcPnej2sTuYX91dvqdPXh/XSuu172ur2ydHIsr6R7cKe6hn2+lGDCkLbh9eKp25fU4evX7lxl/7z1W2qChwMPVbqz9GcScM18eTSo/a/sHe2ZEi1jU3RM8fYh3e21mt02HvH648xgwsiPgkdMQ5hz7/yXpXmLn+/U/uwrbZRz7/9gd74YrsrH3lHJf7s0Jit3Lir7fu5w57v1XezLjz1eOX36qGn1uzQruCRxeBBOa2hWuYxi+eo/SvKDm074aQSnTusWPplW/uPl46U7o1dK9H3/XzPflV+og7HsLXViOjbjnS0cO6TNHf5+zr3K8Uxx9cKc1/Fmivtr29vV35Sq9ZeB0LHcLzjLLw/4h3/sfbplfeqtPC5daFj6SdL1umfX9yPdpwdc9xHEcdwrP13si+t1IrVV3ZzeZGT/Q50Z8wldBbHDgAAAAAAcAoL40AU5oXjXocOapOF7cMvNf3dxX/Xy1/cv/KRd9SU/a7CPxSa4VNEO+/wQW0Me334gm14rXgWvPKBHq3cFto23PSnN2h/z5yIx9o/5XvfpSMk6ahF53DmzLH2Id5CoLk/whe3O1r8Pv+UUt3/1tajFmWt7EOvQ4ci2uFjNv3pDUfVrm88rIf+sS1qrergkVrmMYsl2v4N7mVEbBv+D7+jY3ynuHkBNp6bn/tfGTHG8JhePRKsFJ0hqSpwUKfNf1X1jUf6x/zHC4mK1lex5or5WLvq0bU6EHbMxzvOzP0RzvxcR/vUfin6nEPRr94w7ekNRz0WfgyH10vkD0ESZadWIn3V2Vxe5GS/A90ZcwmdxbEDAAAAAACc1C0Xxg8cOKDp06drxYoVamlp0cUXX6yFCxfK50vRTx4UFlprd2cJ9NWhltaoC8d1vfITbhth7epgU8Rz5sW2aO3w11cHmjqsFS9H+7Z9crLUU5JRWKi9+w/H/JTvz5e+q0AHr+nsPrTfb18IjNUf7QuDFeMGd7j4/ce3tkbNZWUfzDnCx8yI8nw8sfo92hxsXzQ1ZzxqW/P2MWrlHIp9fETsb5wx3HvgcId1Emm3C18Ulzpe+I2lo77qaK706pEZ+uOGjnLFO85iXdG8o2M2fJ/Ml6LvaBzM7fBP208YXhK6OkK0/XeyLxOpFWsc7ObyIif7HejOmEvoLI4dAAAAAADgNJ9hmJdH0t/UqVN16NAh/eEPf1BjY6PGjx+vyy+/XDfccEPcbYPBoPx+vwKBgPLzE180Q2poaTV05sLXErqEdKrwSSrx5+jtW87Vmq31+tED/+N2pITE+sRuKgjvd/PlPuMdZ7G2NUvFYzaZ++eT5LNw7Dh1nJn3qfKTOttz7alrTtOYwQVddqzYOWbt5PIiJ+co0J0xl9BZqXrscK5oD/0HAAAAADBz+lwxw4FMKaWhoUGPPfaY7rjjDmVlZcnv92vWrFl6+OGH3Y4GD1iztT6lFhgT0X5J6/bvZkwVqbwoLkX2u1m84yzWtlZrJUP7Pz8fk9tDnfmn6GTunyFrx45Tx5l5n5yYa7v3HezSY8XOMWsnlxc52e9Ad8ZcQmdx7AAAAAAAgGTodpdSX7dunQYPHqyCgiPf1VteXq733ntPLS0tyszMjHh9U1OTmpqOfD9sMBjssqzoeqm0cGzV7n0HVdQnJ/4L4ahox1Six1kir+uKY/aYXj0iLq1e8sV3e0rSdUv+KZ8U97L10Xhl/5zUnteJuVbUJ8eVY8XOMevUdm5zst+B7oy5hM7i2AEAAAAAAMnQ7RbGq6qqVFxcHPFYUVGRmpubFQgEIhbMJWn+/PmaO3duV0a05sAB6dvfbrv/8sttP2O1e/Xq2nxekkBfnf2T7+vpqqCumDJXTT2yQ5tmH27SY3+aI0m6Ykrb8ZBou+KC2br/L78OPRdeN5pY72WuZSVHxpSlGn31JVq6Y48uvnCODsbJYUf4PsTLHK8/uiKjOdeVU+bKsJAzVq2MKUuls89ue+EXczDWoml4Ld9lL0cet0uXSv/+7x3WsnLsWOn3+y4apuFX/1CHW1r1yWN/0qhBBcr8t+9Ikv646GH9+qXNWvDgLaHaecf0Vn3j4VglJSW2eJxoXyUyH7riWGvPO2ZwgUr9OdoVOKieFudD++VhxwwuSPiTcHb7Mt7rOrvQn6p/jGOnrwAcwVxCZ3HsAAAAAACAZOh2C+PNzc0yf616S0uLJMnnO/qiwLNmzdJNN90UageDQQ0YMCC5Ia1obZXefPPIfSl+u7tKoK/8a1bpNEmZpmMkwzB02s73QvclRbR9pnb481lG61HPxRLrvaLVam9nGoaMGDlajs+X7803NSIsc3ia9vYxuT0U2H+4U58AjrYPsTLH6o8Mn2QY1j6JbGUfzP1sHsNofZloLSmy383HWfiiqblyeK2WgcdEHrfNzTFrWT124gkt0Jb1VeaaVZKkwkF9JRmhHN8cVqzzhhYpc05b7cevHKWvD+uvs/7r9aj7F1F3cEGUZyMl2lcdHVvx9rkzx1k05n3KzPBpzqThum7JP5UZYz6Yj7v2/wrNmTRcmRm+mPsf7X1jsVMr3rZ2cnmRk/0OdGfMJXQWxw4AAAAAAEiGbvcd4wUFBaqtrY14rKamRjk5OfL7/Ue9Pjs7W/n5+RE3dA+xvjs5/Lnf/vBUFfsjP4laEtbuzHcwd/Re5lpW2pkZR1r3/PBUlfgjP2FT4s/RHy4doQX//tWotZwSr67vi9s13xgc9fXtz/9k3GCVOrgP4WPY1j+d/3RxR/0e/lj7pcgTHbOOJFrL6niaF2jjZWhX/qVj1TMrI26mROq21+6oVkeZ2+/Hm8OxjjMrOtqniSeX6r5LRxz1+6Fd9N8dObrv0hGaeHKppMTG14m+jFerM+OQaC4vcrLfge6MuYTO4tgBAAAAAADJ0O0WxkeMGKEPPvhAe/bsCT22atUqlZeXKyOj23UHOhBt4Thc+GLWhJNK9Lebzg61H/3x6Ih2UX7kwpf53+/itcPfy1zLvJhrXmTraEFuwkklevuWc/XUNafpnh+eqqeuOU1v33KuJp5cGlrMi7X/VvehXbSFQPNr2xcGZ31neNQc4c/b2YfwhW/zmJnHtG9ej4htS/05unH8ibrnh6fqxvEnqjjGuHSko4yJbNtRrVjjb/U4NC/QdjZTR+NnpW5HtWLNlWjzIVqOjo6zWP/ObqWvJp5cGnEs/fHSkaH70X53tB/D5hrJ7stEaiU6DnaPHa9wst+B7oy5hM7i2AEAAAAAAE7zGebrincDkydPVr9+/bR48WLt3btX5557rn71q1/pggsuiLttMBiU3+9XIBDwxqfHGxul3r3b7jc0tP2M1c7L69p8XmKxr1p65WrN1nrt3ndQRRnNGnvKIEnS6v/d3vYdy/l9EqrVUrVLmaUloW2/Pqy/1m3f01a3T45GlvWNbBf2VM9j8qO+l7mWOUdLqxFqH/V8dbVUXHwkY5xjoaXVCO1/Ye9syZBqG5uiZ46xD+/8zyaNPm1YhxnN/TFmcEHEp3/Cc0R7vrP7MKYoO/ExDO7Tmt1NHWfc19Dpfj9q/2LlilcrRg6rx2HEPtr4PWNn/MzMtWLNFfOxVvmvbWrtlXdk/OMcZ+H9Ee/4j7tP4f1nHsMYfRdv/53sy87Oq071R4pxst+B7oy5hM5KpWPHc+eKKYb+AwAAAACYOX2u2C0Xxmtra3X11Vdr1apVysvL080336zrr78+oW09d7LOwnji7PSV1W3D2xYXpGO+V7xFNSdz2OHQQmBSOTl3rIyZk+NvruVkjkTrujmmXs1llgrzAQAA2Oa5c8UUQ/8BAAAAAMycPlfMciBTyiksLNQLL7zgdgwAAAAAAAAAAAAAQBfolgvjaSc311q7O7PTV1a3DW9bHQMrtZKZww4rmd3i5Nxxa/yTmSPRunZr2+HVXGapMB8AAAAAAAAAAEhj3fJS6nZweTcAAAAAgBnnivbQfwAAAAAAM6fPFTMcyAQAAAAAAAAAAAAAgGexMA4AAAAAAAAAAAAASGssjKe6gwelf/u3ttvBg/Hb3ZmdvrK6bXh7715rY2ClVjJz2GEls1ucnDtujX8ycySrr5zk1Vyxcnp1PgAAAAAAAAAAkOb4jnGLPPe9Z42NUu/ebfcbGtp+xmrn5XVtPi+x01dWtw1vV1dLxcXR61rNaa6VzBx2hO9DvMxuHZNOzh0rY+bk+JtrOZkj0bpujqlXc5mlwnwAAAC2ee5cMcXQfwAAAAAAM75jHAAAAAAAAAAAAAAAC1gYBwAAAAAAAAAAAACkNRbGAQAAAABAVAcOHFBFRYXKysrUv39//exnP1O0b2Rbv369TjvtNJWVlWn48OFauXKlC2kBAAAAAOgYC+MAAAAAACCqmTNnqrW1VZ988ok2btyo119/Xffee2/Ea/bt26dJkybp9ttv1/bt23XfffdpypQp2rVrl0upAQAAAAA4GgvjAAAAAADgKA0NDXrsscd0xx13KCsrS36/X7NmzdLDDz8c8bqnnnpKo0eP1vjx4yVJZ511lsaNG6dnnnnGjdgAAAAAAESV5XaAVNN+ybhgMOhyki80Nh65b84Urd3SkvxMXmWnr6xuG27fvo7rWs1prpXMHHaE70O8zG4dk07OHStj5uT4m2s5mSPRum6OqVdzmaXCfAAAALa1nyNGu8x4qlq3bp0GDx6sgoKC0GPl5eV677331NLSoszMTElSZWWlzjjjjIhty8vLtWHDhg5rNzU1qampKdQOBAKSPHSuDQAAAABwndPn2j4jnc7au8Cnn36qAQMGuB0DAAAAAOBBO3fuVP/+/d2O4Yinn35aDzzwgF599dXQY4cPH1bPnj1VV1cXWjCfOHGiLrnkEl122WWh1z3wwANavny5li1bFrX2L3/5S82dOze5OwAAAAAASAuffPKJvvSlL9muwyfGLerXr5927typPn36yOfzuR0nqmAwqAEDBmjnzp3Kz893Ow6QVBzv6E443tHdcMyjO+F4T32GYWjfvn3q16+f21Ec09zcfNRf5bd8cYWb8PPhjl4X65x51qxZuummm0LtvXv3qqysTDt27JDf73ciPuAqfq8jHXFcI91wTCPdcEwjHQUCAQ0cODDiSmZ2sDBuUUZGRsr89X9+fj6//NBtcLyjO+F4R3fDMY/uhOM9taXbgm5BQYFqa2sjHqupqVFOTk7Evnb0upKSkg5rZ2dnKzs7+6jH/X4/cwBphd/rSEcc10g3HNNINxzTSEcZGRnO1HGkCgAAAAAASCsjRozQBx98oD179oQeW7VqlcrLyyP+UWLkyJFatWpVxLarVq3S2LFjuywrAAAAAADxsDAOAAAAAACOUlJSookTJ2r27Nlqbm5WbW2t5s2bpxkzZkS87pJLLtGrr76q1157TZL00ksvadOmTZoyZYoLqQEAAAAAiI6F8TSUnZ2tOXPmRL0sHZBuON7RnXC8o7vhmEd3wvEOr3rooYf0+eefq7S0VKNGjVJFRYUuuOACLVmyRNOnT5ck9e/fX08//bSmTp2qoqIi3X777Vq+fLny8vISfh/mANINxzTSEcc10g3HNNINxzTSkdPHtc8wDMORSgAAAAAAAAAAAAAAeBCfGAcAAAAAAAAAAAAApDUWxgEAAAAAAAAAAAAAaY2FcQAAAAAAAAAAAABAWmNhPM0cOHBAFRUVKisrU//+/fWzn/1MfI080sH1118vv9+vQYMGhW7bt2+XJK1fv16nnXaaysrKNHz4cK1cudLltEDnGIahxx9/XGPHjo14PN4xfvfdd2vIkCE6/vjjdeGFF6qurq4rYwOd1tEx37t3bx1//PGh3/dTpkyJeJ5jHqnmtdde0xlnnKEhQ4bohBNO0OLFi0PPbdu2TRMmTFBZWZmGDBmiJUuWRGz71FNPadiwYerfv7/OOeccbd26tavjA45J9HyV/79HKknkuD58+LB+9atf6atf/aoGDBigb3zjG9qwYYM7gYE4rP7bYmNjo4477jgtWLCgC1MC1iR6XBuGoTvvvFNDhw7VwIEDNWTIEB0+fNiFxEBsiR7Tf/nLX3TSSSdp4MCBGjNmjN5++20X0gKJ6ejfCcM5ca7IwniamTlzplpbW/XJJ59o48aNev3113Xvvfe6HQtwxIwZM7Rt27bQraysTPv27dOkSZN0++23a/v27brvvvs0ZcoU7dq1y+24gCWvvPKKvva1r+lXv/qV9uzZE3o83jH+7LPP6vHHH9eaNWu0Y8cOlZSUqKKiwq3dABLW0THf7u233w79vv/Tn/4UepxjHqnohRde0MMPP6yPP/5YK1eu1MKFC/XKK6+opaVFkyZN0iWXXKLt27dr2bJlmjZtWmixpLKyUrNnz9aKFSv06aefasKECUf9oQiQShI5X+X/75FqEjmuP/zwQzU3N+t//ud/tHPnTl166aWaNGkSiy3wJKv/tvi73/0u6v/PA16S6HE9b948LVu2TH//+9+1Y8cOvfXWW8rMzHQhMRBbIsf01q1bdfnll+uxxx7Tjh07NG/ePJ1//vkKBAIupQY6Fu/fCSXnzhV9Bh8nThsNDQ0qLi7Wzp07VVBQIElaunSpbrvtNq1fv97ldIA9119/vU444QTdeOONEY/ff//9evnll/X888+HHjv//PN13nnnafr06V0dE+i05557Tr169VJubq6uvfZabd68WVL8Y/z000/XLbfcosmTJ0uSamtrVVpaqurq6tB/CwAv6uiYl9o+Mb5z50717dv3qO045pEObrrpJmVlZWn8+PG65ZZbIv5ffdq0acrMzNRdd92liy++WOXl5aH/p2lublZxcbFee+01nXLKKW7FBzol0fNV/v8eqcTOv8MUFBTo7bff1vDhw7siKpAQq8f0559/rnPOOUcnn3yyRo8erZ///OddHRmIK9HjuqamRoMHD9amTZs0YMAAt+ICcSV6TC9btky/+tWvtHbt2tBj/fv311/+8heNGjWqy3MDscT6d8J2Tp0r8onxNLJu3ToNHjw44h+Fy8vL9d5776mlpcXFZIAzjjnmmKMeq6ys1BlnnBHxWHl5OZelQ8q56KKL9J3vfOeox2Md483NzVq7dm3E84WFhRo0aJDefffdpGcG7OjomJekjIwM+f3+ox7nmEe6qKmpkd/vj/v/Mebns7KyNGLECP4/Bykp0fNV/v8eqaSz/w6zf/9+7d+/P+r/7wBusnpMz5gxQ7Nnz1afPn26MiZgSaLH9YsvvqgzzzyTRXF4XqLH9De+8Q3t3r07dKnpp556SgUFBfra177W5ZmBeGL9O2E7p84VWRhPI1VVVSouLo54rKioSM3NzVweA2lh1qxZGjhwoM455xz99a9/ldTxcc/3zSJdxDrGa2tr1dLSosLCwqjPA6nK5/PphBNO0Iknnqirr75an3/+uSRxzCMtrFmzRi+++KIuvvjiuP8fw//nIJ0ker7KcY9U0tl/h7n11lt19tln6/jjj092RMASK8f0k08+qbq6Ol1++eVdGRGwLNHj+t1331VZWZl+8pOfaPDgwTr11FP1+OOPd3VcIK5Ej+m+fftq0aJF+uY3v6nevXvriiuu0AMPPKCePXt2dWTAEU6dK7Iwnkaam5tlvjJ++18I+Xw+NyIBjvntb3+rXbt2aevWrfqP//gPff/739e6des6PO455pEuYh3jzc3NksQcQNrZs2ePtm7dqnfeeUe5ubmaNGmSDMPgmEfKe/rpp3X++efrscce0+DBg+P+fwz/n4N0kuj5Ksc9UonVf4dpbGzUFVdcoTfffFNPPPFEl2QErEj0mN66datuvfVWPfroo/x+huclelzv27dPy5cv15QpU7RlyxY9+uijuvnmm/Xmm292aV4gnkSP6TVr1mj27Nlav3699u3bp5deekkXXXSRtm3b1pVxAcc4da7IwngaKSgoUG1tbcRjNTU1ysnJ4fJcSHkZGW2/rjIzM/Wd73xHP/rRj/SXv/ylw+O+pKTEjZiA42Id43379pVhGNqzZ0/U54FU1f473+/365577tEHH3ygLVu2cMwjZbW0tGjq1KmaO3euVqxYofPPP19S7N/xiTwPpJJEz1c57pFKrPw7zCeffKLRo0erR48eevvtt3Xcccd1ZVQgIYkc0wcOHNC///u/a+HChVxyGikh0d/VhYWFmjhxosaPHy+fz6dTTz1Vl156qZYtW9bVkYGYEj2m77nnHv30pz/VqaeeKp/Pp/Hjx+vCCy/UAw880NWRAUc4da7IwngaGTFihD744IOIfyxetWqVysvLQ//ADKSL5uZm9ezZUyNHjtSqVasinlu1apXGjh3rUjLAWbGO8by8PA0dOjTi+aqqKlVXV+uUU07p6qhAUrS2tqq1tVU9e/bkmEfKmjFjhrZs2aK1a9dGHKvx/j/G/PyhQ4e0bt06nXbaaV0THHBQouer/P89Ukmix/XevXt17rnn6sYbb9SDDz6o3NxcN+ICcSVyTL/66qvavHmzKioqdMwxx+iYY47Rk08+qblz52rChAluRQc6lOjv6uHDh2vfvn0R22ZkZCgnJ6fLsgKJSPSYPnTokLKysiK27dGjhw4dOtRlWQEnOXauaCCtnH/++ca1115rHD582KipqTG++tWvGs8//7zbsQDbXnnlFaOlpcUwDMNYsWKF0bdvX2Pjxo3Gzp07jWOOOcZ49dVXDcMwjP/+7/82ysrKjIaGBjfjAp32+uuvG0OHDg214x3jd955pzFq1Chjz549RlNTk3HFFVcYM2bMcCU70BnmY/7jjz82PvjgA8MwDOPgwYPG1KlTjXHjxoWe55hHqjlw4ICRmZlpfP7550c919jYaJSWlhpPPPGEYRiG8c477xilpaXGzp07DcMwjKVLlxqDBg0ydu7caTQ3Nxu/+MUvjAsuuKBL8wNOSuR8lf+/R6pJ5Li+//77jW9+85vuBAQs6sy/LV5xxRXG/PnzuyYg0AmJHNf79+83SktLjZUrVxqGYRjvv/++UVpaavzrX/9yITEQWyLH9DPPPGN8+ctfNrZv324YhmGsX7/eOPbYY41//OMfLiQGEmP+d8JwTp0rZsVfOkcqeeihh3T11VertLRUeXl5uvnmm3XBBRe4HQuw7a677tJll12m3NxcDRw4UM8//7yGDx8uqe37OqdOnar6+noNGTJEy5cvV15ensuJAWf0798/5jE+ffp0ffbZZzrxxBOVlZWlyZMna8GCBS6nBjqvvr5eP/rRj3TgwAFlZ2frvPPO05///OfQ8xzzSDVbtmxRa2vrUX/BPHToUK1YsULLly/XNddco5tuukklJSV68skn1b9/f0nShRdeqI8//lhjxoxRa2urzj77bD388MNu7AbgiI7OV5csWaJ33nlH99xzT9z/9wG8JpHj+qOPPlJlZaUGDRoUse2tt96qa665xp3gQAcSOaaBVJPIcd2rVy8999xzmjp1qmpqanTcccfpoYce0te+9jW34wNHSeSY/v73v69gMKiJEyeqsbFRffv21f3336/TTz/d7fhAwpJxrugzDNM3lQMAAAAAAAAAAAAAkEb44mkAAAAAAAAAAAAAQFpjYRwAAAAAAAAAAAAAkNZYGAcAAAAAAAAAAAAApDUWxgEAAAAAAAAAAAAAaY2FcQAAAAAAAAAAAABAWmNhHAAAAAAAAAAAAACQ1lgYBwAgjc2ePVuPPPLIUY+/8cYbOvPMMy3VevDBB3XllVdazvCLX/xCv/zlLy1t87e//U1nn3225fcCAAAAAAAAACAaFsYBAEgz27Zt08cff6yPP/5YO3fu1Pbt20Ptzz77LO72Z599tt544w3L7zto0CBt27YtodfeeOONKiwsjLj5fD59+OGHlt8XAAAAAAAAAIB4stwOAAAAnHXttdeqtrY21N60aZNefPFFSdLIkSP1xz/+0a1oIXfddZfu+v/t3U9I1FsbB/CnNyYkClu0GI2GhgiGoSKKoEVlQVSbkCIsEULIbTt3ZYjRquCCUEH0Z1Fg1KJEijbBDEmMSQUVEaHlJoiIIcuwMvQuLrf3Fceu9t779vLj89n9OL/nnOesv5xzfvvt+/fQ0FCsW7culi9f/gu7AgAAAAAgqQTjAJAwt2/fjog/rkvv7++PefPmRV1dXaxZsya+ffsWIyMjMTo6Om39x48f48OHD7Ne92frIiLOnDkTjY2NMXfu3J+qBwAAAACAHxGMA0ACNTc3x+DgYDQ0NMSXL1+iqakpDhw4EJlMJtra2mJ0dDSy2WzF2sHBwVlfaf7+/fsol8vx4sWLWL169axqS6VSXLx4MR4/fjylj9bW1sjlctHS0jKrOQEAAAAA4D8JxgEgYQYGBuLOnTvx8uXLSKVSEfFHUJ7NZqNcLkdjY2MUCoU4cuTIlNpisRipVCquXLkSra2tM16zu7s7Fi9eHF1dXbF3794Z1/X29kZDQ0Ncvnw50un0pLH58+dHLpeLpUuXzng+AAAAAACo5F+/ugEA4O+1YMGC+Pz586Rrzd++fRtVVVXx6dOnGBgYiNevX1es/fPt74mJibh169aM1hsfH4/Ozs7o6uqK/v7+ePLkyV/WjI2NRWdnZ+zevTsuXLgQ27dvn/JPTU1NtLS0xI4dO2bUBwAAAAAATMeJcQBImHQ6HUePHo3169fH1q1b4+vXr3H37t04f/58FIvFOHHiRAwPD0d1dfWkukuXLsW7d++iqakp8vl81NfXR6lUiiVLlvxwvePHj0cul4tt27bFqVOnYt++fdHX1xcLFy6s+P/Q0FBs2bIlstls3Lt3L1asWPG37R0AAAAAACoRjANAAh06dCj2798fT58+jVQqFadPn/4eVNfX10+5Sr2npyfa29ujUCjEnDlzYu3atXHs2LHYtGlT3LhxY9p3w8+ePRtXr16N3t7eiIjYtWtXPHjwIDZv3hzd3d2RyWSm1Cxbtix6enpi5cqVMT4+/g/sHgAAAAAAJnOVOgAkVKFQiLGxsdi4ceOU09tVVVVRU1MTERHDw8PR0dER169fn/Sed3Nzcxw+fDgePnxYcf5Xr17FuXPn4ubNm5NOn7e3t8eePXvi+fPn0/a2atWqKBaLUVdXV3G8trY2du7cOeO9AgAAAADAjzgxDgAJ1dfXF+l0uuL73Rs2bIhr165FRER1dXX09/dXnOPgwYPTzp/NZuP+/fsVx9ra2n6i43/L5/ORz+f/qzkAAAAAAOBPTowDAAAAAAAAkGhOjANAgnV0dMTJkyenHX/06NH3K9V/hVKpFIsWLZp2/NmzZ1FbW/u/awgAAAAAgESaMzExMfGrmwAA/v+Vy+UYGRmJTCYzq7o3b95EREQ6nf4n2gIAAAAAgL8kGAcAAAAAAAAg0bwxDgAAAAAAAECiCcYBAAAAAAAASDTBOAAAAAAAAACJJhgHAAAAAAAAINEE4wAAAAAAAAAkmmAcAAAAAAAAgEQTjAMAAAAAAACQaIJxAAAAAAAAABJNMA4AAAAAAABAov0OWW0Hr7D7Q/YAAAAASUVORK5CYII=",
|
|
"text/plain": [
|
|
"<Figure size 2000x4500 with 18 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"\"\"\"\n",
|
|
"1. 이상치 시각화 (1)\n",
|
|
"\n",
|
|
"각 교차로ID별로 현시시간의 빈도를 그렸습니다.\n",
|
|
"예를 들어, 교차로ID가 5031인 경우에 대해서는 현시시간이 35인 경우가 4186번 존재했으므로 (35,4186)에 파란 점이 찍혔습니다.\n",
|
|
"\n",
|
|
"그림에서 빨간 점선은 이상치가 아닌 정상 현시시간을 가지는 부분을 의미합니다.\n",
|
|
"시간계획 데이터에서 규정된 현시시간들에서 1의 오차를 허용한 값들은 이상치가 아니라고 정하고 (정상 현시시간), 1보다 큰 오차를 가진다면 이상치라고 정했습니다 (이상 현시시간).\n",
|
|
"그러니까, 아래 그림에서 빨간 점선에 해당하지 않는 파란 점들이 이상 현시시간 값들과 그 빈도를 나타냅니다.\n",
|
|
"\n",
|
|
"해석 : \n",
|
|
"정상 현시시간들은 높은 빈도를 보이는 경우가 많고, 이상 현시시간들은 낮은 (주로 2회) 빈도를 보입니다.\n",
|
|
"정상 현시시간들은 convex하지 않고 안에 구멍이 있는 경우가 있습니다.\n",
|
|
"정상 현시시간에서 많이 벗어나서 그 값이 비이상적으로 커지는 경우도 많이 보입니다.\n",
|
|
"\"\"\"\n",
|
|
"n_cols = 2\n",
|
|
"n_rows = len(inter_nos) // n_cols + 1\n",
|
|
"fig, axes = plt.subplots(n_rows, n_cols, figsize=(n_cols * 10, n_rows * 5))\n",
|
|
"for i, inter_no in enumerate(inter_nos):\n",
|
|
" row = i // n_cols\n",
|
|
" col = i % n_cols\n",
|
|
" ax = axes[row, col]\n",
|
|
" ax.scatter(infos['unique_durations'][inter_no], infos['duration_frequencies'][inter_no])\n",
|
|
" for value in infos['accepted_durations'][inter_no]:\n",
|
|
" ax.axvline(x=value, color='r', linestyle='--')\n",
|
|
" ax.set_title(f'inter_no: {inter_no}')\n",
|
|
" ax.set_xlabel('현시시간')\n",
|
|
" ax.set_ylabel('빈도')\n",
|
|
"plt.tight_layout()\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"k = 2 # context number\n",
|
|
"\n",
|
|
"# 이상치 dataframe, 이상치를 포함한 주변에 대한 dataframe, 정상 dataframe\n",
|
|
"infos['outlier_dfs'] = {}\n",
|
|
"infos['context_dfs'] = {}\n",
|
|
"infos['context_dfs_list'] = {}\n",
|
|
"infos['normal_dfs'] = {}\n",
|
|
"hstr_context = []\n",
|
|
"hstr_outlier = []\n",
|
|
"for inter_no in inter_nos:\n",
|
|
" df = infos['hstr'][inter_no].sort_values(by='수집날짜시각').reset_index(drop=True)\n",
|
|
" outliers = infos['unaccepted_durations'][inter_no]\n",
|
|
" ring_columns = [col for col in df.columns if '현시시간' in col]\n",
|
|
" outlier_indices = df[df[ring_columns].isin(outliers).any(axis=1)].index\n",
|
|
" context_indices = [] # 각 아웃라이어 인덱스에 대해 위아래 네 행의 인덱스를 구합니다.\n",
|
|
" context_indices_list = []\n",
|
|
" for idx in outlier_indices:\n",
|
|
" start_idx = max(idx - k, 0) # 데이터프레임의 시작을 넘어가지 않도록 합니다.\n",
|
|
" end_idx = min(idx + k + 1, len(df)) # 데이터프레임의 끝을 넘어가지 않도록 합니다.\n",
|
|
" context_indices.extend(range(start_idx, end_idx))\n",
|
|
" context_indices_list.append(list(range(start_idx, end_idx)))\n",
|
|
" context_indices = sorted(context_indices)\n",
|
|
" normal_indices = sorted(set(df.index) - set(outlier_indices))\n",
|
|
"\n",
|
|
" df['전이시간여부'] = False\n",
|
|
" for _, row in infos['transition_times'][inter_no].iterrows():\n",
|
|
" hour = row.시작시\n",
|
|
" minute = row.시작분\n",
|
|
" transition_range = ((df['수집날짜시각'].dt.hour==hour) & (df['수집날짜시각'].dt.minute >= minute) & (df['수집날짜시각'].dt.minute <= minute+20))\n",
|
|
" df.loc[transition_range, '전이시간여부'] = True\n",
|
|
"\n",
|
|
" df['이상치존재'] = False\n",
|
|
" df.loc[outlier_indices, '이상치존재'] = True\n",
|
|
"\n",
|
|
" infos['outlier_dfs'][inter_no] = df.iloc[outlier_indices].drop_duplicates()\n",
|
|
" infos['context_dfs'][inter_no] = df.iloc[context_indices].drop_duplicates()\n",
|
|
" infos['context_dfs_list'][inter_no] = []\n",
|
|
" for context_indices_ in context_indices_list:\n",
|
|
" infos['context_dfs_list'][inter_no].append(df.iloc[context_indices_])\n",
|
|
" infos['normal_dfs'][inter_no] = df.iloc[normal_indices]\n",
|
|
" hstr_context.append(infos['context_dfs'][inter_no])\n",
|
|
" hstr_outlier.append(infos['outlier_dfs'][inter_no])\n",
|
|
"hstr_context = pd.concat(hstr_context)\n",
|
|
"hstr_outlier = pd.concat(hstr_outlier)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 9,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABlUAAANVCAYAAADhqHiEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAADGRklEQVR4nOzdfXxcZZ3///dk0rTNzQwUKBRoaTelBhTdIlVUKKgoqwuyQOvyFQVZ8YYsbENss4vgz10toul3Q1gx7irewSLIjaAoLF9QQFa8ARvwrqkmBUKhFWjtTDMpHZKc3x+nuWuSmTPJXHOdOdfr+XjMIydnzsx1nc+55jrXmWvOdcU8z/MEAAAAAAAAAACAnCpsZwAAAAAAAAAAAKAc0KkCAAAAAAAAAAAQAJ0qAAAAAAAAAAAAAdCpAgAAAAAAAAAAEACdKgAAAAAAAAAAAAHQqQIAAAAAAAAAABAAnSoAAAAAAAAAAAAB0KkCAAAAAAAAAAAQAJ0qAAAAAAAAAAAAAdCpAgAAACCnNWvW6IQTTrCdDQAAAACwjk4VAAAAADkdccQRqq+vL/h127Zt0w033GAgR+EXi8UmPD784Q+P2yaVSunjH/+4Dj74YNXU1Og973mPenp6xm1z44036o1vfKMSiYTmz5+v8847T729vSPPf+tb35o0reHHz372s1LsLgAAAOCMmOd5nu1MAAAAAIie9vZ2tbe365lnnrGdlZKLxWL6z//8T51++ukj62pra3XwwQeP/P/Od75T/f39+r//9/9qzpw5+ud//mdt2bJFv//97zV37lxJ0ic/+Um97W1vU0NDg7Zt26Z/+Zd/0Z49e/Tb3/5WsVhMfX19evnllyekf9111+l//ud/9Lvf/U7xeNz8DgMAAACOqLSdAQAAAADIZWhoaOTOi3Ly2te+VosXL570ufvvv18/+9nP9Mwzz+iwww6TJN12221auHChbrnlFv3DP/yDJOnf//3fR15z7LHH6ktf+pLe8pa36JlnntGSJUtUW1ur2trace+9a9cuffvb39bXvvY1OlQAAACAImP4LwAAAAA5NTU16dRTTx35/1//9V/113/919q4caPe+ta3qrq6Wscdd5wefPDBkW0WL16syy+/XM8+++yEDpF0Oq3GxkYdcsghqq6unjDs1cMPP6xYLKannnpKb3nLWzRr1ixt3rw5Zx6HX9Pd3a33v//9qqur0+LFi8d1Sgx78skndeaZZ+qAAw7QnDlzdMIJJ+j73/9+3jj09vZq/vz5uuuuu/JuK0mHHnrolM/dfffdeuc73znSoSJJ8+bN02mnnaYHHnhgytcNDg6qsrJS8+bNm3KbtrY21dfX69xzzw2UTwAAAADB0akCAAAAoGAvv/yyLrnkEl155ZX63//9Xx199NE6++yztWPHDknS//7v/+rTn/60jjjiCD399NN6+umnJUkDAwN673vfq0ceeUQ333yzHnnkEVVWVupv//ZvNTg4OC6NT37yk2pubtavf/1rLViwIFC+LrzwQr3zne/UY489posuukhr167V/fffP/L8xo0b9ba3vU2JREL33HOPHn30UZ166qk655xzdOedd+Z879mzZ2vhwoVKJBKB8vKmN71JyWRSb3zjG/X1r3993HO/+93vdNxxx014zbHHHqvu7u4J6/fu3auf//znuvTSS/WZz3xGyWRy0jR3796tL33pS/rUpz4VKI8AAAAACsPwXwAAAAAK9sILL+jee+/V61//eknSDTfcoAULFui+++7TBz/4QR155JGaN2+eKisrxw2Bdcstt2jjxo3atGmTjjrqKEnSd77zHS1cuFB33XWXVq1aNbLte9/7Xq1evbqgfJ133nn6+Mc/Lkk67rjj9MMf/lC33377yNwm69at08knn6ybb7555DUrVqzQrl27dMUVV+S8u+PQQw/Vr3/960D5ePDBB3XQQQcpnU7rRz/6kT7xiU/oxRdf1BVXXCFJeumll3TQQQdNeN28efOUSqVG/k+lUjr00EO1d+9eVVZW6p//+Z9H3mMyX/va13TAAQfofe97X6B8AgAAACgMd6oAAAAAKNiRRx450qEi+Z0BCxcu1HPPPZfzdffdd59OO+20kQ4VSaqrq9Nf//Vf66mnnhq37Xve856C8/W3f/u34/5/wxveMJKnV155RY888og+8pGPTHjd+eefrz/96U/atm1bwWlO5p3vfKf++q//WitXrtQXv/hFfepTn9I111yjV199VZJ/x05FxcTLsf2HSqurq9OTTz6pX/ziF/r617+uH/3oRzr55JO1Z8+eCa/1PE9f+cpXdOmllzKXCgAAAGAInSoAAAAACjbZnB61tbXau3dvzte99NJLuvfeezVnzpxxj0cffVQvvPDCuG1zzUkSNF9j87Rjxw4NDg5q4cKFE143PLzYX/7yl4LTDOKss87S7t27R+aOSSQS4+5IGbZr165xd7BUVFSooaFBb37zm3XBBRfo4YcfVnd3t7761a9OeO1DDz2kp59+Wh/60IeM7AMAAAAAhv8CAAAAUEIHHHCAzjzzTF1zzTUTntt/npDJ7uSYiWQyqVgspueff37Cc9u3b5ckHXLIIUVNc1g2m5Xkz8siScuWLVNXV9eE7TZt2qTXve51U75PMpnUcccdN+lrb775Zp188smaP39+kXINAAAAYH/cqQIAAADAiFmzZk24c+Wkk07Sb37zGy1ZskQNDQ3jHkEno5+u2tpanXjiifrGN74x4blbbrlFxx9/vLFOlVtvvVVHHHHEyPwyp59+uu6//37t2rVrZJtdu3bpgQce0FlnnSVJGhoamvA+mUxGf/jDH7Rs2bJx64eGhvSDH/xAZ599tpH8AwAAAPDRqQIAAADAiGXLlmn79u2644479Itf/EKSdNFFF2lgYEBnnHGGfvzjH+sPf/iDfvCDH+jMM8+cdDisYmttbdUDDzygD37wg/rZz36mJ554Qi0tLbrxxht17bXX5nztSy+9pLe+9a165JFHcm73jW98Q//f//f/6Re/+IWeeOIJrVu3Ttdff71aW1tH5kv5wAc+oEMPPVSrVq3S448/rscff1yrVq3S8ccfr/e+972SpEcffVTnnnuu7r33Xm3atEn/8z//o/e85z2qq6vTxRdfPC7NJ598Ui+//LLe+ta3ziA6AAAAAPKhUwUAAACAEaeddpo+8pGP6KKLLtLf//3fS/LnEnnkkUeUTCZ1zjnn6MQTT9S//uu/6m/+5m9UV1dnPE8nnXSSHn74Yb3wwgt697vfrVNPPVUbN27UT37yE61cuTLna/v7+/XHP/5RO3fuzLldfX29fvCDH+i0007TypUr9bOf/Ux33323PvCBD4xsM3v2bD3wwAOaO3euTj31VP3N3/yNFi9erLvvvnuk42XZsmWaNWuWLr74Yh1//PFas2aNTjzxRP3qV7+aEKvHH39cs2bN0nHHHTfNyAAAAAAIIuZ5nmc7EwAAAAAAAAAAAGHHnSoAAAAAQu/d73635syZM+njpptusp09AAAAAI7gThUAAAAAodfb26v+/v5Jn1uwYIGSyWSJcwQAAADARXSqAAAAAAAAAAAABMDwXwAAAAAAAAAAAAHQqQIAAAAAAAAAABAAnSoAAAAAAAAAAAABVNrOQKkNDQ3phRdeUF1dnWKxmO3sAAAAAAAAAAAAizzP0+7du3X44YeroiL3vSjOdaq88MILWrhwoe1sAAAAAAAAAACAEHnuued05JFH5tzGaqeK53m66aab9JWvfEU///nPR9Z3dnbqkksu0bZt21RTU6PrrrtO73rXu0aeb29v1/XXX689e/boTW96k2644QYddNBBgdKsq6uT5AcnkUgUd4cAAChEJiMdfri//MILUk1NNNO0mS6ih7IEAG5xqd53aV9dwTE1jxibRXzNIr6hkk6ntXDhwpH+g1ysdar8z//8j9atW6c9e/aosnI0G7t379aZZ56pb33rWzrttNP0yCOP6KyzzlJXV5cOO+ww3Xbbbbrxxhv1q1/9SslkUpdeeqk+9rGP6c477wyU7vCQX4lEgk4VAIBd8fjociJRmgaUjTRtpovooSwBgFtcqvdd2ldXcEzNI8ZmEV+ziG8oBZkyxNpE9ZlMRl/84hd1ww03jFt/yy23aMWKFTrttNMkSaeccopWrlyp7373u5L8u1Q+85nPaN68eYrH4/rc5z6nH/zgB9q5c2fJ9wEAAAAAAAAAALjDWqfKueeeq/e+970T1v/85z/X2972tnHr3vzmN+vJJ5/UwMCAnnjiiXHPH3zwwVq8eLF++9vfGs8zAAAAAAAAAABwl7VOlals27ZNhx566Lh18+fP144dO/Tyyy9rcHBQBx988KTPT2bv3r1Kp9PjHgAAAAAAAAAAAIUKXafKwMCAPM8bt25wcFCxWEwDAwOSNOXzk7nmmmuUTCZHHgsXLjSTcQAAAAAAAAAAEGmh61SZN2+eXn755XHrXnrpJR122GE68MAD5Xme/vKXv0z6/GSuuOIKpVKpkcdzzz1nLO8AAAAAAAAAACC6Km1nYH9vfOMb9dhjj6m5uXlk3WOPPaa///u/V01NjV7zmtfoscce0xlnnCHJHy7sz3/+s97whjdM+n6zZ8/W7NmzS5J3AAAKMneu9PTTo8tRTdNmuogeyhIAuMWlet+lfXUFx9Q8YmwW8TWL+JatmLf/WFol9vDDD+sTn/iEurq6JElbt27VcccdpzvvvFPveMc7dO+996qxsVG///3vVVNTo2uvvVbf+c539MADD6i6ulof+9jHdOCBB+raa68NlF46nVYymVQqlVIikTC5awAAAAAAAAAAIOQK6TcI3Z0qRx55pG699VY1NjZq586dWrp0qe655x7V1NRIktasWaPnn39ey5YtU2Vlpc466yx94QtfsJxrAAAAAAAAAAAQddbvVCk17lQBAIRGNitdeaW/fPXVUlVVNNO0mS6ih7IEAG5xqd53aV9dwTE1jxibRXzNIr6hUki/AZ0qAADYkslItbX+cl+ftO+uzMilaTNdRA9lCQDc4lK979K+uoJjah4xNov4mkV8Q6WQfoOKEuUJAAAAAAAAAACgrNGpAgAAAAAAAAAAEACdKgAAAAAAAAAAAAHQqQIAAAAAAAAAABAAnSoAAAAAAAAAAAAB0KkCAAAAAAAAAAAQQKXtDAAA4Ky5c6Xf/W50Oapp2kwX0UNZAgC3uFTvu7SvruCYmkeMzSK+ZhHfshXzPM+znYlSSqfTSiaTSqVSSiQStrMDAAAAAAAAAAAsKqTfgOG/AAAAAAAAAAAAAmD4LwAAbMlmpc9/3l/+1KekqqpopmkzXUQPZQkA3OJSve/SvrqCY2oeMTaL+JpFfMsWw38BAGBLJiPV1vrLfX1STU0007SZLqKHsgQAbnGp3ndpX13BMTWPGJtFfM0ivqHC8F8AAAAAAAAAAABFRqcKAAAAAAAAAABAAHSqAAAAAAAAAAAABECnCgAAAAAAAAAAQAB0qgAAAAAAAAAAAARApwoAAAAAAAAAAEAAlbYzAACAs+bMkX71q9HlqKaZL92BrNTdIe3ukerqpaWNUmVV6fKG8mKrDAMA7HCp3ndpX11BG9g8PjdmEV+ziG/Zinme59nORCml02klk0mlUiklEgnb2QEAwG2dLVJXm+QNjq6LxaWGZml5q718AQAAAKbQBgaA0Cmk34A7VQAAgB2dLdKmDRPXe4Oj67moBAAAQJTQBgaAssedKgAA2JLNStdd5y+vWSNVleB2fxtpTpZuhaTbq8f/Om9/sbi0up9hEDCerTIMALDDpXrfpX11BW1g8/jcmEV8zSK+oVJIvwGdKgAA2JLJSLW1/nJfn1RTE800J0v3ua9JGy/P/7rjr5UamoxmDWXGVhkGANjhUr3v0r66gjaweXxuzCK+ZhHfUCmk36CiRHkCAAAYtbunuNsBAAAAYUcbGAAigU4VAABQenX1xd0OAAAACDvawAAQCXSqAACA0lva6I8XnUss7m8HAAAARAFtYACIBDpVAABA6VVWSQ3NubdpaGaCTgAAAEQHbWAAiIRK2xkAAACOWt7q/+1qk7zB0fWxuH8xOfw8AAAAEBW0gQGg7NGpAgAA7FneKh23Xuru8CfkrKv3hzvg13kAAACIKtrAAFDW6FQBAMCWOXOkhx4aXY5qmvnSraySGppKlxeUN1tlGABgh0v1vkv76grawObxuTGL+JpFfMtWzPM8z3YmSimdTiuZTCqVSimRSNjODgAAAAAAAAAAsKiQfgMmqgcAAAAAAAAAAAiA4b8AALDl1Velr37VX/7Yx6RZs6KZps10ET2UJQBwi0v1vkv76gqOqXnE2CziaxbxLVsM/wUAgC2ZjFRb6y/39Uk1NdFM02a6iB7KEgC4xaV636V9dQXH1DxibBbxNYv4hgrDfwEAAAAAAAAAABQZnSoAAAAAAAAAAAAB0KkCAAAAAAAAAAAQAJ0qAAAAAAAAAAAAAdCpAgAAAAAAAAAAEACdKgAAAAAAAAAAAAFU2s4AAADOmj1b+uEPR5ejmqbNdBE9lCUAcItL9b5L++oKjql5xNgs4msW8S1bMc/zPNuZKKV0Oq1kMqlUKqVEImE7OwAAAAAAAAAAwKJC+g0Y/gsAAAAAAAAAACAAhv8CAMCWV1+Vbr7ZXz7/fGnWrGimaTNdRA9lCQDc4lK979K+uoJjah4xNov4mkV8yxbDfwEAYEsmI9XW+st9fVJNTTTTtJkuooeyBABucaned2lfXcExNY8Ym0V8zSK+ocLwXwAAAAAAAAAAAEVGpwoAAAAAAAAAAEAAdKoAAAAAAAAAAAAEQKcKAAAAAAAAAABAAHSqAAAAAAAAAAAABECnCgAAAAAAAAAAQACVtjMAAICzZs+WbrttdDmqadpMF9FDWQIAt7hU77u0r67gmJpHjM0ivmYR37IV8zzPs52JUkqn00omk0qlUkokErazAwAAAAAAAAAALCqk34DhvwAAAAAAAAAAAAJg+C8AAGwZGJDuustfPvtsqbIEp2UbadpMF9FDWQIAt7hU77u0r64IekwHslJ3h7S7R6qrl5Y2SpVVpctnOeNzYxbxNYv4li2G/wIAwJZMRqqt9Zf7+qSammimaTNdRA9lCQDc4lK979K+uiLIMe1skbraJG9wdF0sLjU0S8tbS5PPcsbnxiziaxbxDZVC+g3o/gIAAAAAAABKrbNF2rRh4npvcHQ9HSsAEDrMqQIAAAAAAACU0kDWv0Mll642fzsAQKjQqQIAAAAAAACUUnfH+CG/JuMN+tsBAEKFThUAAAAAAACglHb3FHc7AEDJ0KkCAAAAAAAAlFJdfXG3AwCUDJ0qAAAAAAAAQCktbZRi8dzbxOL+dgCAUKm0nQEAAJxVVSV985ujy1FN02a6iB7KEgC4xaV636V9dUWuY1pZJTU0S5s2TP36hmZ/O0yNz41ZxNcs4lu2Yp7nebYzUUrpdFrJZFKpVEqJRMJ2dgAAAAAAAOCqzhapq238pPWxuN+hsrzVXr4AwDGF9BtwpwoAAAAAAABgw/JW6bj1UneHPyl9Xb0/5Bd3qABAaNGpAgCALQMD0v33+8unny5VluC0bCNNm+kieihLAOAWl+p9l/bVFUGPaWWV1NBUsmxFCp8bs4ivWcS3bDH8FwAAtmQyUm2tv9zXJ9XURDNNm+kieihLAOAWl+p9l/bVFRxT84ixWcTXLOIbKoX0G1SUKE8AAAAAAAAAAABljU4VAAAAAAAAAACAAOhUAQAAAAAAAAAACIBOFQAAAAAAAAAAgADoVAEAAAAAAAAAAAiAThUAAAAAAAAAAIAAKm1nAAAAZ1VVSddfP7oc1TRtpovooSwBgFtcqvdd2ldXcEzNI8ZmEV+ziG/Zinme59nORCml02klk0mlUiklEgnb2QEAAAAAAAAAABYV0m/A8F8AAAAAAAAAAAABMPwXAAC2DA5Kjz7qL598shSPRzNNm+kieihLAOAWl+p9l/bVFRxT84ixWcTXLOJbthj+CwAAWzIZqbbWX+7rk2pqopmmzXQRPZQlAHCLS/W+S/vqCo6pecTYLOJrFvENFYb/AgAAAAAAAAAAKDI6VQAAAAAAAAAAAAKgUwUAAAAAAAAAACAAOlUAAAAAAAAAAAACoFMFAAAAAAAAAAAgADpVAAAAAAAAAAAAAqi0nQEAAJw1a5bU2jq6HNU0baaL6KEsAYBbXKr3XdpXV3BMzSPGZhFfs4hv2Yp5nufZzkQppdNpJZNJpVIpJRIJ29kBAAAAAAAAAAAWFdJvwPBfAAAAAAAAAAAAATD8FwAAtgwOShs3+svHHy/F49FM02a6iB7KEgC4xaV636V9dQXH1DxibBbxNYv4li2G/wIAwJZMRqqt9Zf7+qSammimaTNdRA9lCQDc4lK979K+uoJjah4xNov4mkV8Q4XhvwAAAAAAAAAAAIqMThUAAAAAAAAAAIAA6FQBAAAAAAAAAAAIgE4VAAAAAAAAAACAAOhUAQAAAAAAAAAACIBOFQAAAAAAAAAAgAAqbWcAAABnzZolfeYzo8tRTdNmuogeyhIAuMWlet+lfXUFx9Q8YmwW8TWL+JatmOd5nu1MlFI6nVYymVQqlVIikbCdHQAAAAAAAAAAYFEh/QYM/wUAAAAAAAAAABAAw38BAGDL0JC0aZO/fMwxUkUJfutgI02b6SJ6KEsA4BaX6n2X9tUVHFPziLFZxNcs4lu2GP4LAABbMhmpttZf7uuTamqimabNdBE9lCUAcItL9b5L++oKjql5xNgs4msW8Q0Vhv8CAAAAAAAAAAAoMjpVAAAAAAAAAAAAAqBTBQAAAAAAAAAAIAA6VQAAAAAAAAAAAAKgUwUAAAAAAAAAACCAStsZAAAAAICSGshK3R3S7h6prl5a2ihVVtnOFQAAAIAyQKcKAAC2zJolrV07uhzVNG2mi+ihLGGmOlukrjbJGxyzbq3U0Cwtb7WXLwCTc6ned2lfXcExNY8Ym0V8zSK+ZSvmeZ5nOxOllE6nlUwmlUqllEgkbGcHAAAAQKl0tkibNkz9/DHr6FgBAAAAHFRIvwFzqgAAAACIvoGsf4dKLl1t/nYAAAAAMAU6VQAAsGVoSHrmGf8xNBTdNG2mi+ihLGG6ujvGD/k1GW/Q3w5AeLhU77u0r67gmJpHjM0ivmYR37LFnCoAANiyZ4+0ZIm/3Ncn1dREM02b6SJ6KEuYrt09xd0OQGm4VO+7tK+u4JiaR4zNIr5mEd+yxZ0qAAAAAKKvrr642wEAAABwEp0qAAAAAKJvaaMUi+feJhb3twMAAACAKdCpAgAAACD6Kqukhubc2zQ0+9sBAAAAwBSYUwUAAACAG5a3+n+72sZPWh+L+x0qw88DAAAAwBToVAEAAADgjuWt0nHrpe4Of1L6unp/yC/uUAEAAAAQAJ0qAAAAANxSWSU1NNnOBQAAAIAyRKcKAAC2VFZKjY2jy1FN02a6iB7KEgC4xaV636V9dQXH1DxibBbxNYv4lq2Y53me7UyUUjqdVjKZVCqVUiKRsJ0dAAAAAAAAAABgUSH9BhUlyhMAAAAAAAAAAEBZ474iAABs8Tzp5Zf95YMPlmKxaKZpM11ED2UJANziUr3v0r66gmNqHjE2i/iaRXzLFp0qAADY0t8vzZ/vL/f1STU10UzTZrqIHsoSALjFpXrfpX11BcfUPGJsFvE1i/iWLYb/AgAAAAAAAAAACIBOFQAAAAAAAAAAgADoVAEAAAAAAAAAAAiAThUAAAAAAAAAAIAA6FQBAAAAAAAAAAAIoNJ2BgAAAICiGchK3R3S7h6prl5a2ihVVtnOFQAAAAAgIuhUAQDAlspK6cILR5ejmqbNdBE9ucpSZ4vU1SZ5g2PWrZUamqXlraXLIwCgeFxqQ7i0r67gmJpHjM0ivmYR37IV8zzPs52JUkqn00omk0qlUkokErazAwAAgGLobJE2bZj6+WPW0bECAAAAAJhUIf0GzKkCAACA8jaQ9e9QyaWrzd8OAAAAAIAZoFMFAABbPE/KZPxHqW4ctZGmzXQRPZOVpe6O8UN+Tfq6QX87AEB5cakN4dK+uoJjah4xNov4mkV8yxadKgAA2NLfL9XW+o/+/uimaTNdRM9kZWl3T7DXBt0OABAeLrUhXNpXV3BMzSPGZhFfs4hv2aJTBQAAAOWtrr642wEAAAAAMIVK2xkAAAAAZmRpo9S5NvcQYLG4vx0AABGQzUodHVJPj7Rokb+utze8y1u2SNu3SwsWSEuWhCdfpvej/jCpyf9X7e3Sq1X71tdLjY1SVZUAAGUotJ0qzz//vD7xiU9o48aNmj17ti666CJ9+tOfliR1dnbqkksu0bZt21RTU6PrrrtO73rXuyznGAAAAFZUVkkNzdKmDVNv09DsbwcAQJlraZHa2qTBPNOJwb5qjXaqXHmVNHZwn7VrpeZmqbW19PkCAMxMaIf/uuCCC3Tsscdq69ateuKJJ3TnnXfqW9/6lnbv3q0zzzxT69ev17PPPquvfOUrWr16tbZv3247ywAAALBleat0zDr/jpSxYnF//XK+sQAAlL+WFmnDBjpUomBw0D+WLS22cwIAKFRoO1U6Ozv1oQ99SLFYTPPmzdMZZ5yhJ554QrfccotWrFih0047TZJ0yimnaOXKlfrud79rOccAAACwanmrtLpfOv5a6ehL/b+r++lQAQBEQjbr36GCaGlr848tAKB8hLZTZdWqVbr++uuVzWb17LPP6vvf/75WrVqln//853rb2942bts3v/nNevLJJyd9n7179yqdTo97AAAAIKIqq6SGJmnFl/y/DPkFAIiIjg7uUImiwUH/2AIAykdo51S5+uqrtWLFCh144IHas2ePLr30Up166qn6whe+oHe84x3jtp0/f75++ctfTvo+11xzjf7t3/6tFFkGAKAw8bi0atXoclTTtJkuooeyBABucanez7OvPT0lzg9mbFBx3a5VI8tT4djOgEt1hA3E1yziW7Zinud5tjOxv8HBQZ144ok6//zzdemll+qll17Seeedp3POOUf33HOPLrjgAl1wwQUj2//nf/6n7rvvPn3/+9+f8F579+7V3r17R/5Pp9NauHChUqmUEolESfYHAAAAAABgJtrbpcsvt50LmHDttVJTk+1cAIDb0um0kslkoH6DUA7/9ZOf/ETZbFZNTU2qrKzUggUL1NbWptbWVs2bN08vv/zyuO1feuklHXbYYZO+1+zZs5VIJMY9AAAAAAAAykljIz9kjqJ43D+2AIDyEcpOlWw2q8rK8SOTzZo1S9lsVm984xv12GOPjXvuscce01ve8pZSZhEAAAAAAKBkqqqk5mbbuUCxNTf7xxYAUD5C2aly0kknafv27brlllskSX19fbryyiu1atUqnX/++frxj3+sn/zkJ5Kke++9V5s2bdLq1attZhkAgMJlMlIs5j8ymeimaTNdRA9lCQDc4lK9H2BfW1uldeu4Y6VcVCsjTzF5iqla449pPO4fy9ZWS5mLCpfqCBuIr1nEt2yFcqL6ZDKp+++/X83NzbriiitUUVGhs846S1dffbWqq6t16623qrGxUTt37tTSpUt1zz33qKamxna2AQAAAAAAjGptldavlzo6/AnOFy3y1/f2hnd5yxZp+3ZpwQJpyZLw5Mv0ftQfJukq//+r10uvVu1bX+8P+cUdKgBQnkI5Ub1JhUw4AwCAUZmMVFvrL/f1SaX4gYCNNG2mi+ihLAGAW1yq913aV1dwTM0jxmYRX7OIb6iU/UT1AAAAAAAAAAAAYUOnCgAAAAAAAAAAQAB0qgAAAAAAAAAAAARApwoAAAAAAAAAAEAAlbYzAACAs+Jx6b3vHV2Oapo200X0UJYAwC0u1fsu7asrOKbmEWOziK9ZxLdsxTzP82xnopTS6bSSyaRSqZQSiYTt7AAAAAAAAAAAAIsK6Tdg+C8AAAAAAAAAAIAA6FQBAAAAAAAAAAAIgE4VAABsyWSkmhr/kclEN02b6SJ6KEsA4BaX6n2X9tUVHFPziLFZxNcs4lu2mKgeAACb+vvdSNNmuogeyhIAuMWlet+lfXUFx9Q8YmwW8TWL+JYl7lQBAAAAAAAAAAAIgE4VAAAAAAAAAACAAOhUAQAAAAAAAAAACIBOFQAAAAAAAAAAgADoVAEAAAAAAAAAAAig0nYGAABwVkWFdMopo8tRTdNmuogeyhIAuMWlet+lfXUFx9Q8YmwW8TWL+JatmOd5nu1MlFI6nVYymVQqlVIikbCdHQAAAAAAAAAAYFEh/QZ0gQEAAAAAAAAAAARApwoAAAAAAAAAAEAAdKoAAGBLJiMdcoj/yGSim6bNdBE9lCUAcItL9b5L++oKjql5xNgs4msW8S1bTFQPAIBNL7/sRpo200X0UJYAwC0u1fsu7asrOKbmEWOziK9ZxLcscacKAAAAAAAAAABAAHSqAAAAAAAAAAAABECnCgAAAAAAAAAAQAB0qgAAAAAAAAAAAATARPUAACA8BrJSd4e0u0eqq5eWNkqVVbZzBQAAAAAAIIlOFQAA7KmokE44YXQ5qmkGTbezRepqk7zBMevWSg3N0vJW83lEebBVhgEAdrhU77u0r67gmJpHjM0ivmYR37IV8zzPs52JUkqn00omk0qlUkokErazAwAAJL9DZdOGqZ8/Zh0dKwAAAAAAwIhC+g3oAgMAAHYNZP07VHLpavO3AwAAAAAAsIhOFQAAYFd3x/ghvybjDfrbAQAAAAAAWESnCgAAtvT3S4sX+4/+/uimmS/d3T3B3iPodog2W2UYAGCHS/W+S/vqCo6pecTYLOJrFvEtW0xUDwCALZ4nPfvs6HJU08yXbl19sPcIuh2izVYZBgDY4VK979K+uoJjah4xNov4mkV8yxZ3qgAAALuWNkqxeO5tYnF/OwAAAAAAAIvoVAEAAHZVVkkNzbm3aWj2twMAAAAAALCI4b8AAIB9y1v9v11t4yetj8X9DpXh5wEAAAAAACyiUwUAAITD8lbpuPVSd4c/KX1dvT/kF3eoAAAAAACAkKBTBQAAhEdlldTQZDsXAAAAAAAAk6JTBQAAW2Ix6dhjR5ejmqbNdBE9lCUAcItL9b5L++oKjql5xNgs4msW8S1bMc/zPNuZKKV0Oq1kMqlUKqVEImE7OwAAAAAAAAAAwKJC+g0qSpQnAAAAAAAAAACAskanCgAAAAAAAAAAQAB0qgAAYEt/v/Ta1/qP/v7opmkzXUQPZQkA3OJSve/SvrqCY2oeMTaL+JpFfMsWE9UDAGCL50l/+MPoclTTtJkuooeyBABucaned2lfXcExNY8Ym0V8zSK+ZYs7VQAAAAAAAAAAAAKgUwUAAAAAAAAAACAAOlUAAAAAAAAAAAACoFMFAAAAAAAAAAAgACaqBwAAoZTNSh0dUk+PtGiRv27LFmn7dmnBAmnJEn9db+/o82OXC9l2uq8rdhr19VJjo1RVNfP4lcJkx8h0XGdlpaZ96be3Sz3bx79HucUQAABgrHztq3Js45pMY7K2Ie1BAKbRqQIAgC2xmHTUUaPLUU1zGum2tEhtbdLgoOF8hdDatVJzs9Taajsnudk6RnMV09/JL0ufuiqmPZNsUy4xBAAEYKvtYoNL++oK2sDGTdU2pD1YJNRLZhHfshXzPM+znYlSSqfTSiaTSqVSSiQStrMDAAD209IibdhgOxf2rVsX3ovAcjlGYY4hAADAWOXSvio3tAcBBFVIvwGdKgAAIDSyWam6ml/nSVI8LvX3h2/YgnI6RmGNIQAAwFjl1L4qN7QHAQRVSL8BE9UDAIDQ6OjgYnLY4KAfj7App2MU1hgCAACMVU7tq3JDexCACXSqAABgy5490ooV/mPPZDNDRCTNAtLt6SldlspBGONhO09ztEe/0gr9Sis0Z9IZVcaznV8AwAzZarvY4NK+uoI2sHFB2obEdwaol8wivmWLieoBALBlaEh64onR5aimWUC69fUlyk+ZCGM8bOepQkNaoSdGlvOxnV8AwAzZarvY4NK+uoI2sHFB2obEdwaol8wivmWLO1UAAAiTgazU1S49fpn/dyBrO0cl1djoj3sMPw6NjbZzMVE5HaOwxhAAAGCscmpflRvagwBMoFMFAICw6GyRbq+WNl4u/el6/+/t1f56R1RVSc3NtnMRDs3N4ZxQs5yOUVhjCAAAMFY5ta/KDe1BACYw/BcAAGHw1JXSM9dNXO8NSps2+MvLW0ubJ0ta9+1mW5ubE3bG4/7FX2uID3fYj1E5xBAAAGCssLevyg3tQQAmxTzP82xnopTS6bSSyaRSqZQSiYTt7AAAXJbJSLW1/vI3KqTZOcZQjcWl1f1S5Qx/ZjU2zb4+qaZmZu9nMN1sVuro8CeWXLTIX7dli7R9u7RggbRkib+ut3f0+bHLhWw73dcVO436en94gnL5Nd1kx8h0XGdlM2q6yi9L7ev71LO9Ztx7lFsMAQB52Gq72ODSvrqiSG3gcm/jmkxjsrYh7cEiol4yi/iGSiH9BnSqAABgy9gG1Nclzcmz/fHXSg1NxUsz5J0qwKQoSwDgFpfqfZf21RUcU/OIsVnE1yziGyqF9Bsw/BcAADYdfLA00Cfplfzb7u4pXpo22EoX0UNZAgC3uFTvu7SvruCYmkeMzSK+ZhHfssSdKgAA2NbV7k9Kn08x7lQBAAAAAADAOIX0G1SUKE8AAGAqSxv9OVNyicX97QAAxTWQ9Tu3H7/M/zuQtZ0jAAAAACHG8F8AANhWWSU1NEubNky9TUPzzCepBwCM19kidbVJ3uCYdWv9Ond5q718AQAAAAgt7lQBAMCWPXukU0/1Hw3/Jh2zbuIdK7G4v75YX+6NTXPPnuK8Z5jTRfRQllAsnS1+Z/bYDhXJ/3/TBv95APa5VO+7tK+u4JiaR4zNIr5mEd+yxZwqAADYkslItbX+cl+fVFPjDzvT3eFPSl9X7w/5Vcw7VCZLsxRspYvooSyhGAay0u3VEztUxorFpdX93CUI2OZSve/SvrqCY2oeMTaL+JpFfEOlkH4Dhv8CACBMKquYjB4ATOvuyN2hIvnPd3dQJwMAAAAYh+G/AAAAALhld09xtwMAAADgDDpVAAAAALilrr642wEAAABwBp0qAAAAANyytNGfMyWXWNzfDgAAAADGoFMFAAAAgFsqq6SG5tzbNDQzST0AAACACZioHgAAm6qr3UjTZrqIHsoSimF5q/+3q238pPWxuN+hMvw8APtcqvdd2ldXcEzNI8ZmEV+ziG9Zinme59nORCml02klk0mlUiklEgnb2QEAAABg00BW6u7wJ6Wvq/eH/OIOFQAAAMAphfQbcKcKAAAAAHdVVkkNTbZzAQAAAKBMMKcKAAAAAAAAAABAAHSqAABgyyuvSH/7t/7jlVeim6bNdBE9lCUAcItL9b5L++oKjql5xNgs4msW8S1bzKkCAIAtmYxUW+sv9/VJNTXRTNNmuogeyhIAuMWlet+lfXUFx9Q8YmwW8TWL+IZKIf0G3KkCAAAAAAAAAAAQAJ0qAAAAAAAAAAAAAdCpAgAAAAAAAAAAEACdKgAAAAAAAAAAAAHQqQIAAAAAAAAAABAAnSoAAAAAAAAAAAABVNrOAAAAzqqpkTwv+mnaTBfRQ1kCALe4VO+7tK+u4JiaR4zNIr5mEd+yxZ0qAAAAAAAAAAAAAdCpAgAAAAAAAAAAEACdKgAA2PLKK9Lq1f7jlVeim6bNdBE9lCUAcItL9b5L++oKjql5xNgs4msW8S1bMc9za+C2dDqtZDKpVCqlRCJhOzsAAJdlMlJtrb/c1+ePpxrFNG2mi+ihLAGAW1yq913aV1dwTM0jxmYRX7OIb6gU0m/AnSoAAAAAAAAAAAAB0KkCAAAAAAAAAAAQAJ0qAAAAAAAAAAAAAdCpAgAAAAAAAAAAEACdKgAAAAAAAAAAAAHQqQIAAAAAAAAAABBApe0MAADgrOpqqa9vdDmqadpMF9FDWQIAt7hU77u0r67gmJpHjM0ivmYR37JFpwoAALbEYlJNTfTTtJkuooeyBABucaned2lfXcExNY8Ym0V8zSK+ZYvhvwAAAAAAAAAAAAKgUwUAAFv27pU+/GH/sXdvdNO0mS6ih7IEAG5xqd53aV9dwTE1jxibRXzNIr5lK+Z5nmc7E6WUTqeVTCaVSqWUSCRsZwcA4LJMRqqt9Zf7+kpz26+NNG2mi+ihLAGAW1yq913aV1dwTM0jxmYRX7OIb6gU0m/AnCoAAAAAAABhN5CVujuk3T1SXb20tFGqrLKdKwAAnEOnCgAAAAAAQJh1tkhdbZI3OGbdWqmhWVreai9fAAA4iE4VAAAAAACAsOpskTZtmLjeGxxdT8cKAAAlw0T1AAAAAAAAYTSQ9e9QyaWrzd8OAACUBJ0qAAAAAAAAYdTdMX7Ir8l4g/52AACgJOhUAQAAAAAACKPdPcXdDgAAzBhzqgAAYEt1tfTii6PLUU3TZrqIHsoSALjFpXp/sn2tqw/22qDbobRcKr+2EGOziK9ZxLdsxTzP82xnopTS6bSSyaRSqZQSiYTt7AAAAAAAAExuICvdXp17CLBYXFrdL1VWlS5fAABETCH9Bgz/BQAAAAAAEEaVVVJDc+5tGprpUAEAoIToVAEAwJa9e6V//Ef/sXdvdNO0mS6ih7IEAG5xqd6fal+Xt0rHrPPvSBkrFvfXL28tbT4RnEvl1xZibBbxNYv4li2G/wIAwJZMRqqt9Zf7+qSammimaTNdRA9lCQDc4lK9n29fB7JSd4c/KX1dvbS0kTtUws6l8msLMTaL+JpFfEOlkH4DJqoHAAAAAAAIu8oqqaHJdi4AAHAew38BAAAAAAAAAAAEQKcKAAAAAAAAAABAAAz/BQAAJshmpY4OafNmaft2acECackS/7neXmnRIn95y5Zgzx91sNS+773XrJF6d/ivWbZMamyUqhgOHAbkKsdBy+5MX2PiPcs5Hzby3tsr1dcHq2tmUvdFOYbkI9r5CHve6w+Tmvx/dd550ryF0Y0H7SXAjOHze09PeOq2cslHvjo4aBsLiBomqgcAwJaQTlTf0iK1tUmDg8VLtloZZeSnW6M+9Ws03Xhcam6WWluLlx4iLODnxkQ5RnnLV9dQZoBwytWGiBraSxHEJNTm5Ykx5/eZCVIHUz/NAHVEqDBRPQAAmJaWFmnDhtKmOTg4miYNcRSDjXKM8MtV11BmAIQd7SWgcJzfS4P6CS7iThUAAGwZGvLvmZb8+64rSjDVWY40s1mputrMr7hiGtIi+en2apG8SaZ1i8el/n5uHUceeT43JssxomH/uoYyA4RbkDZEVNBeiiAb7X3XTBFjzu/FUUgdTP00DdQRoVJIvwFHCgAAWyoqpMWL/UepGk850uzoMHfR4alCz2qxntXiKRvig4N+HoCc8nxuTJZjRMP+dQ1lBgi3IG2IqKC9FEE22vuumSLGnN+Lo5A6mPppGqgjyhZHCwAASPInbrQtDHlAeaMMIYix5YQyA6DcUG8B+fE5sYO4wxV0qgAAYEs2K61b5z+yWetp1tebS3aWsmrVOrVqnWZp6n01mQdERJ7PDWUIQYwtJ5QZINyCtiGigPZSBNlo77tmihjzOSmOQutg4l4g6oiyxZwqAADYkslItbX+cl+fVFNjNU2T4w5XK6OM/HRr1Kd+TdxXxuBFIHk+N4yfjXyYUwUoL0HaEFFBeymCbLT3XTNFjDm/F0chdTD10zRQR4QKc6oAAIBpWbnSXtrNzTTAMXNVVX5ZAqayf11DmQEQdhWxQZ1yzEM67y3f0Tev+qaqKvg1M5AP5/fS43oOLqm0nQEAAGBfS4vU1mbnl1zxuN8Ab20tfdqIpuGyZKtMI5xy1TWUGQBhdfYJ39N1F6zRwoO2jq68/aNSQ7O0nMYTkAvn99Lgeg4uolMFAADHtbRIGzZM/Xx9vfTud0tLlvj/9/ZKixb5y1u2SNu3SwsW5H7+qIMl3eCvu/gjUu8O/zXLlkmNjfyiCcXX2iqtXy91dEibN08sp0HL7kxfY+I9yzkfNvLe2+vXY/nqmnxlJizxKOfjTz7CmY+w573+MElX+f+feYY0b2F047F/e+k11W265M2f1ATeoLRpX+ONjhUgp7Hn956e8NRt5ZKPfHVwkDYWEEXMqQIAgC0hmFMlO6sm71jDRRkbl7FiUSyUJQBwi0v1/th93bVTuvcQvwNlKrG4tLpfquTbzNByqfzaQozNIr5mEd9QYU4VAAAQSEdH/lvhBwf97QAAAFAiPV/N3aEi+c9300gDAKDU6FQBAMBhPT3F3Q4AAABF0Pd0sO1200gDAKDUmFMFAABb5s6Vfve70WULadbXB3tZ0O2CpgtMG2UJANziUr0/dl9j90tbc28uSaqbaSMNRrlUfm0hxmYRX7OIb9liThUAAByWzao0c6oAAAAguIGsdHs1c6oAAFAizKkCAAACqaqSmptzb9PcTIcKAABASVVWSQ15GmkNzXSoAABgAcN/AQBgSzYrff7z/vKnPlWanotJ0mxt9f9taxt/x0o87neoDD9f7HSBaaEsAYBbXKr399/X5fsaYV1t4+9YicX9DpXlxWikwSiXyq8txNgs4msW8S1bDP8FAIAtmYxUW+sv9/VJNTVW08xmpY4Of1L6+nqpsbGIbTob+4pooiwBgFtcqven2teBrNTd4U9KX1cvLW3kDpVy4VL5tYUYm0V8zSK+oVJIvwF3qgAAAEl+B0pTk+1cAAAAYJzKKqmhyXYuAADAPsypAgAAAAAAAAAAEACdKgAAAAAAAAAAAAEw/BcAAAAAAAAAAGHCnFqhFeo7VX71q19p5cqVOuqoo3T44Yfre9/7niSps7NTJ554oo466igde+yxeuCBByznFAAAAAAAAACAIuhskW6vljZeLv3pev/v7dX+elgX2jtVurq69Hd/93e68cYbddpppymbzWrXrl3avXu3zjzzTH3rW9/SaaedpkceeURnnXWWurq6dNhhh9nONgAAAAAAAAAA09PZIm3aMHG9Nzi6fnlrafOEcULbqXLllVfqsssu02mnnSZJqqqq0vz58/XVr35VK1asGFl/yimnaOXKlfrud7+rNWvW2MwyAACFmTNH+tWvRpejmqbNdBE9lCUAcItL9b5L++oKjql5xNgs4mvWZPEdyEpdbblf19UmHbeeocAsinme59nOxP5eeeUVJZNJPfvssxPuPrnooov02te+VmvXrh1Zd/XVV6u7u1vf/OY3J7zX3r17tXfv3pH/0+m0Fi5cqFQqpUQiYW4nAAAAAAAAAAAIqqvdH+orn+OvlRqaTOfGKel0WslkMlC/QSjnVPnjH/+ouXPn6qGHHtLrX/96/dVf/ZU+/vGPK51Oa9u2bTr00EPHbT9//nzt2LFj0ve65pprlEwmRx4LFy4sxS4AAAAAAAAAABDc7p7ibgcjQtmpsnv3bg0MDOiJJ57Qr371Kz311FN66aWXtGbNGg0MDGj/m2sGBwcVi8Umfa8rrrhCqVRq5PHcc8+VYhcAAMgvm5U2bPAf2Wx007SZLqKHsgQAbnGp3ndpX13BMTWPGJtFfM2aLL519cFeG3Q7GBHK4b82b96s17/+9err69OsWbMkSb/5zW/09re/Xe985zt14oknqrm5eWT7z33uc9q6dav+67/+K+97F3IbDwAARmUyUm2tv9zXJ9XURDNNm+kieihLAOAWl+p9l/bVFRxT84ixWcTXrMniO5CVbq/2J6WfSiwure5nTpUiK/vhv4466ihVVVXplVdeGVlXUVGhOXPm6I1vfKMee+yxcds/9thjestb3lLqbAIAAAAAAAAAUByVVVJDc+5tGprpULEslJ0qc+bM0QUXXKBPfvKTGhgY0N69e/WZz3xGH/zgB3X++efrxz/+sX7yk59Iku69915t2rRJq1evtpxrAAAAAAAAAABmYHmrdMw6/46UsWJxf/3yVjv5wohK2xmYyhe/+EVdcsklOuKII1RXV6dzzz1Xn/vc51RVVaVbb71VjY2N2rlzp5YuXap77rlHNdx+BgAAAAAAAAAod8tbpePWS90d/qT0dfXS0kbuUAmJ0Haq1NbW6qabbpr0udNPP11dXV0lzhEAAAAAAAAAACVQWSU1NNnOBSYRyuG/AAAAAAAAAAAAwoZOFQAAAAAAAAAAgABCO/wXAACRN2eO9NBDo8tRTdNmuogeyhIAuMWlet+lfXUFx9Q8YmwW8TWL+JatmOd5nu1MlFI6nVYymVQqlVIikbCdHQAAAAAAAAAAYFEh/QYM/wUAAAAAAAAAABAAw38BAGDLq69KX/2qv/yxj0mzZkUzTZvpInooSwDgFpfqfZf21RUcU/OIsVnE1yziW7YY/gsAAFsyGam21l/u65NqaqKZps10ET2UJQBwi0v1vkv76gqOqXnE2CziaxbxDRWG/wIAAAAAAAAAACgyOlUAAAAAAAAAAAACoFMFAAAAAAAAAAAgACaqBwAAAAAAAAAgrAayUneHtLtHqquXljZKlVW2c+UsOlUAAAAAAAAAAAijzhapq03yBsesWys1NEvLW+3ly2F0qgAAAAAAAAAAEDadLdKmDRPXe4Oj6+lYKTk6VQAAsGX2bOmHPxxdjmqaNtNF9FCWAMAtLtX7Lu2rKzim5hFjs4ivWfniO5D171DJpatNOm49Q4GVWMzzPM92JkopnU4rmUwqlUopkUjYzg4AAAAAAAAAAON1tUsbL8+/3fHXSg1NpnMTeYX0G1SUKE8AAAAAAAAAACCI3T3F3Q5Fw/BfAADY8uqr0s03+8vnny/NmhXNNG2mi+ihLAGAW1yq913aV1dwTM0jxmYRX7PyxbeuPtj7BN0ORcPwXwAA2JLJSLW1/nJfn1RTE800baaL6KEsAYBbXKr3XdpXV3BMzcsV44Gs1N3h/4q/rl5a2si8E4WiDJuVL74DWen2an9S+qnE4tLqfsp2ERTSb8CdKgAAAAAAAACio7PFn8B77JfRnWulhmZpeau9fAGFqKzyy+ymDVNv09BMh4oFdKoAAAAAAAAAiIbOlsm/hPYGR9fTsYJyMVxW9+8kjMXpJLSIThUAAAAAAAAA5W8g63/5nEtXm3Tcen7dj/KxvNUvswxnFxp0qgAAAAAAAAAof90dueefkPznuzukhqaSZAkoisoqymyIVNjOAAAAAAAAAADM2O6e4m4HAJOgUwUAAAAAAABA+aurL+52ADAJhv8CAMCW2bOl224bXY5qmjbTRfRQlgDALS7V+y7tqys4pubtH+OljVLn2txDgMXi/nbIjzJsFvEtWzHP8zzbmSildDqtZDKpVCqlRCJhOzsAAAAAAAAAiqWzRdq0Yernj1nnT/wNAGMU0m/AnSoAAAAAAAAAomG4w6SrbfwdK7G41NBMhwqAGaNTBQAAWwYGpLvu8pfPPluqLMFp2UaaNtNF9FCWAMAtLtX7Lu2rKzim5k0V4+Wt0nHrpe4Of1L6unp/yK/KKnt5LUeUYbOIb9li+C8AAGzJZKTaWn+5r0+qqYlmmjbTRfRQlgDALS7V+y7tqys4puYRY7OIr1nEN1QK6TeoKFGeAAAAAAAAAAAAyhqdKgAAAAAAAAAAAAHQqQIAAAAAAAAAABAAs98AABBC2azU0SFt3ixt3y4tWCAtWeI/t2XL9Ndt3Sxdty+N886T5i2Uli2TGhulKuZsBAAAAAAUYPjatadHWrTIXzeTa9bhdfPnSy++WLxrYdPvO520lh0hNe2L4/D1+fB2vb1SfT3X6mFFpwoAACHT0iK1tUmDg8V/72qNdqrc80Opf9/y2rVSc7PU2lr8NAEAAAAA0WPy2tUF1RrtVBl7fT4W1+rhRKcKAAAh0tIibdhQ+nQHB0fTpbEGAAAAAMjF1rWra7hWDyc6VQAAsKWqSvrmN0eWs1n/Vz4mZVWlD+ubI8v7a2uT1q83cHvxfvsKTBtlCQDc4lK979K+uoJjah4xNmuK+Jbi2tUF+a7PxzJ2rY5piXme59nORCml02klk0mlUiklEgnb2QEAYER7u3T55bZzIV17rdTUZDsXAAAAAIAwCsu1q2u4VjerkH6DihLlCQAA5NHTYzsHvrDkAwAAAAAQPlwz2kHcw4PhvwAAsGVgQLr/fn/59NNVX2/+tBzXgE6Xn+b9Ol2DkzQF6usNJLzfvqqSJgimibIEAG5xqd53aV9dwTE1jxibNUV8jVwzOijI9flYxD08GP4LAABbMhmpttZf7utTdlaNqqv9iehMqVZGGflp1qhP/aoZ93w8LvX3Gxindb99Vc2YdAeyUneHtLtHqquXljZKlQwUiynkKksAgOhxqd53aV9dwTE1jxibNUV8s1kZv3Z1Qb7r87GMXatjBMN/AQBQhqqqpOZmu3lobi5xI62zRbq9Wtp4ufSn6/2/t1f76wEAAAAAoROGa1fXlPxaHTlxTxwAACHS2ur/bWsr7a9+4nG/kTacfkl0tkibNkxc7w2Orl9eygwBAAAAAIKwde3qGivX6siLThUAAEKmtVVav17q6JA2b5a2b5cWLJCWLPGf37Jl+uu2bpb0dX/5zDOkeQulZcukxsYS/+plICt1teXepqtNOm49Q4EBAAAAQAiNvXbt6ZEWLfLXz+SadXjd/PnSiy8W71rY9PtOJ61lR0i6yl8/fH0+vF1vrz+HSsmv1REInSoAAIRQVZXU1GTgjTMa6VS59VYpx5CtZnV3+Hek5OIN+ts1NJUkSwAAAACAwhi7dnVBRiOdKlavz1Ew5lQBAAClt7unuNsBAAAAAACUAJ0qAACg9Orqi7sdAAAAAABACTD8FwAAtlRVSddfP7oc1TQnS3dpo9S5NvcQYLG4vx0wlq0yDACww6V636V9dQXH1DxibBbxNYv4lq2Y53me7UyUUjqdVjKZVCqVUiKRsJ0dAADc1dkibdow9fPHrJOWt5YuPwAAAAAAwEmF9BtwpwoAALBjuMOkq238HSuxuNTQTIcKAAAAAAAIHTpVAACwZXBQevRRf/nkk6V4PJpp5kp3eat03Hqpu8OflL6u3h/yq5JbnzEFW2UYAGCHS/W+S/vqCo6pecTYLOJrFvEtWwz/BQCALZmMVFvrL/f1STU10UzTZrqIHsoSALjFpXrfpX11BcfUPGJsFvE1i/iGSiH9BhUlyhMAAAAAAAAAAEBZo1MFAAAAAAAAAAAgADpVAAAAAAAAAAAAAmCieow3kGWyYAAAAAAAAAAAJkGnCkZ1tkhdbZI3OGbdWqmhWVreai9fAAAAAAAAAACEAJ0q8HW2SJs2TFzvDY6up2MFAAAAAAAAAOCwgjtVvvGNb2jhwoV617veZSI/sGEg69+hkktXm3TceoYCA4BimjVLam0dXY5qmjbTRfRQlgDALS7V+y7tqys4puYRY7OIr1nEt2zFPM/zCnlBS0uLGhoa9A//8A+TPr99+3YddthhRcmcCel0WslkUqlUSolEwnZ2wqGrXdp4ef7tjr9WamgynRsAAAAAAAAAAEqmkH6DvHeqvP3tb1csFhv5v7u7WzU1Nfrv//7vkXV/8zd/o5aWFknSscceq507d04377Bhd09xtwMAAAAAAAAAIILydqpcddVVed/k8MMPH1ku8MYXhEFdfXG3AwAEMzgobdzoLx9/vBSPRzNNm+kieihLAOAWl+p9l/bVFRxT84ixWcTXLOJbtgoe/iufefPmhfpOFYb/msRAVrq92p+UfiqxuLS6nzlVAKCYMhmpttZf7uuTamr8Orm7w787sK5eWtpY3Lp3sjRLwVa6iB7KEgC4xaV636V9dQXH1DxibBbxNYv4hkoh/QYVQd6wu7ubO1CirLJKamjOvU1DMx0qAGBaZ4vfyb3xculP1/t/b6/21wMAAAAAAMC6QJ0qy5Yt0/z58/VP//RPevHFF03nCTYsb5WOWeffkTJWLO6vX95qJ18A4IqnrpQ2bZh416A36K+nYwUAAAAAAMC6QJ0qBx10kJ544gnNnTtXr3/96/XjH//YdL5gw/JWf4iv46+Vjr7U/7u6nw4VACiFzV/K/XxXmz80GAAAAAAAAKwJ1KkSi8V01FFH6Ytf/KLuvvtuXXDBBXrggQdM5w02VFZJDU3Sii/5fxnyCwBKwxvK8/ygP9cKAAAAAAAArKks9AUnnniivvvd7+rcc8/Vz3/+cy1evFinnHKKYrGYPM9TX1+fiXwCAIDdPbZzAAAAAAAA4LRAnSr7T1J/0kkn6corr9RHP/pR/fjHP9b69euNZA4AAIxRV287BwAAAAAAAE4L1KnyoQ99aMK6xsZGXXvttfr973+vU045pegZAwAg8mbNkj7zGWloUJr1eUk5hgCLxaWljcVLc3hZ8udq6e7w74Spq/fTKfbwj5OlC0wHZQmFmqyOk8zXewCKw6V636V9dUWuY1qKNrgL+NyYRXzNyhdf6onQinn734ZSgGeffVZHHXVUMfNjXDqdVjKZVCqVUiKRsJ0dAAB8nS3Spg1TP3/MOml5q5l0u9r8OVuGxeJSQ7OZ9ACglCar4xTb93fMZRD1HgCglGiDA8iHeqLkCuk3KHhOlbHKrUMFAIDQGm4UlbLRNFVHjjc4up7GGoByNWVn9SS/KaPeAwCUCm1wAPlQT4TejO5UKUfcqQIACI2hIWnTJn/5mGOkigrzt/cOpznwqvS7N0qxPEOOre4vTvqT7SswHZQlBDGQlW6v3u8OlQCKWe8BKA6X6n2X9tUV+x/ToYH85yfORYXhc2MW8TVrqu8EqCesKOqdKp/97GcLzsAnPvEJzZ8/v+DXAQDglD17pNe9zl/u65NqavxGUUNTadL8uqQ5Obb1Bv0OnmLkZ7J9BaaDsoQgujsK71CRilvvASgOl+p9l/bVFfsf0+e+lv/8xLmoMHxuzCK+Zk0W3yDtWOoJ6/J2qrz66qulyAcAAAij3T22cwAAhZtJ3UW9BwAwJeg5hnMR4C7qibKQt1Plc5/7XCnyAQAAwqiu3nYOAKBwM6m7qPcAAKYEPcdwLgLcRT1RFmY8EN7WrVv14IMPFiMvAACglGJ5mgGxuD+nCwCUm6WNfh1WKOo9AIBJQc5PnIsAt1FPlIUZdapkMhm9733v0y9/+cti5QcAAJTKay7L/XxDMxPfAShPlVV+HVYo6j0AgElBzk+ci2ZmICt1tUuPX+b/HcjazhFQGOqJspB3+K+p/P73v9f73/9+vf/979eVV15ZzDwBAIBSeMPV0twqqatt/ER4sbjfSFveai9vADBTw3XY/nWcYvv+emNWUe8BAEpkqvMT56KZe+pK6dnrx8e1cy1xRfmhngi9mOd5Xr6Nent7JUnpdFp//OMfdcstt+jxxx/X9ddfrzPOOMN4JospnU4rmUwqlUopkUjYzg4AwGWZjFRb6y/39Uk1NXbSHMhK3R3+RHd19f5txMX+1YuNfUU0UZZQqMnqOMl8vQegOFyq913aV1fkOqalaIO7YGyMvy5pzhTbHbOOL6Kng3rJrHzxpZ4oqUL6DQLdqXLKKacoFospnU5r586dOuSQQ3TLLbfoHe94R1EyDACAk2bNktauHV22lWZlldTQVPp0gemgLKFQU9Vxpus9AMXhUr3v0r66ItcxLUUb3AWzZknNl0ub26XKHL8b72qTjlvPF9KFol4yK198qSdCK9CdKmOlUindfffd+tKXvqRjjjlGHR0dqqurM5W/ouNOFQAAAAAAACAiutqljZfn3+74a/mCGsCUCuk3KHii+mQyqQsvvFCPP/64li1bppNOOknPP//8tDMLAAAAAAAAANOyu6e42wFAHtOeqD4Wi+nTn/60Dj30UJ177rn6xS9+Ucx8AQAQfUND0r55y7RokVRR8G8dyiNNm+kieihLAOAWl+p9l/bVFRxT84aGpPSB0kuSDlLun4/X1ZcoUxFCGTaL+Jatgof/mswzzzyjxYsXFyE75jH8FwAgNMIyUX0pMMEhioXJHAHALS61IVzaV1cEPaa0X6Yv6ET1sbi0up+4Fop6yaxC4ks9YVzRJ6rPp1w6VAAAABBhnS3+JKTe4Jh1a6WGZml5q718AQAATIX2S2k0NPMFNMoX9UTocE8RAAAAyl9ni7Rpw/gLDcn/f9MG/3kAAIAwof1SXA1r/DtSxorFpWPW8cUzyhf1RCjlvVPloosuUiwWK+hNP/vZz+rII4+cdqYAAACAwAay/i+3culqk45bzy8UAQBAONB+Kb43XC29qZUhkhAd1BOhlbdT5aSTTir4TWuHx4IDAAAATOvumPjLrf15g/52DU0lyRIAAEBOtF/MqKwiXogO6onQytup8pGPfKQU+QAAAACmZ3dPcbcDAAAwjfYLgHyoJ0JrxnOq/O53v9ONN95YjLwAAAAAhaurL+52AAAAptF+AZAP9URo5b1TJZcXXnhBZ511lq666qpi5QcAAHdUVkqNjaPLUU3TZrqInsnK0tJGqXNt7lvjY3F/OwBAeXGpDeHSvroi1zGl/VIcfG7MIr5m5Ysv9URoxTzP86bzwvvuu0+f+MQn9NnPflYXXnhhsfNlTDqdVjKZVCqVUiKRsJ0dAAAAFENni7Rpw9TPH7NOWt5auvwAAADkQ/sFQD7UEyVTSL9BoC7Gn/70pyNv/Mc//lG33nqrPM/T3XffreXLl888xwAAAMBMDF9IdLWN/yVXLC41NHOhAQAAwof2C4B8qCdCKdCdKm9/+9slSbt371ZPT49mzZql9vZ2feADHzCewWLjThUAQGh4nvTyy/7ywQdLsVg007SZLqInX1kayErdHf5kjXX1/q3wlVWlzycAoDhcakO4tK+uCHpMab9MH58bs4ivWYXEl3rCuEL6DaY1/NdPf/pTXXvttdqxY4duvfVWHX744dPObKnRqQIACI1MRqqt9Zf7+qSammimaTNdRA9lCQDc4lK979K+uoJjah4xNov4mkV8Q6WQfoOK6SSwcuVK3XXXXfroRz+qU045Rb///e+nlVEAAAAAAAAAAIByEWhOlal86EMf0gEHHKB/+Id/0C9/+cti5QkAAAAAAAAAACB0ZtSpIklnnnmmTjnllGLkBQAAAAAAAAAAILRm3KkiadwYY3/+85916KGHFuNtUULZrNTRIfX0SPX1UmOjv76jQ9q8Wdq+XZo/X3rxRWnBAmnJEv/5LVvGPxdkG14f3dfP9L1tp8/reX2pX/+XrdKt/r9qapIWv9avf6uYaw4AAAAAAOxn+DvcQr6vney5BQukZcv4DmK68naqnHzyyYrFYjm3WbBggb773e9KkpYvX64XXnihOLlDSbS0SG1t0uDg6LrmZv+v59nJEwC4oHrM8tdukPolrV3r18GtrbZyBQAAAAAAwmay73Bniu8gpidvp8r69etHlvv7+/Wxj31M//3f/62tW7eqtbVV//Ef/6E5c+aMbOPxLXxZaWmRNmyYuJ7DCAB2DA6O1ss0agAAAAAAwFTf4c4U30FMT95OlbHzpWQyGc2ZM0ennHKKenp6lEgkJsynku+uFoRHNuv3bgIA7BhQpb6lC0eWx2prk9avN3AbbmWldOGFo8ulYitdRA9lCQDc4lK979K+uoJjah4xNov4mhUwvqX4DtfYdxARFfMC3Frywgsv6HOf+5y+/OUv67bbbtPq1auVyWT08MMP633ve9+4bQ8//PBQD/+VTqeVTCaVSqXGzQXjovZ26fLLbecCADCVa6/151oBAAAAAABuKtV3uK5/B1FIv0FFkDfcs2ePfv3rX6uiokK9vb068MADdfTRRysejxclw7Cjp8d2DgAAuVBPAwAAAADgtlJ9N8B3EMEVdN/Wb37zG9144416+umn9ec//1lnnHGGTj31VNXU1JjKHwyqr7edAwBwnadq9UuS+lUtafwQmkbqac+T+v00VV0tlWrYTlvpInooSwDgFpfqfZf21RUcU/OIsVnE16yA8S3Vd7h8Vxxc3jtVvv3tb+vmm2+WJD3yyCO66KKLdNBBB+nYY4/VSSedpKeeesp4JmFGY6PEzUYAYE+1+pVRrTKqHelcGRaP+/V00fX3S7W1/qO/P//25Z4uooeyBABucaned2lfXZHrmA5kpa526fHL/L8DWRs5LH98bsyiDJsVsPyW4jtcY99BRFTeO1X++Mc/6rnnnpMkZbNZzZkzZ+S52bNn69VXX9WDDz6o3/zmN/I8T/1UYGWjqkpqbpY2bLCdEwDA/pqbmSAOAAAAiKTOFqmrTfIGx6xbKzU0S8tb7eULCIoyXFKl+A6X7yAKk/dOlauvvlqf+cxnJEknnHCCbrvtNg0NDWnnzp166KGH9LrXvU67du3Stm3btH37dn30ox81nmkUT2urtG7dxN7OWIw7+gDAhnjcr5dbaYcCAAAA0dPZIm3aMP7LaMn/f9MG/3kgzCjDVkz1He5M8R3E9BQ0p8opp5yiJUuWaPHixdq7d68+/elP66CDDtKqVau0atUqU3mEYa2t0vr1UkeHPyFRff3o7V4dHdLmzdL27dL8+dKLL0oLFkhLlvjPb9ky/rkg2/D66L5+pu9tO31ez+tL/fq/bJX0Q///j14sLX6tX//y6xAAAAAgggay/q/7c+lqk45bL1VyUYAQogxbNfY73EK+r53suQULpGXL+A5iugJ1qlRWVuqggw6SJH3rW99ST0+PamtrdeihhxrNHEqnqkpqapq4frJ1AIAiyUiq9Rfb2yXVWMwLAAAAALO6Oyb+un9/3qC/XUNTSbIEFIQybN1U3+GitAJ1qhx11FG67777Rv6vr683liEAAAAAAAAgcnb3FHc7oNQow4CkAHOqAAAAAAAAAJihuoA/Ug66HVBqlGFAUoFzqsABA1n/Fr3dPX4FuLSRMRABwJR4XBqek6zYs82FKU2b6SJ6KEsoBtq8QPlwqd53aV9dsf8xXdooda7NPXxSbN92CIbPjVmUYbMov2Ur5nmeZzsTpZROp5VMJpVKpZRIJGxnJ1w6W/zJpMZWjLG41NAsLW+1ly8AAACgWGjzAgBs6myRNm2Y+vlj1nE+QrhRhhFRhfQbcKcKfFNViN7g6HoqRAAAAJQz2rwAANuGzzN08KNcUYYB7lSB/OEPbq/Of+ve6n6GRQAAAEB5os0LAAgThqJEuaMMI2IK6Tdgonr4FWCui0vJf767ozT5AQBXZDJSLOY/MpnopmkzXUQPZQnTRZsXKE8u1fsu7asrch3TyiqpoUla8SX/L19GTw+fG7Mow2ZRfssWnSrwe5SLuR0AAAAQNrR5AQAAABQBnSrwb9Er5nYAAABA2NDmBQAAAFAEdKrAH/MwFs+9TSzubwcAAACUI9q8AICwGshKXe3S45f5fweytnMEAMiBThXsGwOxOfc2Dc2MjQgAAIDyRZsXABBGnS3S7dXSxsulP13v/7292l8PAAilStsZQEgsb/X/drWNn8AzFvcvLoefBwAAAMoVbV4AQJh0tkibNkxc7w2OrufcBAChQ6cKRi1vlY5bL3V3+BN01tX7wx/waz0AAABEBW1eAEAYDGT9Tv5cutr8cxbnKAAIFTpVMF5lldTQZDsXAOCGeFx673tHl6Oaps10ET2UJRQDbV6gfLhU77u0r67IdUy7O8bfNTkZb9DfjnPW1PjcmEV8zSK+ZSvmeZ5nOxOllE6nlUwmlUqllEgkbGcHAAAAAAAArnn8Mn8OlXyOvlRa8SXz+QEAxxXSb8BE9QAAAAAAAEAp1dUXdzsAQMnQqQIAAAAAAACU0tJGKZZnuJ9Y3N8OABAqdKoAAGBLJiPV1PiPTCa6aRaS7kBW6mr3h0Poavf/R2hls1J7u3TZZf7fbCkOV76yRBlCoSgzQLjZarvY4NK+uiLXMa2skhqac7++oZlJ6vPhc2MW8TWL+JYtJqoHAMCm/n430gySbmeL1NU2fsLOzrX+xeTyVrN5Q8FaWqS2NmlwzOFau1ZqbpZaTR+uqcoSZQiFoswA5cFW28UGl/bVFbmO6fC5Zv9zUSzOuagQfG7MIr5mEd+yRKcKAACwr7NF2rRh4npvcHQ9F5Wh0dIibZjkcA0Ojq433rGyP8oQCkWZAQCEwfJW6bj1UneHtLvHn0NlaSN3qABAiDH8FwAAsGsg6/86L5euNobkCYls1r9DJZe2thINBTaMMoRCUWYAAGFSWSU1NEkrvuT/pUMFAEKNThUAAGBXd8f44Q4m4w3628G6jo7xQ35NZnDQ365kKEMoFGUGAAAAwDTRqQIAAOza3VPc7WBUT8DDEHS7oqAMoVCUGQAAAADTRKcKAACwq66+uNvBqPqAhyHodkVBGUKhKDMAAAAApomJ6gEAsKWiQjrllNHlqKaZL90lF0sbmyV5k77U86RXBubqyz9oVM910vbt0oIF0pIl/vO9vdKiRROXt2wJvu10X1fsNOrrpcZGqSrEw2g3Nkpr1+YfAmzPHumyy4of18pXK3TG4ado9hzpzusqtGWbdNSiRv3j/E9pTuUexWJTZCgW9yd9BSS/LHSuzT0EGGUGCAdbbRcbXNpXV3BMzSPGZhFfs/LFdyDrD0e7u8f/sc/SRuZcComY53mTf4MREpdccokeeughdXV1SZI6Ozt1ySWXaNu2baqpqdF1112nd73rXYHfL51OK5lMKpVKKZFImMo2AAAIorPFnwx6ii82h4ZiUkxa1X6H7nrinBJnzo54XGpullpbbedkai0t0oYNtnMx3tknfE93NK2SPKmiYpLm7THrpOUhDipKr7NF2pSjIFNmAAAAYMtk18qxuNTQTBvVkEL6DULdxfjcc8/pxhtvHPl/9+7dOvPMM7V+/Xo9++yz+spXvqLVq1dr+/btFnMJAACmZfgLzRy/FN+680inOlQk/w6QDRv8jouwam2V1q3zO4DC4q4nztGq9jv0/F+OGP9ELM6X45jc8la/bMT2K8iUGQAAANg01bWyN+iv7wzxxaIjQn2nyqpVq3TYYYfpwQcfVFdXl7761a/qvvvu01133TWyzfve9z69853v1Jo1awK9J3eqAAAQAgNZ6fbqqe9Q8aSX0ofoyEu3amDIzdub43Gpvz/cQ4H19UmJhD9EW1hUxAZ1csOjWnDAC9qZOVj3/OJUVc0NcRBhH8MqAAAAICzyXCtL8n8EtLqfNmuRReJOlR/96EfasWOHVq1aNbLu5z//ud72treN2+7Nb36znnzyySnfZ+/evUqn0+MeAACEQiYjHXKI/8hkopvmZOl2d+RsJFbEpEOTL+ltr3msdHkMmcFBqaPDdi5yu+GG0neoVCujF3WIXtQhqtbEMjzkxfXIplN1688/oP/3m3er47+40EAelVVSQ5O04kv+Xy5OgXCx1XaxwaV9dQXH1DxibBbxNWuy+Oa5VpbkP98d8ovFiAvlRPU7duzQP/3TP+lHP/rRuKG9tm3bpne84x3jtp0/f75++ctfTvle11xzjf7t3/7NWF4BAJiRl192I839093dE+glCw7YZigz5aEnWJissZW/QxS8DIc9hgCAAGy1XWxwaV9dwTE1jxibRXzN2j++Aa+VA28HI0J3p4rnefrIRz6ipqYmNTQ0jHtuYGBA+49WNjg4qFgsNuX7XXHFFUqlUiOP5557zki+AQBAAerqA222bdcCwxkJt/pgYbIm7PmTyiOPAAAAACAp8LVy4O1gROjuVPnCF76gV199VZdeeumE5+bNm6eX9+u9e+mll3TYYYdN+X6zZ8/W7Nmzi55PAACMsDi2fzbrDzfV0yMtWuSv27JF2r5dWrBAWrLEX9fbW/jzRx0ste9LZ80aaeuORn37fZ9WTVWfJvttxNBQTFt3HqlHu042tbuhF49LjY22c5FbY6O0dq0/VFkYlUMMAQAAAGDE0kapc23+OVWWcqFjU+g6Vf7jP/5DmUxGBx54oCT/7pQ9e/bogAMO0BVXXKHHHntMzc3NI9s/9thj+vu//3tb2QUAoHg6W6SutvGNp861UkOztLzVaNItLVJbm7kvx6s12qlyw9elflXJ2/pt3dG0Sp4nVcRG70T1PEkxqemmazXkxc1kqAw0N4d7knrJz19zs7Rhg+2cTK4cYggAAAAAIyqr/O8ANuW4yGpoZh5Ay0I3/Ne2bduUTqe1a9cu7dq1Sz/84Q919NFHa9euXTr//PP14x//WD/5yU8kSffee682bdqk1atXW841AAAz9NSVfqNp/1+jeIP++s4WY0m3tPhfipf6boO7njhHq9rv0PM7jxi3PlYR191Pf14/6Dy3tBkKiXhcWrdOajXbj1Y0ra1+fuMh6v8qtxgCAAAAwIjlrdIx6/w7UsaKxf31hn90ifxCd6dKLkceeaRuvfVWNTY2aufOnVq6dKnuuece1dTU2M4aAAAzs/lLUq7RKrvapOPWF/3XKNmsf4eKLXc9cY6+/+uzdHLDT7XkkGf01S+nNKuhUedUVqm/pfDhyAoZmqwYryt2GvX1/nBV5XZ3RWurtH79xONlIq6zspKu8tddvV7q2T7+Pco1hgAAAAAwYnmr/x2ApeHBkVvoO1VOPfVUdXV1jfx/+umnj/sfAICyVVEhnXCC9Mqfpdhzubf1Bv3GVENTcdLct9zRUZo7VIZUocd1wsjyuOe8uB7Z9HY9skl6w4NS0+v89VVVUlOT+byhOEp2vPZUSHf7ZampuUKaW4I0AQD27Nd2iTSX9tUVHFPziLFZxNesfPGtrJr5dwAwIvSdKgAARNbcudLjj0uPXyb96fr82+/uKV6a+/QU4S2DeEVz9SY9nne7UuUHZWy/MgwAiDiX6n2X9tUVHFPziLFZxNcs4lu26GIEAMC2uvribleA+uK/5YyELT8AAAAAAABjxTzP82xnopTS6bSSyaRSqZQSiYTt7AAAIA1kpdurJ05SP1YsLq3uNzKnSnV16Sepn0w8LvX3MxcGAAAAAAAorUL6DRj+C0WRzY5OTssEsciH8oKgTJSV/d/z4oulG26wVB77+6Vjj/WXv3OZ9Ez7hE2Gf/pwy6ar9fy1fsYmm8Q76LrnNvfrqu8cq4q49I+n/kEHLazWypXSQw8Z3E9Jc9WvP8jf12P1B+1R9YRtmpupCxDA2M/NH/7g9woCZWqm5znaVHBCmdT7Rfk8lsm+ogAcU/NKGON8n/OZPh9KlGGzConvQJZJ60OEO1UwYy0tUlvb+F85x+P+l2OtrfbyhXCivCAoE2VlsvfcX0nLYyYj1db6y3190h//TepqG3fHSu/LC9V0U7vueuKcoiRZrYwy8tOsUZ/6VSNJisX85021CqZKV6IOQIH2/9zU1OTeHgipmZ7naFPBGWVQ7xft81gG+4oCcUzNK1GM833OZ/p8aFGGzQoa386WCd8VKBaXGpql5WEuQOWFO1VQMi0t0oYNE9cPDo6uD/XJASVFeUFQJsrKVO9ZzDRmbHmr/vk76/XLH/1MCw7Ypm27DtejXSdryIsbT3q4M+Xtb5de+1pp0SL//8nuduntLfz5ow6WdIO/7uKPSL07/NcsW1Ymv9ACgCKa6XmONhUQHnwegejL9zl/+OHJ5xoP+rxEPYEcOlukTZMUQG9wdD0dKyXHnSqYtiDj8DM+PoZRXhCUibIynXlDSlIe9/tVSnZWjfH5TXLdMSIZ3G9+4YRioSyhzM30PEebCs4Jcb1f9M9jiPcV08QxNc9wjEsxB2Woz9uUYbPyxdfi/KsuKqTfoKJEeUIEdXTkP6kMDvrbAZQXBGWirAR5z5mmUQzTyWex8TkEALNmep6jTQWEB59HIPpKcY1GPYEpdXfk7lCR/Oe7KUClRqcKpq2np7jbIdooLwjKRFmZbrkqdXkMS/kPSz4AIIpmep6jTQWEB59HIPpK9fmlnsCkdgcsGEG3Q9HQqYJpq68v7naINsoLgjJRVqZbrkpdHsNS/sOSDwCIopme52hTAeHB5xGIvlJ9fqknMKm6gAUj6HYoGiaqhyR/jMiODr9nvL7enzRY8tdt3uxPMjx/vvTii6OTEQ8MSLHY6OTGU9m0STr77Imvl0YnMB5+Lsg2vD68r8/13Lx5+cuhJP3kJ9If/1j89Hl9+bzeRN0StPzt73e/C57GdPZ/59aYrj3wWA0MSP/eFNORy6RZlQN669GPasEB27Vt14KiT1TvKabf69iRZUmqiA3q5IZHteCAF7Qzc7AaP36qpCKPxxqLScceO7o81kDWv115d4/fGFzayHiwmFqusrSf4fbNcFtmss/p2HW9vdKiRVM/P53XmHjPcs6Hjbz39u5r3348q6pn99U1NYskT1J/77h6J1eZKda+zZ8f7Dy3Z490ySUT3/NPf8r9umGbNo1OfhuVY0k+wvOaUubjrw6L6UOHHqtsVrr8vJgOWhieeCxcWFi7Nd97Ljo4pk8f6p/jPrsmpud2+K95zdFZNb6rQ7P6N0t7tktzF+jV6mXqeKBR3VuqxtV3YV0OUleXw3Kh+zFcfl99Vbq1PaaBqinOS5Oci3p6ihvLQl5XTmlUZmM6b96xmjVLuqk9pqe3varTj/62Tn/zU6pM+Of7gd29uv+Xb9D9f7pQC4+aFSj9Qs/bMxXW83auOvi5Z/1Yn3bCb/TgE6/PG99C1+W61g7j+04nraOPyH2OO3rJR3XZYc2KafIC6HlSZm+tLryiUYdOI/1ly/zvgEM5n0/IMVE91NIitbWNHyNy+DsKt0oHANh19gnf05cuvExHzHthZN1zO47Umhuv011PnGMszesuWKOFB20dXRmLSw3N0vJWI2mO09kidbWNHye2lOkjsiZr38BdZ5/wPV3/4Ut1+IHbJt8gFtf3etbr/f/6L5QZAKEyaVttH9PtRJgz6XmJc9GM5fq8SHxmimmyWBPf4spXnoeGYlJMWtV+x4xiHo9Lzc1SK5ffBfUb0KniuJaW0Z5wAIA9Z5/wPd3RtEqSp4oxP74vVkOpkDRHHLPObMdGZ4u0KcdJyHT6iCzaNxgrb10n/4dEnmJa1X677nri3JLmDwCmkq/+GvIkKWaknQhzpjqunItmJsj53uS1lUtsXLu6Jkh57n15oZpuai9arNeto2OFTpUc6FQZlc1K1dX8ghMAbKuIDeqZ6xbriHlbJ20wDd/S+587dshTVVFuQz50/qtqfdPBqpuTnnoEpVhcWt1vZiiugax0e/X4O1RKmT4ii/YNxspXv441NBTT1p1HaknT00UddhEApiNo/UXdVV7yHVeO5/Rwvi8dyrB5eWPsSS+lD9GRl27VwFDxrpXjcam/3+2hwArpN2BOFYd1dPCFAwDYNFf9elwrVD0ro4W1W6UpLgBiMal2Tp/WntkhNTTNLNH+fmnFCum3O6QT01OmKcnv8OguQppj05Wkxx+Xer+au0Ol2OkjOvYvS9XV456mfYOxTm54dMohE/ZXUeFp0cHP6eSGR/XIplPNZgxAYMPtJUlaoce1R9V5XlG+xu5r87J/D1R/UXeF2/7l900Nv8p5XDmehZurfv1+1rFa+MWt0uckzc69PTEuDGXYrMnOcfnarxUx6dDkS3rbax4raowHB/1rqaamor1lpNGp4rCeHts5AAC3xeTptfqDlJWmmHduvN1FqLg9T/rDH/YtlyjNCel6wd+3WOkjOvYvS/uhfYOxFhwwxRwqRX4NAHNG2kv7lqNs7L4uSBZWF1F3hdP+5TfoceJ4BheTpyXZZ6XnFez6Zh9iHAxl2KzJznE2Y8y1VHAVtjMAe+rrbecAAFCQOgsVt6k0g76vjX1GWaN9g7G27VpQktcAQLFtTx1W0PbUXeUh6HHieJpHjKeHMmyezRhzLRUcnSoOa2z0x8sDANi3defh/sR+U4nFpaWNxU00lqcZYCLNYUsb/fe3lT4iq/HjWb37uP+n897yHZ1yzMOqiDEWmMse7TpZz+04Mnf9us+QJ/05dYh+tvmtJcgZAOT2s81v21d/5d5uaCim3pcX6tGuk0uTMcxIvvPS0BDnopnI93nxt+EzMxP5yzDxnSlbMY7H/e+KEQydKg6rqpKam23nAgAgSeu+s0GKaeov/hqaiz9h+2suy/28iTSHVVb5728rfURTZ4uq7q7W/f9yum659Hw9fNXb9cx1i3X2Cd+znTNYMuTFtebG63LXr/sMj0+9pb2eMgPAuiEN11+xKb8oHvIkxaSmm9qZELpM5DsvVVRwLpqRPOf7oaEYn5kZylWGiW9x2Ipxc7Pbk9QXik4Vx7W2SuvWTbxjJRbzH4AplDHYNFn5s10mf9B5lla13zFxqIdYXDpmnbS8tfiJvuFq/733v2PEZJpjLW+1mz6ipbNF2rRB8sbfmXLEgc/rjqZVfDHhsLueOGfy+nUKNsrMTM5B8bi0YgV3oANhUOz25HD99fxfjpz0+a07FmpV+x2664lzipcojAtyXqL9Mj3nf/lmPf+XI6Z8fuvOI4vymcn3Wc/1fBTO26N10/hYFyu+mDrGe16t1ge/fHNRYxyP+98Nt3L5XZCY500yw2eEpdNpJZNJpVIpJRIJ29kJjWxW6ujwJySqrx+93aujQ9q8Wdq+XZo/X3rxRWnBAmnJEv/5LVv85xYskJYtky6+WLrhBv99Fi0av02u1w8/F2QbXh/e1wd972XLCi9jtveN19t5vYm6Zf/yF6TeM7X/f9ma0a0/rJUkNV3cp8WvrVHjx7OqerbDn6C9rt4f/qqYd2tkMlKtn6b6+qSaGmkgK3UbTHOqdIeVIn1Ex1Rl+PbqCR0qwzxP2v1KQp/69cs6asksSePrmeHPZW/vxDpmqrop6GtMvGc558NG3nt799XzY+vXuYdLv7lSU81oO1mZMbVv+5+DJjvX5TpHNjb6vyocbs8Pn8OieCzJR3heU8p81B+WUdNVfr1/3hl9mrewJpTxKPSzPNl7HnVwRu03+Pu65iN96t1RowULpNccnVXjuzo0q3+ztGe7NHeBXq1epo4HGtW9pWpcfRfW5SB1dTksF7ofY8tv+/o+vVpVM1pePtqnqu8nlOtc9MrAXH35z7v07HNVM45lIa8rpzRmZcfHeMu2Kp1+9Ld1+pufUmVikeRJA7t7df8v36D7/3ShFh41/bZgvs/6ZM+PPS+X43k7Vx383LOv6vSjv63TTviNHnzi9XnjW+i6fN8VhO19p/V9xxG5z3FL/2pf/b9n9Fo5O1RVlO/S9i+TKKzfgE4VAABs6e+Xjj3WX/7DH6Tq6mimaTNdRM9kZamrXdp4ef7XHn+t1NBkMncoF5QZoHy41IZwaV9dkeuYci4qDj43ZhFfs4hvqBTSb1BZojwBAID9VVdLzzwT/TRtpovomaws7e4J9tqg2yH6KDNA+XCpDeHSvroi1zHlXFQcfG7MIr5mEd+yxZwqAAAAKG919cXdDtFHmQEA2Ma5CADKFp0qAAAAKG9LG6VYntk+Y3F/O0CizAAA7ONcBABli+G/AACwZc8eaeVKf/mnP5Xmzo1mmjbTRfRMVpYqq6SGZmnThqlf19DsbwdIlBmgnLjUhihgX4cnud5/kuywLrs6Uf1fLdij876yUtms9L01P9XArLljJjOvUhXnoplzqY6wgfiaRXzLFhPVAwBgSyYj1db6y319Uk1NNNO0mS6iJ1dZ6myRutokb3B0XSzufyGxvLW0+UR5oMwA4edSGyLgvra0SG1t0uDgpE8jRKqVUUb+Ma1Rn/o1ekzjcam5WWr9P5yLZsSlOsIG4msW8Q0VJqoHAACAe5a3Ssetl7o7/Eld6+r9ITP4hSemQpkBUGZaWqQNOW5sQPkYHBw+lq1q/TznIgAoJ3SqAAAAIDoqq6SGJtu5QDmhzAAoE9msf4cKoqWtTVq/vkpVnIsAoGwwUT0AAAAAAEDIdXQw5FcUDQ76xxYAUD7oVAEAAAAAAAi5nh7bOYApHFsAKC90qgAAAAAAAIRcfb3tHMAUji0AlBfmVMF4A1kmRwOAUjr4YDfStJkuooeyBABucanez7GvjY3S2rUMAVZuXlLu8huP+8cWM+BSHWED8TUraHz5zjZUYp7nebYzUUrpdFrJZFKpVEqJRMJ2dsKls0XqapO8MS20WFxqaJaWt9rLFwAAAAAAUEuLtGGD7VygmNatk1r5ygVALnxnWxKF9Btwpwp8nS3SpklaZt7g6Ho+pAAAAAAAWDP85XtbG3eslLt4XGpupkMFQB58ZxtK3KkC//ax26vH93buLxaXVvdzWxkAAAAAAJZls1JHhz/B+aJF/rre3vAub9kibd8uLVggLVkSnnzZ2o/6en/Iryq+YgGQC9/ZlhR3qqAw3R25P5yS/3x3h9TQVJIsAYAT9uyR3vMef/m++6S5c6OZps10ET2UJQBwi0v1fgH7WlUlNTWVJluYgbHHtDXi5dcWl+oIG4ivWfniy3e2oUWnCvwJjoq5HQAgmKEh6ZFHRpejmqbNdBE9lCUAcItL9b5L++oKjql5xNgs4mtWvvjynW1oVdjOAEKgrr642wEAAAAAAAAApo/vbEOLO1UgLW2UOtfmH59vaWPp8gQAAAAU00DWHxphd49/4bm0kbGnAQChk2++nOnO61LI68opjVlZqWlf7NrbpZ7tzFmDCOE729CiUwX+xWRDs7Rpw9TbNDRz0QkAAIDy1NkidbWNvyDtXOu3cZe32ssXAABjtLRIbW3SYJ4pFDCqWqOdKldeJfXvW167Vmpullo5zaOc8Z1taNGpAt/wxeT+F5uxOBebAAAAKF+dLZNfiHqDo+tp6wIALGtpkTbk+N4UhRkcHI0nHSsoa3xnG0oxz/M825kopXQ6rWQyqVQqpUQiYTs74cOwCABQOpmMVFvrL/f1STU10UzTZrqIHsoSCjGQlW6vzj9kwup+2rxAWLlU77u0r64IeEyzWam6mjtUpqNaGWXkx7hGferX+BjH41J/P0OBTRv1klmFxJfvbI0rpN+AO1UwXmWV1NBkOxcA4I7qajfStJkuooeyhKC6O3J3qEj+890dtIGBMHOp3ndpX10R4Jh2dNChMhMZTR3jwUE/vk1NpctP5FAvmRU0vnxnGyp0qgAAYEtNjf/LlKinaTNdRA9lCYXY3VPc7QCUnkv1vkv76oqAx7SH09C09atGtcodY+I7A9RLZhHfslVhOwMAAAAAYERdfXG3AwDAgHpOQ0YRXwDFxpwqGI/x+QAAQERks/5wD5s3S9u3SwsWSEuW+M9t2TJxXW+vtGjR1M9P5zUm3rOc81HKvNfXS40fz6rq7uBzquQqM8Xct2XLpMZGf31Hh/8L2uHtRvI+xfM59zfHe5bzsSQf4XuNi/mYzmcs32c9aD6G34c5IaKLOVXMicelXbukG24Idj4t1nk7X50RhfP22P2gfkIUFNJvQKcKRnW2SF1t4y86Y3GpoVla3movXwAQVa+8Ip17rr98553SnDnRTNNmuoiegGWppUVqa+PLCdfF49L6j31P/3LSuVNvdMw6aXlryctMLOb/nepqLN/zxXoNEHaz9YrulP8ZPld3aq/stSFMfy5z7Ws8LjU3S61cmpeXAtrALS3Shg0lyleE5KsjVqyQNm6c+fl9OudtE+f6UgtSB1M/zQDXyaFCp0oOdKpMobNF2pTj7L3vYhMAUESZjFRb6y/39fnjqUYxTZvpInoClCW+lMD+rrnke/qXk98/5Y+HKDNAeFUro4z8er9GfepXdNsQQfZ13Tq+uCwrBbaB+VFI4ab63MTj0vHHS48/bjN35a+QOpj6aRq4Tg4VOlVyoFNlEgNZ6fbgwyIAAIqEThWgcHnKEsNnYDLxuNS/O6uqZycOc0uZAcKNTpXx4nGpv5+hdsrGNNrAw0NRFjIc1Njnp1ou5HXllMasbEZNV/kxbl/fp57tNaqvly6+WDrgAM7vM1VIHUz9NA1cJ4dKIf0GlSXKE8KsuyN3h4rkP9/dITU0lSRLAAAA09HRwcUzJhoclDr+q0pNTU0TnqPMACgng4N+vTVJdYaIqKri+BYkI+kqf7GpSRr+zr+9nfN7qVE/wSUVtjOAENjdU9ztAAAALOmhuYIpTFU2KDMAyg31FpAfnxM7iDtcQacK/OEPirkdAACAJfU0VzCFqcoGZQZAuaHeAvLjc2IHcYcr6FSBP550LJ57m1jc3w4AACDEGhv98ZyBseJxv2xMhjIDoJzkqs8AjOL8XnrUT3AJc6rAn3y+oVnatGHqbRqamaQeAGDeQNafw2u/iaSBoKqqpOZmaUOOZg3cs3Ll1M9VVWT1zatu1r3/b7a27VqgR7tWasjjWxgA4dTczCTQQBC0CUvv9a+XrrvOX96yRdq+XVqwQFqyZHrr5s+XXnxxZu9RyvedTlrLjpCa9sXvvPOkeQtHt+vt9e/8aWyk3g+jmOd5nu1MlFI6nVYymVQqlVIikbCdnXDpbJG62sZPWh+L+x0qy1vt5QsA4AbOQyiilhaprY0JSjEqHve/XGkdW51MUu88t+NIrbnxOt31xDmlzyQATGHSOgxAXrQJUe6o/0unkH4DOlUwHr8QBgDY0NmS+47JY9bRsYKCZbNSR4e0eXOwX5T19kqLFk39/HReY+I9yzkfpcj7j34kPfLIxPIwbN26fRelU9Q7w1dHX/nlv+t3A81F3bcHHsg9geuRR0pbt079/MqV0rHHFra/K1f6vxwtx2NJPsL7GpfyMZ3PWL7PeqGfy2XL+KUyMBPDbcKensLqlJmet6fzmnI6b3/nO9KTTxa2/5i+kTYsjKFTJQc6VQAACJmBrHR79fg7VPYXi0ur++noB5BTNitVV+f+NWo8LvXvzqrq7tLWO0Hylk88LvX3j36xGnh/+/kyFpiO6XzG+FwC0VCM8/Z0lEv9YCs+LiuXslHOCuk3YKJ6AABseeUVafVq//HKK9FNM1+63R25v9iU/Oe7O8zlD+XDVhlGWejoyH9xPzgoPfDVG0te7wTJWz6Dg/77FPKe+78GKDsW6/3pfMZm9LnkHBc9HFPzDMW4GOft6QjdeXuK+NqKT9TM1iu6Tat1m1ZrtnKX39CVDcfRqQIAgC2Dg9Idd/iPUrVIbaSZL93dOe6pn852iDZbZRhlIdcQHWO98pfng21YxHonaN4KeZ+g71mstAErLNb70/mMzehzyTkuejim5hmKsc1zZ6jO21PEN1R5LGNxDWq17tBq3aG48pdf4h4edKoAAAC76uqLux0AZ9UHrCbmHHhEsA2LWO8EzVsh7xP0PYuVNuCa6XzG+FwC0WDzM1oO9UM55DGKiHt4MKcKJI2ftKu+fvwkeEEmeZ0/X3rxxfGT6EnjXzd2m6leH2QbXh/e1+eaWPHii6Ubbhg/MVxvr1/ehp8LWsbKMTa8vrDXF6tsFFL+TJbNqbb5y9aMbv1hrSSp6eI+LX5tzUj9W+gE20HXbd2c0XVf99M874w+zVtYM+nkp7nSn86EhkcdnFH7DX66az7Sp94dNaPnjI/nntvA86RXBubqy3/epZ6nq3KmV0jeivG6Yqex/zk47KZqP0xnMtCgcZ2VzajpKr8sta/vU8/2mgmf3XKKIYqLOVXyvwYoO5mMVOvX++rrk2pqSpZ0yedUsbivMIRjap6hGDOnyj5TxJc5VYqjWhll5Me3Rn3q19Tld7hsSIV/3zrZ97WTfQfsuoL6DTzHpFIpT5KXSqVsZyU01q3zvHjc8/yvrfxHPO6vn+y5II9YzH8U+joePHjwcOlRrb6Rf6rV50l+nbtixfTq3ummOZzuunVTnxdMpTuc9p2fu8bzbtaEx+BNMW/wv2Pe2Sfcaf14leox9liE2VTtB5PlN19ZKrcYwox163KXoZGysXHdpPXOyGNj8QtRvrytWBEw79PZX6Bc9Y3W+15fX8mTn85nbNqfS8v7CgM4puYZjPFMz9vFOtdblSO++eLDI/8jyLXN2LIx02v1yb6v5dppVCH9BipBfkKFTpXxqAB58ODBw96jkAZUqdKczoVBsfb1zs9d43nfiY/7UvPZ6xY61aEy9hHmhq3N9kOhFx5wU64fDY2zcd2Eesf7TtxIh0rQvAXO+3T2FyhHIfhSumSfyxDsK4qMY2qe4RhP57yd74vrsjpv54mviR/kufQo5Adjpq/BQln+SqyQfgOG/3IYt+oBgF2F3OpbzmkGTTcel3btzOrckx7WvNqXtW3X4Xq062QNefGS5DFsQnfr/z622w/TuUU+bDFEaeQa3nacgazU3eFPSl9XLy1tLNqQX9PNW+C8F/CeQNkKyfBJJflchmRfUUQcU/NKEOPpnLel4p/rrQgQ36BD/xa6Lt9Q32F732kNV37E6NDGw8NzTzY8tGT+Goxrp8L6DehUcVh7u3T55bZzAQDuolNlor/7O+nuu0uSpbJw7bVSU5PtXIxnu/1QaBkOYwwBAAVw6Utpl/bVFRxT84ixWcTXrIDxLdU1mOvXToX0G1SWKE8IoZ4e2zkAALf1q1o16htZjmqahaTLuWm8MMbDdp4KLcO28wsAmKHqav+LpuHlKHNpX13BMTWPGJtFfM0KGN9SXdNw7RQcnSoOq6+3nQMAcF2sZHeK2E0zeLr19dJvf1uC7JSJMJ6r7eepsDJsP78AgBmJxdz5ZbRL++oKjql5xNgs4mtWwPiW6pqGa6fgGP7LYbbHRAcAYCzmVBkvrGPallP7IawxBAAAAICgSnENxrVTYf0GFSXKE0KoqkpqbradCwBwV5X26pv6sL6pD6tKeyObZtB0b/vXL6j2R9W6/19O1y2Xnq+Hr3q7nrlusc4+4Xsly2eYNDeHs0Fru/1QSBkOawwBAAXYu1f68If9x97StV2scGlfXcExNY8Ym0V8zQoY31Jcg3HtVBjuVIFaWqS2tvL4xSkARMlkE27H49Lxx0sbN5qpl8M4UX087neonPNXV0x43dBQTIpJq9rv0F1PnFOSvNoWj/sN2tZW2znJzVb7IUgZLpcYAgACcGmSZJf21RUcU/OIsVnE16wC42viGiwWk9au5dpJKqzfgE4VSPJvI+vokDZvlv7rv6R8peLzn5cqK6UtW6Tnn5d++MP8r/nIR6QdO6QFC6QlS/x1W7ZI27dL8+dLL744+jfXNrw+vK8ffm5gQLryyvxlIpexZazQ9MMYG14fbJuvfa2w+sdU+ZtJ+oXs/1+2ZnTrD/0GVNPFfVr82ho1Nvq/DhlbL2/fPvn7T2fd1s0ZXfd1P83zzuhT8vCaQHH/2MekpUv95d5eadGiqdOY7PmjDs6o/QY/3TUf6VPvjhotWCAtWyY1fjyrqrurJW/ylqHnSa8MzNWX/7xLPU9X5UyvkLwV43XFTqO+XiNloBz09UmJRLDPbW9vceI6K5tR01V+WWpf36ee7TXj3qPcYggAyMOlL/Rc2ldXcEzNI8ZmEV+zphHf/b8ryPWdxLx50je+kfv9KiqkPXu4fpIK6zdgonpI8j84TU1Se3uwLyLnzvW3l/zX3HNP/te87nWjr0G0BS1HuYwtY3DDdOqfmbzPdBW1bGakfT+4V3u7NPYH98P1ctFlJH3dX7z1Vqk9QIeKJB1zzAzzk5F0g7943XUat6/q6piyQ0Xyfzkzd9YerX1fh9Qwk0yg2G64Ifjn9itfKVKiGUlX+YtNTVKJbrYCAAAAAOsK+a6gvT3/NkNDficN38EVhjlVME5PT+HbTec1iLZiHGvKi3uKVZeYLjtRK5uhqMN3B3zzoNuhZEJRfgAAAAAAE3C9Zg6dKhinvr7w7abzGkRbMY415cU9xapLTJedqJXNUNThdQHfPOh2KJlQlB8AAAAAwARcr5nDnCoYJ5uVqqtzT3gUj0v9/aNj7U3nNYi2IGUiF8qLm4pVl8y0/OVS9LJpY3za/dLMzqopTR2ea18HstLtU8+pIkmKxaXV/VIlFUOYWGkDMK4zALjFpXrfpX11BcfUPGJsFvE1y3B8+c62MMypgoINT3LU0yOtXCk99NDU277udfvGw9foxEfHHiv99rdTv2bxYumyy8IxGTavNz9R/XA5eeqpqctELpOVMdv7xutL8/qTTpIeeWTmZWMm5S+X6ZbNqSeql27d995NTdLi16oEE9VL+3ZB550nzVsonXpKVgPbfqYFB2zTtl2H69GukzXkxUf2e/FiP3+5JqLPP1G91L7v/daskXp3aHSi+sYqVTU0S5s2TIj58E8/Hvzzv+rJa6usTiLPRPWTy9duOOkk/3NTrLjOykpN+967vV3q2a4pJ6ov9HOULw/TeY2J9yznfNjI+3PPvqrTj/62Tl+xUZWvbpPmLpASy6SljRM6anOVmbDEo5yPP/kIZz7Cnvf6w0br/eG2S1TjMVV76TVHZ9X4rg7N6t8s7dkuzV2gV6uXqeOBRnVvqcrb7gjD8nTbTGFbLnQ/xpbf9nbp1ar8bb6x389EpY1rMo3924Zbtu0777/5KVUmFkmeNLC7V/f/8g26/08XauFRswKlH4U6pRj5yFUHD7exTjvhN3rwidfnjW+h63Jda4fxfaeT1rIjcp/jJqsrCpmofv58/3o+1/Be//RP5XX9GRbcqQK1tEhtbWZ+1Q0AyMXTwXpZkvSyDpYUUzwuHX+8tHGjqXp5fJpnn3CXrrtgjRYetHVki+d2HKk1N16nu544x1i6UmzkmXhcam6WWv9Pi9TVNu6Old6XF6rppvYi5yXcRuLRajsnudlrP0xdloaZ/xyhXJx9wvcm1HEjYnGpoVla7n/YaBMDYZW/3o+Oifuaqx4z02ZDcQVoA49p83Eumo7RGJ/8xp/qugubJj/vi8/M9Exehierm4jvdAS7thmuK0zUEeVy/VkKhfQb0KniuJYWacPEHwYDABxw9gnf0x1NqyR5qhjTdhsaikkxaVX7HSVtEK9bJ7V+Pqub1t+se//fbG3btUCPdq0cd9eMS9atC2/DlvYDysFUddwEx6xTyy2tlGkAoZOvHhvyJClW8jYbimu4zUf7amaCnPdtXedETdiuI12xYoX0+OPm3j/M15+lQqdKDnSqjDI57wAAINwqYoN65rrFOmLe1skv0odi2rrzSC1perpknRrxuLRrl3TAAZybpPCObUv7AeUgXx03lqe4Zl/4il4dYGRkAOERtB6z0WZDcdEGnrlCzvt8ZmYmjNeRKI6wXn+WUiH9BhUlyhNCqKODEzYA2FSlvbpe/6jr9Y+q0t6SpnnHAedqYWLqi46KCk+LDn5OJzc8WtR0c+3r4KD0oQ9xbho2OOifq8PGdvvBxucG5efkhke18KD8X6xIUkyDeuvR/2s+UwCmxaV6f+y+vmPZjwPVY8Vus6G4aAObV6W9/rXND7aqYiD/9nxmCrN/Gc7XxiK+hQnTOS6s159hxc+xHJZrkiIAgHmVGtA/ym+1tKhVWc0uXZp/kTQoaVbu7RccsK246Sr3vnJuGi+M8bCdJxufG5SfQuuuYtV1AIrPpXp/7L4+njyhoNdSj4UTbWDzKjWgs//yfelBSf9Hea9vhvGZCWb/Mhw0bsQ3mLCd46iLguNOFYfV19vOAQAg7LbtWlDS9Dg3jRfGeIQxT8D+Cq27Sl3XAUA+21OHFbQ99Vh5o31Venxmpido3IhveaIuCo5OFYc1Nvrj5QEA3LR15+H+ZIKTGBqKqfflhXq06+SS5Scel266iXPTsHjcP1eHDe0HlINHu07WczuO1NBQ/m09xfXYn04ynykAKMDPNr8tUD1mo82G4qINXDxBzvt8ZmZmtI0VnutIFEdYrz/Dik4Vh1VVSc3NtnMBALBl3Xc2SDFNaBAPDcWkmNR0U3tJJxdsbpZqazk3DWtuDuckgbQfUA6GvLjW3HidFIvl/YIldkyzmi5nVGQA4TKk/PXYkCcrbTYUF23gIprk2mYsW9c5UTLaxgrPdaQrVqww+/5hvf4MKzpVHNfaKq1bN/EXEbGY/wAAlFY87jeWSvFLtR90nqVV/3979x5eV1kmjPtJz21KQsuphZa2ttDK+SQdBgTk4yQOgiCOMCCog4cqUo6OdLj4RGYU5vuwgKKfwnCUwZ8oKDCKclQEBLSogBRoCxRooS2QNGmhTbp+f+xJ27TJzk6alZW91n1fV67u7r32fp/nXW/e/e71ZK81+7Z47e3t2t3/6lvj4uOzb4vbnzwu/SCilOt555XekyI6f28qig37oz/q7/uoL3+P6L9uf/K4/5njxnWyRU3E+8+L2POyfj+mgWLqah57ddn4Pl2z0busgXvfP333Rxt9tllfX3/Oyat1c1O2nyOLom2uePzxdOaIavj82R/VJEmSZB1EX2psbIz6+vpoaGiIurq6rMPpN1atirj66tIFiSZPXvd1r6uvjpg7N2Lx4oitt454882IsWMjJk0qPT5/fvvHKtnG8/P7/E197azb93zP7+vnv/1qc9x618iIiJj5z00xcefamDGj9NchbfNy2xzc0ev35L5X5zbHFdeW2vzkPzTF6PG1MXWHVTHjsKujpmle3POH3eOeF06N8RMGd/oar7wSsf32nbfR0eMTtmyO2deU2j3zs03xyrLaGDs2YscdY23OG1r/vanS9roTW288r7fbaHsPrpa/EOpoH6Xdr4NXNcfMfy2NpdmXNMW8xbXtXmP9Puzu71FXMfTW70OR4+iz2F9qiaNqj44hg96LJY1bxbRt58Zu2/85BrT7k7IBEZ9YGTFo3S9cuTHTX/qjmve/OPpnHP099slj1s37bWuXvPZHZ+ultrXa4BVzI1Yujhg+NlaP2DGu/s2MeHH+kC7fg/vD7Z6umfrb7e7msf74nX1JU6weUtvlmq+r9VU1rnHTbGPDteGC1wfEKdseEHtOmBMDB5QOea5ZUxN/eWW3eO71qbHlZkti9ZqhcWfDnbHojUGFn2O7/HxSZg5e+PLqOGKHG+LQff4S9z65W5efI7t7X7nP2v3xdXvS1o7blX+P62iu2HC92tPjFV19Hi+i7tQNFFUAICvNzaXv+kdENDVF1Nbms80s2yV/jCUq8dzsiD+d1fV2e307YtrMtKMBNkWR5v0i5VoU9mn6NuzjhT+0BuhNxnC69G+/0p26gZMHA0BWhg+PWLBg3e28tpllu+SPsUQlls/r3e2A7BRp3i9SrkVhn6Zvwz62BuhdxnC69G/VUlQBgKwMGBAxcWL+28yyXfLHWKISm03u3e2A7BRp3i9SrkVhn6Zvwz62BuhdxnC69G/VcqF6AAAgX6bMiKjp4iqeNQNL2wEA+WENAPQBRRUAyMqqVRHnnVf6WbUqv21m2S75YyxRiUFDIqadXX6baWe3u0g90E8Vad4vUq5FYZ+mb8M+tgboXcZwuvRv1XKhegDIigvVQ/cZS3THnPMjnrs8Imldd1/NwNLBlD0vyy4uoHJFmveLlGtR2Kfp66yPrQF6hzGcLv3br7hQPQAAwJ6XRex6ScSLV5cuSLvZ5NLpPvx1KgDkmzUAkCJFFQAAIL8GDYmYNjPrKACAvmYNAKTENVUAAAAAAAAqoKgCAAAAAABQAaf/AgAAAOjvWla5PgQA9AOKKgAAAAD92ZzzI567PCJpXe++cyOmnV26IDcA0GcUVQAgK8OHRzz99LrbeW0zy3bJH2MJoFiKNO93luuc8yP+9h8bb5+0rrtfYaV/KtL4zYo+Tpf+TZf+rVo1SZIkWQfRlxobG6O+vj4aGhqirq4u63AAAAAAOtayKuInI9p/Q2VDNQMjTljhVGAAsAm6UzdwoXoAAACA/ujFq8sXVCJKj794dd/EAwA4/RcAZGbVqoh///fS7QsuiBjSB39dmEWbWbZL/hhLAMVSpHm/o1yXz6vsuZVuR98q0vjNij5Ol/5Nl/6tWk7/BQBZaW6OGDmydLupKaK2Np9tZtku+WMsARRLkeb9jnJ9bnbEn87q+rl7fTti2sw0o6MnijR+s6KP06V/06V/+xWn/wIAAACodlNmlK6ZUk7NwNJ2AECfUFQBAAAA6I8GDYnY8czy20w720XqAaAPuaYKAAAAQH805/yI56/o+LGagaWCyp6X9W1MAFBwiioAAAAA/c2c8yP+9h+dP77jVxRUACADTv8FAAAA0J+0rIp47vLy2zx/ZWk7AKBPKaoAAAAA9CfzfhCRtJbfJmmNePHqvokHAFjL6b8AICvDhkU8/vi623ltM8t2yR9jCaBYijTvr5/rqusre87yeamFQy8o0vjNij5Ol/5Nl/6tWjVJkiRZB9GXGhsbo76+PhoaGqKuri7rcAAAAADae252xJ/O6nq7vb4dMW1m2tEAQO51p27g9F8AAAAA/cmUGRE1A8tvUzOwtB1AFlpWlQrAT5xR+tc1nigQp/8CgKysWhVxxRWl22eeGTFkSD7bzLJd8sdYAiiWIs37G+Y67eyIv/1H59tPOztiUI77Iw+KNH6zoo/T1Vn/zjk/4rnL21/7ac65pXlpz8v6Ps5qZfxWLaf/AoCsNDdHjBxZut3UFFFbm882s2yX/DGWAIqlSPN+R7l2dOCyZqADl9WiSOM3K/o4XZ3NS+UKvu8/z/xUKeO3X+lO3cA3VQAAAAD6oz0vi9j1kogXry5dlH6zyaVTfvmGCpCFllWlQm85z11emrfMU+SYogoAAABAfzVoiIvRA/3Di1e3/+ZcR5LW0nbmLXLMheoBAAAAAChv+bze3Q6qlKIKAAAAAADlbTa5d7eDKqWoAgAAAABAeVNmRNQMLL9NzcDSdpBjiioAAAAAAJQ3aEjEtLPLbzPtbBepJ/dcqB4AsjJsWMQDD6y7ndc2s2yX/DGWAIqlSPN+kXItCvs0ffo4XR31756Xlf597vL2F62vGVgqqLQ9TteM36pVkyRJknUQfamxsTHq6+ujoaEh6urqsg4HAAAAAKC6tKyKePHq0kXpN5tcOuWXb6hQxbpTN/BNFQAAAAAAKjdoSMS0mVlHAZlQVAGArKxeHfGDH5Ruf+5zEYMH57PNLNslf4wlgGIp0rxfpFyLwj5Nnz5Ol/5Nl/6tWk7/BQBZaW6OGDmydLupKaK2Np9tZtku+WMsARRLkeb9IuVaFPZp+vRxuvRvuvRvv9KdusGAPooJAAAAAACgqjn9FwAAAABQ/Vw8HegDiioAAAAAQHX786yIl78TkbSuu2/OuRHTzo7Y87Ls4gJyx+m/AAAAAIDq9twV7QsqEaX//+0/Iuacn01MQC4pqgAAAAAA+fXc5aVTgwH0AkUVAAAAACC/ktbStVYAeoFrqgBAVoYOjbjrrnW389pmlu2SP8YSQLEUad4vUq5FYZ+mb+jQiMv/IeL1uyIGd7Ht8nl9ElKuGMPp0r9VqyZJkiTrIPpSY2Nj1NfXR0NDQ9TV1WUdDgAAAADQU8/NjvjTWV1vt9e3I6bNTDsaoEp1p27gmyoAUHQtq0pfhV8+L2KzyRFTZkQMGpJ1VAC9y1wHAPk0ZUbEnHM3vkj9+moGlrYD6AX99poq999/f+y///4xZcqUmDx5clx11VVrH3vppZfisMMOiwkTJsSUKVPi5ptvzjBSAOih1asjrr++9LN6dTZtzjk/4icjSn/Z9cJ3Sv/+ZETp/jTbhZ4yluiJvprrgN5XpHm/SLkWhX2avtWrI26+JeL5wyNaymw37Wx/TNETxnC69G/V6ren/zrzzDNjxowZMXXq1Jg/f34ceOCBcc0118Rhhx0We+yxR5xzzjlx2mmnxbPPPhsHHHBA3H///bHHHnt0+bpO/wVAv9HcHDFyZOl2U1NEbW3ftvn7MyNeuqLzbd9/XsSel/V+u32VK/lkLNFdc86P+Nt/dP54b851QO8r0rxfpFyLwj5N34afb17+TvtvrNQMLBVUvNf3jDGcLv3br+Ti9F9XXLHuIM/73ve++MQnPhH3339/DBgwIAYNGhSnnXZaRETstNNOcfLJJ8cNN9xQUVEFAPgfc6+KKHctvOcuj9j1En/RBVSvllWluawccx0A5MPu/xax72VO9wmkrt+e/mtDS5Ysifr6+nj00Udj//33b/fY9OnT46mnnurwee+99140Nja2+wEAIiJZ08XjraUPJADV6sWry59fPcJcBwB5MmhI6WL0H7iq9K+CCpCCqiiqPP7443HXXXfFSSedFIsWLYptttmm3eNbb711LFu2rMPnfvOb34z6+vq1P+PHj++LkAEgH5bPyzoCgJ6rdA4z1wEAABXq90WVW2+9NT760Y/GDTfcEJMmTYqWlpbY8DIwra2tUVNT0+Hzv/a1r0VDQ8Pan4ULF/ZF2ACQD5tNzjoCgJ6rdA4z1wEAABXqt9dUaW1tjTPOOCMeeOCBuOeee2L33XePiIjRo0fH0qVL2227ZMmSGDNmTIevM3To0Bg6tNwJ4wGgoGoGRESZU4DVDCydgxigWk2ZETHn3PKnADPXAQAA3dBvv6kyc+bMmD9/fjz55JNrCyoREXvvvXc88sgj7bZ95JFHYr/99uvrEAGguk09o/zj0852DmKgug0aUprLyjHXAQAA3dAvv6ny7rvvxve+971YuHBh1NbWtnvs6KOPjrPOOituvvnmOPnkk+PJJ5+Mn//85/H4449nFC0A9NDQoRH/3/+37nZft7nvxyKGD4l47vL2f8VdM7B0kHHPy9Jp1zdI2RTGEt3VNpf1xVwH9L4izftFyrUo7NP06eN06d906d+qVZNseIGSfuDZZ5+NXXbZJbbffvt290+dOjXuueee+OMf/xinn356vPrqqzFmzJi48sor4+CDD67otRsbG6O+vj4aGhqirq4uhegBoMq0rIp48erShZo3m1w6DY6/2gbyxlwHAAB0ojt1g35ZVEmTogoAAAAAANCmO3WDfnn6LwAohJaWiNtvL93+2MciBvXB23IWbWbZLvljLAEUS5Hm/SLlWhT2afr0cbr0b7r0b9XyTRUAyEpzc8TIkaXbTU0RG1xHLDdtZtku+WMsARRLkeb9IuVaFPZp+vRxuvRvuvRvv9KdusGAPooJAAAAAACgqimqAAAAAAAAVEBRBQAAAAAAoAKKKgAAAAAAABVQVAEAAAAAAKiAogoAAAAAAEAFBmUdAAAU1pAhEdddt+52XtvMsl3yx1gCKJYizftFyrUo7NP06eN06d906d+qVZMkSZJ1EH2psbEx6uvro6GhIerq6rIOBwAAAAAAyFB36gZO/wUAAAAAAFABp/8CgKy0tETcc0/p9hFHRAzqg7flLNrMsl3yx1gCKJYizftFyrUo7NP06eN06d906d+q5fRfAJCV5uaIkSNLt5uaImpr89lmlu2SP8YSQLEUad4vUq5FYZ+mTx+nS/+mS//2K07/BQAAAAAA0MsUVQAAAAAAACqgqAIAAAAAAFABRRUAAAAAAIAKKKoAAAAAAABUQFEFAAAAAACgAoOyDgAACmvIkIjvfGfd7by2mWW75I+xBFAsRZr3i5RrUdin6dPH6dK/6dK/VasmSZIk6yD6UmNjY9TX10dDQ0PU1dVlHQ4AAAAAAJCh7tQNnP4LAAAAAACgAk7/BQBZaW2N+N3vSrc/+MGIgQPz2WaW7ZI/xhJAsRRp3i9SrkVhn6ZPH6dL/6ZL/1Ytp/8CgKw0N0eMHFm63dQUUVubzzazbJf8MZYAiqVI836Rci0K+zR9+jhd+jdd+rdfcfovAAAAAACAXqaoAgAAAAAAUAFFFQAAAAAAgAooqgAAAAAAAFRAUQUAAAAAAKACiioAAAAAAAAVGJR1AABQWIMHR1x22brbeW0zy3bJH2MJoFiKNO8XKdeisE/Tp4/TpX/TpX+rVk2SJEnWQfSlxsbGqK+vj4aGhqirq8s6HAAAAAAAIEPdqRs4/RcAAAAAAEAFnP4LALLS2hrxpz+Vbu+1V8TAgflsM8t2yR9jCaBYijTvFynXorBP06eP06V/06V/q5bTfwFAVpqbI0aOLN1uaoqorc1nm1m2S/4YSwDFUqR5v0i5FoV9mj59nC79my792684/RcAAAAAAEAvU1QBAAAAAACogKIKAAAAAABABRRVAAAAAAAAKqCoAgAAAAAAUAFFFQAAAAAAgAoMyjoAACiswYMjLrpo3e28tpllu+SPsQRQLEWa94uUa1HYp+nTx+nSv+nSv1WrJkmSJOsg+lJjY2PU19dHQ0ND1NXVZR0OAAAAAACQoe7UDZz+CwAAAAAAoAJO/wUAWVmzJuJvfyvdfv/7Iwb0wd86ZNFmlu2SP8YSQLEUad4vUq5FYZ+mTx+nS/+mS/9WLaf/AoCsNDdHjBxZut3UFFFbm882s2yX/DGWAIqlSPN+kXItCvs0ffo4Xfo3Xfq3X3H6LwAAAAAAgF6mqAIAAAAAAFABRRUAAAAAAIAKKKoAAAAAAABUQFEFAAAAAACgAooqAAAAAAAAFRiUdQAAUFiDB0ece+6623ltM8t2yR9jCaBYijTvFynXorBP06eP06V/06V/q1ZNkiRJ1kH0pcbGxqivr4+Ghoaoq6vLOhwAAAAAACBD3akbOP0XAAAAAABABZz+CwCysmZNxCuvlG5vv33EgD74W4cs2syyXfLHWAIoliLN+0XKtSjs0/Tp43Tp33Tp36rl9F8AkJXm5oiRI0u3m5oiamvz2WaW7ZI/xhJAsRRp3i9SrkVhn6ZPH6dL/6ZL//YrTv8FAAAAAADQyxRVAAAAAAAAKqCoAgAAAAAAUAFFFQAAAAAAgAooqgAAAAAAAFRAUQUAAAAAAKACg7IOAAAKa9CgiBkz1t3Oa5tZtkv+GEsAxVKkeb9IuRaFfZo+fZwu/Zsu/Vu1apIkSbIOoi81NjZGfX19NDQ0RF1dXdbhAAAAAAAAGepO3cDpvwAAAAAAACrge0UAkJUkiVi6tHR7yy0jamry2WaW7ZI/xhJAsRRp3i9SrkVhn6ZPH6dL/6ZL/1YtRRUAyMqKFRFbb1263dQUUVubzzazbJf8MZYAiqVI836Rci0K+zR9+jhd+jdd+rdqOf0XAAAAAABABRRVAAAAAAAAKqCoAgAAAAAAUAFFFQAAAAAAgAooqgAAAAAAAFRAUQUAAAAAAKACg7IOAAAKa9CgiFNPXXc7r21m2S75YywBFEuR5v0i5VoU9mn69HG69G+69G/VqkmSJMk6iL7U2NgY9fX10dDQEHV1dVmHAwAAAAAAZKg7dQOn/wIAAAAAAKiA7xUBQFaSJGLFitLtESMiamry2WaW7ZI/xhJAsRRp3i9SrkVhn6ZPH6dL/6ZL/1Yt31QBgKysWBExcmTpp20hlcc2s2yX/DGWAIqlSPN+kXItCvs0ffo4Xfo3Xfq3aimqAAAAAAAAVEBRBQAAAAAAoAKKKgAAAAAAABVQVAEAAAAAAKiAogoAAAAAAEAFFFUAAAAAAAAqMCjrAACgsAYOjPj4x9fdzmubWbZL/hhLAMVSpHm/SLkWhX2aPn2cLv2bLv1btWqSJEmyDqIvNTY2Rn19fTQ0NERdXV3W4QAAAAAAABnqTt3A6b8AAAAAAAAqoKgCAAAAAABQAUUVAMhKc3NETU3pp7k5v21m2S75YywBFEuR5v0i5VoU9mn69HG69G+69G/VUlQBAAAAAACogKIKAAAAAABABRRVAAAAAAAAKqCoAgAAAAAAUAFFFQAAAAAAgAooqgAAAAAAAFRgUNYBAEBhDRwYcdRR627ntc0s2yV/jCWAYinSvF+kXIvCPk2fPk6X/k2X/q1aNUmSJFkH0ZcaGxujvr4+Ghoaoq6uLutwAAAAAACADHWnbuD0XwAAAAAAABVQVAEAAAAAAKiAogoAZKW5OaK2tvTT3JzfNrNsl/wxlgCKpUjzfpFyLQr7NH36OF36N136t2q5UD0AZGnFimK0mWW75I+xBFAsRZr3i5RrUdin6dPH6dK/6dK/Vck3VQAAAAAAACqgqAIAAAAAAFABRRUAAAAAAIAKKKoAAAAAAABUQFEFAAAAAACgAoOyDgAACmvAgIiDDlp3O69tZtku+WMsARRLkeb9IuVaFPZp+vRxuvRvuvRv1apJkiTJOoi+1NjYGPX19dHQ0BB1dXVZhwMAAAAAAGSoO3UDJTAAAAAAAIAKKKoAAAAAAABUQFEFALLS3Byx1Valn+bm/LaZZbvkj7EEUCxFmveLlGtR2Kfp08fp0r/p0r9Vy4XqASBLS5cWo80s2yV/jCWAYinSvF+kXIvCPk2fPk6X/k2X/q1KvqkCAAAAAABQAUUVAAAAAACACiiqAAAAAAAAVEBRBQAAAAAAoAKKKgAAAAAAABUYlHUAAFBYAwZE7LPPutt5bTPLdskfYwmgWIo07xcp16KwT9Onj9Olf9Olf6tWTZIkSdZB9KXGxsaor6+PhoaGqKuryzocAAAAAAAgQ92pGyiBAQAAAAAAVEBRBQAAAAAAoAKKKgCQlRUrIiZOLP2sWJHfNrNsl/wxlgCKpUjzfpFyLQr7NH36OF36N136t2q5UD0AZCVJIl5+ed3tvLaZZbvkj7EEUCxFmveLlGtR2Kfp08fp0r/p0r9VyzdVAAAAAAAAKqCoAgAAAAAAUAFFFQAAAAAAgAooqgAAAAAAAFRAUQUAAAAAAKACg7IOAAAKq6YmYqed1t3Oa5tZtkv+GEsAxVKkeb9IuRaFfZo+fZwu/Zsu/Vu1apIkSbIOoi81NjZGfX19NDQ0RF1dXdbhAAAAAAAAGepO3cDpvwAAAAAAACqgqAIAAAAAAFABRRUAyMqKFRE771z6WbEiv21m2S75YywBFEuR5v0i5VoU9mn69HG69G+69G/VqtoL1a9cuTLOPPPMuOeee6K1tTVOOumkuPTSS6PGRX16pKkp4pRTIl6e/27MOPAb8alD745kxKQ46epb4m9zh8dbb0WMGhXx9tsRW2wRMXFi6XkLFkS7xyrZxvPz+/xNfe2s2/d8z+/r57+7LIn5bz4bERH77J3E+GkRN/1nU4z8yymx6p0FceO9H4mrHrgw3lg6rMPX78l9i+cl8ce5pTbfNymJ4VtGTNtxZdwy46SoWVFq8+rfXhhjxw3r9DUWLowYP77zNjp6fNyoJJ58rtTu3nsl8do7pefsuOO6nKNpXsTw/3niyoXx3pDJcdLVt8QL84ZX3F53YuuN5/V2G5MnR9x0U8TIkVEV2tYP8+b1Xb8ObUniZ8+WxtJxH0vixUXtX2OHyaXxPHTVvLVjqG0t09XvR1cx9NbvQ5HjyCL2Ra+uiJkHnhsn7vfjGDxwVcSI8RG1k0oPrlzY4bzT0ZjpL/1RzftfHP0zjv4e+5Sx6+b9trVLXvujs/VS21pt6LtzI1a9FTFki3hv2I4brZMqWYNkdbuna6b+dru7eaw/fo/7WBLvDVpvzdeNNXC1r3HTbGPDteFLi9cd1xqy2XYREbFq+Wu98jmn2uaU3oij3By86NVSX5900C/jloc+3GX/dve+cp+1++Pr9qStqePKv8et/9mmbZ5oG89txwp6erxi7efxm6rn82d/UrUXqp8xY0asWrUqvv/970dzc3Mceuih8alPfSrOOOOMss9zofqN7btvxBNPRHxsn5/FFZ86M8Zv8eraxxYuGxdn3nhF3P7kcRlGCJBPI6I5mqO0eqmNpjhin3viO6d9ObYdtWjtNr09D3fUZl/M/Ru2uyJqI6L03rNhzusr6vvQBz4Q8fjjWUdRXtv6oa91NpYirGXYWEdjoivGDPQv5eb9vOko13LzmPmq/7MGTt/6fXzinj+Kyz791U7f9/Vr95Ubw9bdm667n23W15v9XQ2fP/tCd+oGVVlUaWpqim222SYWLlwYo0ePjoiIn/3sZ/GNb3wj5syZU/a5iirtrSuo/DRum3lCRCQxYL0v+6xZUxNRE/Hx2beZFAF62YYfAH50zsmR9jycRZsbtrv+QYLbZn58o/bXV+T3of68sM2qoBJR/oNdR+OpyGOo6CqZYzpizED/UuSiyhH73FN2HluTRETUmK/6MWvg9K3fx2uuiYhhoV97UXfGsP7tvu5+tllfb/d3f/782VdyX1R56KGH4ktf+lI8/fTTa+977bXXYuLEifHuu+/GwIEDO32uoso6TU0Rm20WMaCmJV66YlJsN/rVjhdqa2ri1bfGxaSZC2JN0nnfAtA96y+gXv2PbWPbsa+nPg9n0eaG7dZGU7xbMyxeumJip+89acZSTZYv739fxW5bP2Slow8eA2pay46nIo+houpqTHTFmIH+o6hFlc2iIZ69cucu5zHzVf9mDZy+DYsqA4aX316/dk93x7D+7Z6efLZZX2/3d3/8/NmXulM3qMoL1S9atCi22WabdvdtvfXW0dLSEg0NDe3uf++996KxsbHdDyWnnFL694PTHo7xW3T+izpgQBLbb7kwPjjtd30XHEDBjBvdcXEjIr15OIs223xw2u/Kvvf0ZSz9Wdt7dX/SH2PqajwVeQwVVXfmmI4YM0DW9p/6+4rmMfNVdbEGTpd+TZ91d/qynCf642e9/qoqiyotLS2x4RdsWltbIyI2ulD9N7/5zaivr1/7M77tCkzEvHmlf8du3vE5PDdU6XYApCOLeTitNnvyukV8H2p7r+5P+mNM1jJsqLf2tTEDZGVM/eJubW++qg7WwP2Hfu0Z6+70ZTlP9MfPev1VVRZVRo8eHUuXLm1335IlS2LYsGFRX1/f7v6vfe1r0dDQsPZn4cKFfRlqvzZ5cunfRe+MrWj7SrcDoDJJ1MRLMSEWD94mooK/QumNeTiLNtdv96WYEEnU9Oh1i/g+1PZe3Z9kHdOGYynCWoaN9da+NmYgex3N+3m1fq6LGro3/5iv+idr4PQlUVP6bLNlVPT5po1+rUxPx7D+rcymfLZZX2/1d9af9apJVV5TZfHixTFhwoRYvHhxjBo1KiIifvzjH8f3vve9ePDBB8s+1zVV1tnomiqjXosBAzYeDs6HCJCutedM7cN5OIs2u9N+X8bSn/XHc9pmfU2VjmQ9nul/1o2JV2NAD/6MzJgBslbpPGa+qi7WwOnQr33Hujt9WY7n/vj5sy/l/poqY8aMiSOPPDIuuOCCaGlpiaVLl8a//du/xcyZM7MOraqMHBnxgQ9ErEkGxZk3zo6oKf0yrm/NmpqImoiZN802GQKkZE0yMM688Yo+nYezaLPS9vs6lv7qAx/onwvatvVDf5L1eKb/WTcmamLNmm4+15gB+oFK5rE1SZivqow1cDr0a9+x7k5fVuO5v37+7K+qsqgSEXHttdfG66+/HmPHjo199tknPve5z8Wxxx6bdVhV5/HHS780tz95fHx89m3x2tvbtXv81bfGxcdn3xa3P3lcRhECFMPtTx4XH599WyxuGNPu/jTn4bY2s5r7O8s5i1j6mw98oPQe3V+1rR/6k6zHM/3PujExrlvPM2aA/qKreezVZePNV1XIGjgdna0F16dfe4d1d/r6ejz398+f/VFVnv5rUzj9V8eamiJOOSXi5fnvxowDvxGfOvTuSEZMipOuviX+Nnd4vPVWxKhREW+/HbHFFhETJ5aet2BBtHuskm08P7/P39TXzrp9z/f8vn7+imUr487GA6O1JeIzU34bE6YNj5v+sylG/uWUWPXOgrjx3o/EVQ9cGG8sHdbh6/fkvtfnrYzr5h0YAwdFHF3326jdcnhM23Fl3DLjpKhZUWrz6t9eGGPHDev0NRYujBg/vvM2Onp821Er49ZFB0ZExD+O+W0semd4bLFFxI47xtqco2lexPD/eeLKhfHekMlx0tW3xAvzhlfcXndi643n9XYbkydH3HRT9fyFUNv6Yd68vuvXIa0r4xu/PTCGDIn46t/9Nua9Przda+wwuTSeh66at3YMta1luvr96CqG3vp9KHIcWcS+6NUVMfPAc+PE/X4cgweuihgxPqJ2UunBlQs7nHc6GjP9pT+qef+Lo3/G0d9jn7ztyrj0sQPjvffWrV3y2h+drZfa1mpD350bseqtiCFbxHvDdtxonVTJGiSr2z1dM/W3293No238rloVceGBv41VA4evW/N1Yw1c7WvcNNvYcG348qKatce1hmxWOiC9avlrvfI5p9rmlN6Io9wcvOjV0jHEkw76Zdzy0Ie77N/u3lfus3Z/fN2etLXj+PLvcet/tmmbJ9rGc9uxgp4er1j7efym6vn8mbbu1A0UVQAgK83N61YvTU0RtbX5bDPLdskfYwmgWIo07xcp16KwT9Onj9Olf9Olf/uV3F9TBQAAAAAAoK8pqgAAAAAAAFRAUQUAAAAAAKACiioAAAAAAAAVUFQBAAAAAACowKCsAwCAQttyy2K0mWW75I+xBFAsRZr3i5RrUdin6dPH6dK/6dK/VakmSZIk6yD6UmNjY9TX10dDQ0PU1dVlHQ4AAAAAAJCh7tQNnP4LAAAAAACgAooqAAAAAAAAFVBUAYCsrFwZcfDBpZ+VK/PbZpbtkj/GEkCxFGneL1KuRWGfpk8fp0v/pkv/Vi3XVAGArDQ3R4wcWbrd1BRRW5vPNrNsl/wxlgCKpUjzfpFyLQr7NH36OF36N136t19xTRUAAAAAAIBepqgCAAAAAABQAUUVAAAAAACACiiqAAAAAAAAVEBRBQAAAAAAoAKDsg4AAAptxIhitJllu+SPsQRQLEWa94uUa1HYp+nTx+nSv+nSv1WpJkmSJOsg+lJjY2PU19dHQ0ND1NXVZR0OAAAAAACQoe7UDZz+CwAAAAAAoAKKKgAAAAAAABVQVAGArLz7bsRHPlL6effd/LaZZbvkj7EEUCxFmveLlGtR2Kfp08fp0r/p0r9VyzVVACArzc0RI0eWbjc1RdTW5rPNLNslf4wlgGIp0rxfpFyLwj5Nnz5Ol/5Nl/7tV1xTBQAAAAAAoJcpqgAAAAAAAFRAUQUAAAAAAKACiioAAAAAAAAVUFQBAAAAAACowKCsA+hrSZJERERjY2PGkQBQeM3N6243Nka0tuazzSzbJX+MJYBiKdK8X6Rci8I+TZ8+Tpf+TZf+7Vfa6gVt9YNyapJKtsqRV199NcaPH591GAAAAAAAQD+ycOHCGDduXNltCldUWbNmTbz++uux2WabRU1NTafbNTY2xvjx42PhwoVRV1fXhxH2PbnmU1FyLUqeEXLNK7nmU1FyLUqeEXLNK7nmT1HyjJBrXsk1f4qSZ4Rc80qu+VOUPCO6l2uSJLF8+fLYdtttY8CA8ldNKdzpvwYMGNBlpWl9dXV1uR9cbeSaT0XJtSh5Rsg1r+SaT0XJtSh5Rsg1r+SaP0XJM0KueSXX/ClKnhFyzSu55k9R8oyoPNf6+vqKXs+F6gEAAAAAACqgqAIAAAAAAFABRZVODB06NC666KIYOnRo1qGkTq75VJRci5JnhFzzSq75VJRci5JnhFzzSq75U5Q8I+SaV3LNn6LkGSHXvJJr/hQlz4j0ci3cheoBAAAAAAB6wjdVAAAAAAAAKqCoAgAAAAAAUAFFFQAAAAAAgAooqkTE/fffH/vvv39MmTIlJk+eHFdddVVERCRJEieeeGJMmTIltttuuzjkkEPib3/7W8bRbpqVK1fG5z73uZgwYUKMGzcuzj///Gi7rM6cOXPi7/7u72LChAmx0047xW9+85uMo9005XKNiHjrrbfin//5n+PSSy/NMMre0Vmuq1evjosvvjh23XXXGD9+fHzwgx+Mp556Kutwe6yzPN9+++34h3/4h5gyZUpsu+22ccwxx8Trr7+edbibpKvxGxHR3NwcW221VXzrW9/KKMreUS7XkSNHxnbbbRcTJ06MiRMnxgknnJBxtJumXK5JksTll18eU6dOje233z6mTJkSq1evzjjinuss189+9rNr92fbT21tbZxxxhlZh9xj5fbrHXfcETvvvHNsv/32se+++8bDDz+ccbQ9Vy7Pm2++OXbdddfYdttt4+/+7u/i6aefzjjaTZckSdx4442x3377tbs/b+uliM5zjcjXeimi41zztl6K6DjPPK6XIsqP34j8rJciOs81b+uliM5zzdt6KaLjXPO4Xupsn+ZprdSms1zztl7q7FhaRMRLL70Uhx12WEyYMCGmTJkSN998c4aRbrpyuUZErFixIr72ta/Fl770pYwi7D3ljpFeffXVsfvuu8eECRNir732ivvvvz/jaDdNUY4HOxac0rHghOQrX/lK8txzzyVJkiTz5s1Ltttuu+SXv/xl0tramtx3331JkiTJmjVrkksuuSTZa6+9sgx1k33xi19MPvvZzyarV69O3nnnnWSfffZJrrzyyqSxsTHZbrvtkt/85jdJkiTJgw8+mNTX1yeLFi3KOOKe6yzXJEmS8847L9lyyy2T8ePHJ9/85jczjnTTdZbr008/nVx44YVJU1NTkiRJ8v3vfz8ZN25csmrVqowj7pnO8nzrrbeSJ554IkmSJFm9enXy+c9/PjnuuOMyjnbTlBu/bS699NJk4MCBVT+Gy+VaW1ubzJ8/P+MIe0+5XL/xjW8kBx10UPLGG28kSZIkr732WtLa2ppluJukkjGcJEmyfPnyZMyYMWvfh6tRZ7nOnz8/2WyzzdbOT7/+9a+TUaNGJe+8807GEfdMZ3n+93//d7LDDjskr7zySpIkSXLjjTcmU6dOTdasWZNxxD33y1/+Mtlll12SyZMnJ1OnTl17fx7XS53lmiT5Wy91lmve1kud5ZnH9VK58dsmL+ulcrnmbb1ULte8rZcqGcNJUv3rpc7yzNtaKUk6zzWP66XOjqW1tLQku+yyS3LdddclSZIkzzzzTDJq1Khkzpw52QW7iTrLNUmS5P/+3/+bjBkzJpk0aVLy+c9/Psswe0VnuS5fvjw5/fTTk7feeitJkiS5++67k80333ztfFyNinI82LHgdI4FK6p04KyzzkrOO++8je7/y1/+kmyzzTYZRNQ7li9fnowYMSJZtmzZ2vt++tOfJnvssUfy//7f/0uOPfbYdtsfffTRyezZs/s6zF5RLtckSZJLLrkkmTdvXnLqqadW/QesrnLd0KhRo5Jnnnmmr8LrNd3J8xe/+EUyffr0vgyvV1WS62uvvZbsuOOOyXHHHVfVY7irXGtra9cu2qpduVzffPPNpLa2du2HrGrXnd/Xiy++OPn0pz/dl+H1qnK5/vznP0/23nvvdttvt912aw8cVJNyeZ544onJVVdd1W77ffbZJ3nggQf6OMrec9tttyV333138sADD7Q7IJK39VKSdJ5rkuRrvZQk5XPdULWul5Kk8jyrfb2UJF3nmpf1UpKUzzVP66Uk6TzXvK2XkqTy39dqXy91lmee1kptOss1j+ulDbUdS7vnnns2WvefccYZycyZMzOKrPetf9xw9uzZyZ///OfkoosuykVRZUOdHSNNkiTZc889k7vvvruPI0pPHo8HOxac3rFgp//qwJIlS6K+vn6j+y677LI488wzM4pq0/3xj3+MSZMmxejRo9feN3369Hj66afj0Ucfjf3337/d9tOnT6/aUx+Uy7W1tTVmzZoV73vf+zKMsPd0lev6VqxYEStWrNhofFeDSvN85ZVX4rvf/W58+ctfziLMXlFJrjNnzowLLrggNttss6zC7BVd5TpgwICqHK8dKZfrL37xizjggANi/PjxGUbYeyr9fW1qaoqrrroqLrzwwizC7BXlct1///3jzTffXPsV6v/6r/+K0aNHx2677ZZVuD1WLs+VK1dGS0tLu+233HLLeP755/s6zF5z/PHHx1FHHbXR/XlbL0V0nmtE5Gq9FFE+1/VV83oporI887Beiug617yslyLK55qn9VJE57nedddduVovRVT2+5qH9VJneX7wgx/MzVqpTWe5rlq1KnfrpQ21HUvL43ppQ+sfNzzzzDOresx2paNjpBGlU2QtW7YsV+8/eTwe7FhweseCFVU28Pjjj8ddd90VJ510UkRE/OhHP4ptttkmtt566xg0aFDV/hJFRCxatCi22WabdvdtvfXW0dLSEq+99lqHjy1btqwvQ+w15XJtaGjIKKp0dCfXWbNmxcEHHxzbbbddX4bYK7rK89JLL40tttgi3ve+98Uee+wRn/zkJzOKdNN1lestt9wSy5Yti0996lMZRdh7usq1pqYmJk+eHDvuuGN89rOfrepzv5fL9fe//31MmDAhPv/5z8ekSZNijz32iBtvvDGjSDddpfPSddddFwcccEBMmjSpr0PsNeVyrampif/zf/5PHH744TFy5Mg49dRT44c//GEMGTIko2h7rlyen/zkJ+Oqq66KuXPnRpIkceedd8bvfve7WLJkSUbRpqezfqjW9RIdq+b1UlfytF7qSp7WS13J03qpnL/+9a+5Wi9VKg/rpc6MGjUqN2ulrpxwwgm5Xi+tfywt7+ulDY8b5lm5XK+88soYOXJkp9c0qzZ5PR7sWHB6x4IVVdZz6623xkc/+tG44YYb1i5Y/umf/ineeOONWLZsWWyzzTax//77x6pVqzKOtGdaWlo2utB1218Mt7a2dvhYTU1Nn8XXm8rlWq05daaSXJubm+PUU0+Nhx56KG666aY+j7E3dJXnV7/61Vi2bFm88sorsXjx4jjmmGOyCLNXlMv15ZdfjlmzZsX111+fi7Hc1X59++23Y8GCBfHEE0/EiBEj4uijj95o+2pRLteBAwfGnXfeGSeccELMnz8/rr/++jj33HPjoYceyiLUTVbpHHzNNdfEV77ylT6NrbeVy/WFF16ICy64IObMmRPLly+P//7v/47jjz8+XnrppQwi3TTl8jz88MPj3HPPjY9//OPxvve9L+6+++740Ic+FCNHjswi1FR11g95mI/Jx3qpK3laL5WzYMGCXK2XupKn9VI5y5cvz9V6qVJ5WC915vHHH8/NWqkr//iP/5jb9dKGx9LyvF7q6LhhXnWWa0tLS/zLv/xLXHnllXHHHXfEgAHVf2g5z8eDHQtO71hw9Y/8XtDa2hozZsyIr3/963HPPffERz/60Y22GT16dHzrW9+KxsbG+O1vf5tBlJtu9OjRsXTp0nb3LVmyJIYNGxZbbLFFh4+NGTOmL0PsNeVyzdNXEyO6znXevHnxgQ98IAYPHhwPP/xwbLXVVhlFumkq3afbbrtt/PCHP4z7778/Xnzxxb4Os1d0lmtExGc+85m49NJLc3Pag672a9sCrb6+Pq644oqYO3duzJ8/P4tQN1m5XLfccss48sgj49BDD42amprYY4894uSTT45f/OIXGUW7aSr5fX3yySdj2bJlcdBBB2URYq8pl+vs2bPjS1/6Uuyxxx5RU1MThx56aHzsYx+LH/7whxlF23Nd7dMvfvGL8de//jUWLFgQ3//+92Px4sUxderUjKJNT2f9UK3rJdbJy3qpUnlYL3Vm5cqVcdxxx+VqvdSVPK2XysnbeqkSeVkvdeaKK67IzVqpEnlbL3V2LC2P66VKjhvmRblclyxZEgcddFA8++yz8fjjj8cOO+yQYaSbrgjHgx0LTu9YsKJKlM61O3/+/HjyySdj9913L7vt0KFDY/jw4X0UWe/aa6+9Yu7cufH222+vve+RRx6J6dOnx9577x2PPPJIu+0feeSRqv0aX7lc81BFX1+5XBsbG+OQQw6Js846K6655poYMWJEhpFumu7s04EDB8agQYNy97u69957x3PPPRef+9znYvPNN4/NN988brnllvj6178ehx12WIYR91x39uuaNWtizZo1VXs6gHK57rTTTrF8+fJ22w8YMCCGDRvW12H2ikr268033xzHHXdc1f4VTJtyuba0tMSgQYPabT948OCq/Aun7vyuzp07N1544YVcHgDK23qJknfeeSc366XuqPb1Umfuu+++3K2XuqPa10vl5G29VIm8rJc6s2rVqtyslborD+ulzo6l5XG91J3jhtWus1xbWlriiCOOiA996EPxi1/8IrbYYosMo+wdRTge7FhwiseCN/lS91Vu5cqVycCBA5PXX399o8cefPDB5JFHHkmSJElaW1uT2bNnJ7vsskvy7rvv9nWYveajH/1o8oUvfCFZvXp1smTJkmTXXXdNbr/99mThwoXJ5ptvntx3331JkiTJ3XffnUyYMCFpamrKOOKe6yzX9Z166qnJN7/5zWwC7EWd5fqDH/wgOfzww7MOr9d0lufPf/7z5Omnn06SJEnee++95Nxzz00OO+ywjKPdNJWM3yTJxxjuLNcXX3wxmTt3bpIkSfLuu+8mM2bMSA488MCMo900neW6YsWKZOzYsclvfvObJEmS5Nlnn03Gjh2b/PnPf8444p7ragxPnTo1ueOOO7ILsBd1luuPf/zjZIcddkhefvnlJEmSZM6cOckWW2yR/P73v8844p7pLM+lS5cmixYtSpIkSV5//fVk//33T2bPnp1xtL3jgQceSKZOnbr2/3lcL7XZMNf15eG9Zn0b5pq39VKbDfPM43qpTbnxmyT5GsMb5prH9VKbDXPN43qpTWdjOE/rpSTZOM+8rZXWt2GueVsvlTuW1tzcnIwdOza56aabkiRJkieeeCIZO3ZssnDhwr4Os1eUy3V9F110UfL5z3++j6JKR7lcf/3rX5d9r602RToe7Fjw7e226a114aCuyy75Nn/+/FizZs1GVbipU6fGRRddFF/84hdj8eLFay++9Ktf/SqGDh2aUbSb7tprr43PfvazMXbs2KitrY1zzz03jj322IgonUNwxowZ8dZbb8WUKVPizjvvjNra2mwD3gTlcs2bznI9//zz49FHH42JEye2237WrFlx+umnZxPsJugszzvuuCOOP/74aGxsjNra2jjyyCPjxz/+cdbhbhLj99h44okn4sQTT4yVK1fG0KFD43/9r/8Vt912W9bhbpJy+/WnP/1pzJgxI5YsWRJbbbVVXHvttbHbbrtlG/AmKJfrO++8E3Pnzo299tor2yB7SblcGxsb48gjj4zm5uYYNWpU/OAHP4i///u/zzbgHuosz7lz58aHP/zhaGlpidra2vjyl78cX/rSl7IONxXjxo3L3XqJ0vWP8rRe6syaNWtyt14i4q233srdeqkzw4cPz916qZy8rZc68olPfCJXa6Vyli5dmqv1Urljaffcc0/ceeedcfrpp8fZZ58dY8aMiVtuuSXGjRuXUbSbpqtc86Rcrsccc0y88sorG62XTj311Pj617/eh1H2jiIdD3Ys+NhU2qpJkhxewQ4AAAAAAKCX5eviEgAAAAAAAClRVAEAAAAAAKiAogoAAAAAAEAFFFUAAAAAAAAqoKgCAAAAAABQAUUVAAAAAACACiiqAAAAAAAAVEBRBQAA6HX33ntvHHzwwd16zpo1a+K0005LJZ5K3HHHHXHwwQfHTjvtFDvvvHOccMIJ8cwzz6x9fNy4cfHSSy9lFl+bmpqaePfdd7MOAwAACklRBQAA6LHTTjstrr/++oq2/dWvfhVjxoxp9zNs2LD47ne/GxGlosoNN9yQYrSd++Mf/xhnnXVWfO9734tnn302nn766TjllFPisMMOi9bW1j6N5Qc/+EHsuuuuMWnSpJg2bVr8+7//e5/HAAAAdExRBQAA6BNHHnlkLF68uN3P+PHj44ADDujR65166qnxk5/8ZO3/W1pa4vLLL49jjz223XZNTU0xc+bM2HnnnWPcuHFx1FFHxYIFC9pt8/rrr8f2228f73//+yOi9G2QQw45JFasWBErV67sVlxJksSNN94Y++23X7v7V69eHRdffHHsuuuuMX78+PjgBz8YTz31VLttrrvuurj++uvj17/+dSxYsCAee+yx+MMf/hD/+3//7w7bevTRR+Oggw6KlpaWbsUIAAD0jKIKAADQY8uXL4/GxsYePff222+PrbfeOnbfffduP/c3v/lNNDU1xQknnBARETfffHPssMMOcfXVV290aqxHHnkkpkyZEk899VQsXLgw9txzzzjxxBPbbXPEEUfE1ltvHdOnT4+ZM2fGF7/4xdh3331j1qxZMXLkyIrj+tWvfhW77bZbXHzxxfH222+3e+z555+PlpaWeOyxx2LhwoVx8sknx9FHHx2rV69eu83Pf/7zOOecc2Ls2LEREbH55pvHhRdeGHfccUeH7e23336xzz77xLe//e2KYwQAAHquJkmSJOsgAACA6rTHHnvEAQccEN/5znfa3X/vvffGJZdcEg8++GCHz3v++efj8MMPj7vuuit22WWXiCh902Tw4MGxzTbbxLBhw8pev+Twww+Pb33rW7HXXntFRMR//ud/xtSpU+OFF16IW2+9NX71q191+tzGxsaor6+PpqamqK2tbffYK6+8EvPmzYshQ4bE1KlTY/DgwbF8+fIYN25cjBs3Lh5++OGYOHFip6/905/+NIYPHx4jRoyIL3zhC/Hcc891um1ExOjRo+Phhx+OnXbaKSIizjnnnBg9enTMmjVr7TY33XRT/PSnP11bWKmpqYmVK1fGsGHDIiJi0aJFMX369HjhhRdi6NChZdsDAAA2zaCsAwAAAKrTggUL4vXXX4877rgjLr/88hgyZEhFz/vZz34W55xzTlx33XVrCyrrW7x4cdnnL1++PF5++eW1BZWIiM985jMREfHCCy902f6SJUti6NCha4sS//Vf/xUXXXRRtLS0RGtra6xcuTIGDBgQI0aMiM022yzq6+vjnnvuqSi3448/PiKi02LS+lasWBErVqyI+vr6tfddeOGFceyxx8arr74au+++e7z44ovx0EMPxW233dbp64wdOzamTJkSv/vd7+LQQw+tKE4AAKBnnP4LAADokSuuuCK+8pWvxPTp0+Oaa64pu22SJHHnnXfGEUccEd///vfjvvvuiw996EM9avdPf/pT7Lvvvj167po1a+KrX/1qnHbaaTFw4MCIKBVC/vjHP8bzzz8fL7/8chx11FHxrW99K+bPnx8XXnhhHHLIIXHppZf2+DRnnZk1a1YcfPDBsd122629b/PNN48HH3wwPv3pT8fo0aPjmGOOicceeywmTJiwdpvp06fHgAHtP8rtv//+8dhjj/VqfAAAwMZ8UwUAAOi2hx56KH75y1/GU089FUuXLo3p06fHAQccELvttluH29fU1MTcuXPjq1/9ahxyyCEdbjNw4MCKrg3y5ptvxpgxY7od89KlS+OUU06J1tbWuOmmm9beP2TIkHbfstlxxx1jm222iYiIiRMnxqBBpY9Nu+66a8Xfximnubk5ZsyYEX/96187/QbMvvvu22nhqKPiyZgxY7o81RgAALDpFFUAAIBueeyxx+K0006Ln/3sZzF8+PAYP3583HDDDXHEEUfELbfc0uk3UM4999y4+eabY8sttyz7+jNnziz7+Jo1azb6pkZXnnjiiTj++OPjlFNOiYsvvnjtt1TW99hjj629Nsyzzz4bP/rRj9o9PmnSpA6f1x3z5s2Lo48+Ov7+7/8+Hn744RgxYkSH25UrGr3xxhvtrqkSUSpatba2blJsAABA1xRVAACAirW0tMR5550X11xzTey5555r7z/ssMPi2muvjccee6zsab1OPvnkOPnkkzt97cGDB3cZw1ZbbRVvvvlmxTHPnz8/PvKRj8R1110XH/nIRzrdbsqUKfGFL3yh08c/+clPxvLly9d+i6W73nnnnTjkkEPiX//1X+P0008vu22568qsX0xp88Ybb8TWW2/do7gAAIDKKaoAAAAVGzRoUPzud7/r8LGjjjoqjjrqqNRj2HPPPeOMM86oePtrr702Pvaxj5UtqERE/OEPf4gzzzyz08e7U8jpyE9+8pOYNm1alwWViNI3T9a/jsr6xowZEzU1Ne3ue+yxx7r8hg8AALDpFFUAAICqMmrUqNhyyy3jmWeeiZ133rnL7V944YW49957N7p+yfe+97348Ic/vPb/y5cvj3322SduvfXWXo+5LY5HH300Jk6c2O7+WbNmdVhoeemllyp63aVLl8YzzzwTBx10UC9ECQAAlFOTJEmSdRAAAEC+3HvvvXHJJZfEgw8+WPFz2k7/VclHlLvvvjtuueWWja57siluvfXW+PSnPx319fWdbvMv//IvffKNkJqamrKnGbv88svjpJNOioiICy64IGpra2PWrFmpxwUAAEWnqAIAAPS6pqamWLx4cUyZMqVbz3v44YfjgAMOqGjbk08+OU444YQ45phjehJiLjzxxBNxzjnnxH333VfR9WgAAIBNo6gCAAAAAABQgQFZBwAAAAAAAFANFFUAAAAAAAAqoKgCAAAAAABQAUUVAAAAAACACiiqAAAAAAAAVEBRBQAAAAAAoAKKKgAAAAAAABVQVAEAAAAAAKiAogoAAAAAAEAF/n8agfYR5uBjrAAAAABJRU5ErkJggg==",
|
|
"text/plain": [
|
|
"<Figure size 2000x1000 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"def plot_outliers(inter_no):\n",
|
|
" \"\"\"\n",
|
|
" 2. 이상치 시각화 (2)\n",
|
|
"\n",
|
|
" 교차로ID 하나에 대하여 이상치 (이상 현시시간)가 나타나는 순간을 시각화했습니다.\n",
|
|
" 그림에서 파란 점들은 정상 현시시간이 나타나는 경우이고 노란 점들은 이상 현시시간이 나타나는 경우입니다.\n",
|
|
" 빨간 점선으로는 전이시각(현시조합이 바뀌는 순간)을 표시했습니다.\n",
|
|
" 날짜는 12월 12일로 한정지었습니다.\n",
|
|
"\n",
|
|
" 해석 : (교차로ID = 5037)\n",
|
|
" 전이시각으로부터 향후 20분간을 전이시간이라고 정의하면, 대부분의 이상 현시시간은 전이시간 내에서 등장합니다.\n",
|
|
" 전이시간이 아니면서 이상 현시시간이 나타나는 경우가 12시 경에 한 번 있었습니다.\n",
|
|
" \"\"\"\n",
|
|
" normal_df = infos['normal_dfs'][inter_no]\n",
|
|
" normal_df = normal_df[normal_df.수집날짜시각.dt.day == 12]\n",
|
|
" outlier_df = infos['outlier_dfs'][inter_no]\n",
|
|
" outlier_df = outlier_df[outlier_df.수집날짜시각.dt.day == 12]\n",
|
|
" ring_columns = [col for col in normal_df.columns if '현시시간' in col]\n",
|
|
" plt.figure(figsize=(20,10))\n",
|
|
" for col in ring_columns:\n",
|
|
" plt.scatter(normal_df.수집날짜시각, normal_df[col], color='blue')\n",
|
|
" plt.scatter(outlier_df.수집날짜시각, outlier_df[col], color='orange')\n",
|
|
" for _, row in infos['transition_times'][inter_no].iterrows():\n",
|
|
" start_hour = int(row.시작시)\n",
|
|
" start_min = int(row.시작분)\n",
|
|
" start_time = datetime(2023, 12, 12, start_hour, start_min)\n",
|
|
" plt.axvline(x=start_time, color='r', linestyle='--')\n",
|
|
" \n",
|
|
" ax = plt.gca()\n",
|
|
" ax.xaxis.set_major_locator(mdates.HourLocator(interval=1))\n",
|
|
" ax.xaxis.set_major_formatter(mdates.DateFormatter('%H'))\n",
|
|
" ax.set_xlabel('시각 (12월 12일)')\n",
|
|
" ax.set_ylabel('현시시간')\n",
|
|
" ax.set_title(f'inter_no : {inter_no}')\n",
|
|
" plt.show()\n",
|
|
"plot_outliers(5037)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 10,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"accepted_durations \n",
|
|
" [-1 0 1 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 44 45 46 53 54 55\n",
|
|
" 62 63 64 71 72 73 79 80 81]\n",
|
|
"전이시간이 아닌데 이상치가 발생한 경우 \n",
|
|
" [1, 267, 268, 269, 270, 537, 823, 824, 1059, 1348, 1349, 1350, 1610, 1903]\n",
|
|
"6:0 22\n",
|
|
"6:30 25\n",
|
|
"7:0 28\n",
|
|
"9:30 20\n",
|
|
"16:0 20\n",
|
|
"17:0 26\n",
|
|
"19:0 28\n",
|
|
"20:30 20\n",
|
|
"22:0 22\n",
|
|
"23:30 24\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>현장교차로ID</th>\n",
|
|
" <th>수집날짜시각</th>\n",
|
|
" <th>주기시간</th>\n",
|
|
" <th>옵셋시간</th>\n",
|
|
" <th>A링1현시시간</th>\n",
|
|
" <th>A링2현시시간</th>\n",
|
|
" <th>A링3현시시간</th>\n",
|
|
" <th>A링4현시시간</th>\n",
|
|
" <th>A링5현시시간</th>\n",
|
|
" <th>A링6현시시간</th>\n",
|
|
" <th>B링1현시시간</th>\n",
|
|
" <th>B링2현시시간</th>\n",
|
|
" <th>B링3현시시간</th>\n",
|
|
" <th>B링4현시시간</th>\n",
|
|
" <th>B링5현시시간</th>\n",
|
|
" <th>B링6현시시간</th>\n",
|
|
" <th>전이시간여부</th>\n",
|
|
" <th>이상치존재</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>0</th>\n",
|
|
" <td>5037</td>\n",
|
|
" <td>2023-12-12 00:01:47</td>\n",
|
|
" <td>140</td>\n",
|
|
" <td>107</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>45</td>\n",
|
|
" <td>30</td>\n",
|
|
" <td>28</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>45</td>\n",
|
|
" <td>30</td>\n",
|
|
" <td>28</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1</th>\n",
|
|
" <td>5037</td>\n",
|
|
" <td>2023-12-12 00:04:27</td>\n",
|
|
" <td>160</td>\n",
|
|
" <td>128</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>51</td>\n",
|
|
" <td>34</td>\n",
|
|
" <td>32</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>51</td>\n",
|
|
" <td>34</td>\n",
|
|
" <td>32</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2</th>\n",
|
|
" <td>5037</td>\n",
|
|
" <td>2023-12-12 00:06:47</td>\n",
|
|
" <td>139</td>\n",
|
|
" <td>127</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>45</td>\n",
|
|
" <td>29</td>\n",
|
|
" <td>28</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>45</td>\n",
|
|
" <td>29</td>\n",
|
|
" <td>28</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>3</th>\n",
|
|
" <td>5037</td>\n",
|
|
" <td>2023-12-12 00:09:06</td>\n",
|
|
" <td>140</td>\n",
|
|
" <td>127</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>45</td>\n",
|
|
" <td>30</td>\n",
|
|
" <td>28</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>45</td>\n",
|
|
" <td>30</td>\n",
|
|
" <td>28</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>153</th>\n",
|
|
" <td>5037</td>\n",
|
|
" <td>2023-12-12 05:59:06</td>\n",
|
|
" <td>140</td>\n",
|
|
" <td>127</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>45</td>\n",
|
|
" <td>30</td>\n",
|
|
" <td>28</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>45</td>\n",
|
|
" <td>30</td>\n",
|
|
" <td>28</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>154</th>\n",
|
|
" <td>5037</td>\n",
|
|
" <td>2023-12-12 06:01:26</td>\n",
|
|
" <td>140</td>\n",
|
|
" <td>87</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>45</td>\n",
|
|
" <td>30</td>\n",
|
|
" <td>28</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>45</td>\n",
|
|
" <td>30</td>\n",
|
|
" <td>28</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>155</th>\n",
|
|
" <td>5037</td>\n",
|
|
" <td>2023-12-12 06:04:43</td>\n",
|
|
" <td>197</td>\n",
|
|
" <td>134</td>\n",
|
|
" <td>50</td>\n",
|
|
" <td>71</td>\n",
|
|
" <td>39</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>50</td>\n",
|
|
" <td>71</td>\n",
|
|
" <td>39</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>True</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>156</th>\n",
|
|
" <td>5037</td>\n",
|
|
" <td>2023-12-12 06:07:13</td>\n",
|
|
" <td>150</td>\n",
|
|
" <td>134</td>\n",
|
|
" <td>38</td>\n",
|
|
" <td>54</td>\n",
|
|
" <td>30</td>\n",
|
|
" <td>28</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>38</td>\n",
|
|
" <td>54</td>\n",
|
|
" <td>30</td>\n",
|
|
" <td>28</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>157</th>\n",
|
|
" <td>5037</td>\n",
|
|
" <td>2023-12-12 06:09:43</td>\n",
|
|
" <td>150</td>\n",
|
|
" <td>134</td>\n",
|
|
" <td>38</td>\n",
|
|
" <td>54</td>\n",
|
|
" <td>30</td>\n",
|
|
" <td>28</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>38</td>\n",
|
|
" <td>54</td>\n",
|
|
" <td>30</td>\n",
|
|
" <td>28</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>165</th>\n",
|
|
" <td>5037</td>\n",
|
|
" <td>2023-12-12 06:29:43</td>\n",
|
|
" <td>150</td>\n",
|
|
" <td>134</td>\n",
|
|
" <td>38</td>\n",
|
|
" <td>54</td>\n",
|
|
" <td>30</td>\n",
|
|
" <td>28</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>38</td>\n",
|
|
" <td>54</td>\n",
|
|
" <td>30</td>\n",
|
|
" <td>28</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>166</th>\n",
|
|
" <td>5037</td>\n",
|
|
" <td>2023-12-12 06:32:13</td>\n",
|
|
" <td>150</td>\n",
|
|
" <td>14</td>\n",
|
|
" <td>38</td>\n",
|
|
" <td>54</td>\n",
|
|
" <td>30</td>\n",
|
|
" <td>28</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>38</td>\n",
|
|
" <td>54</td>\n",
|
|
" <td>30</td>\n",
|
|
" <td>28</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>167</th>\n",
|
|
" <td>5037</td>\n",
|
|
" <td>2023-12-12 06:34:27</td>\n",
|
|
" <td>134</td>\n",
|
|
" <td>148</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>49</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>28</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>49</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>28</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>True</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>168</th>\n",
|
|
" <td>5037</td>\n",
|
|
" <td>2023-12-12 06:37:05</td>\n",
|
|
" <td>158</td>\n",
|
|
" <td>146</td>\n",
|
|
" <td>39</td>\n",
|
|
" <td>62</td>\n",
|
|
" <td>29</td>\n",
|
|
" <td>28</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>39</td>\n",
|
|
" <td>62</td>\n",
|
|
" <td>29</td>\n",
|
|
" <td>28</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>169</th>\n",
|
|
" <td>5037</td>\n",
|
|
" <td>2023-12-12 06:39:45</td>\n",
|
|
" <td>160</td>\n",
|
|
" <td>146</td>\n",
|
|
" <td>39</td>\n",
|
|
" <td>63</td>\n",
|
|
" <td>30</td>\n",
|
|
" <td>28</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>39</td>\n",
|
|
" <td>63</td>\n",
|
|
" <td>30</td>\n",
|
|
" <td>28</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>177</th>\n",
|
|
" <td>5037</td>\n",
|
|
" <td>2023-12-12 07:01:06</td>\n",
|
|
" <td>160</td>\n",
|
|
" <td>146</td>\n",
|
|
" <td>39</td>\n",
|
|
" <td>63</td>\n",
|
|
" <td>30</td>\n",
|
|
" <td>28</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>39</td>\n",
|
|
" <td>63</td>\n",
|
|
" <td>30</td>\n",
|
|
" <td>28</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>178</th>\n",
|
|
" <td>5037</td>\n",
|
|
" <td>2023-12-12 07:03:46</td>\n",
|
|
" <td>160</td>\n",
|
|
" <td>96</td>\n",
|
|
" <td>39</td>\n",
|
|
" <td>63</td>\n",
|
|
" <td>30</td>\n",
|
|
" <td>28</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>39</td>\n",
|
|
" <td>63</td>\n",
|
|
" <td>30</td>\n",
|
|
" <td>28</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>179</th>\n",
|
|
" <td>5037</td>\n",
|
|
" <td>2023-12-12 07:07:32</td>\n",
|
|
" <td>226</td>\n",
|
|
" <td>152</td>\n",
|
|
" <td>53</td>\n",
|
|
" <td>96</td>\n",
|
|
" <td>40</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>53</td>\n",
|
|
" <td>96</td>\n",
|
|
" <td>40</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>True</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>180</th>\n",
|
|
" <td>5037</td>\n",
|
|
" <td>2023-12-12 07:10:28</td>\n",
|
|
" <td>176</td>\n",
|
|
" <td>158</td>\n",
|
|
" <td>41</td>\n",
|
|
" <td>75</td>\n",
|
|
" <td>31</td>\n",
|
|
" <td>29</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>41</td>\n",
|
|
" <td>75</td>\n",
|
|
" <td>31</td>\n",
|
|
" <td>29</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>True</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>181</th>\n",
|
|
" <td>5037</td>\n",
|
|
" <td>2023-12-12 07:13:18</td>\n",
|
|
" <td>170</td>\n",
|
|
" <td>158</td>\n",
|
|
" <td>40</td>\n",
|
|
" <td>72</td>\n",
|
|
" <td>30</td>\n",
|
|
" <td>28</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>40</td>\n",
|
|
" <td>72</td>\n",
|
|
" <td>30</td>\n",
|
|
" <td>28</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>182</th>\n",
|
|
" <td>5037</td>\n",
|
|
" <td>2023-12-12 07:16:08</td>\n",
|
|
" <td>170</td>\n",
|
|
" <td>158</td>\n",
|
|
" <td>40</td>\n",
|
|
" <td>72</td>\n",
|
|
" <td>30</td>\n",
|
|
" <td>28</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>40</td>\n",
|
|
" <td>72</td>\n",
|
|
" <td>30</td>\n",
|
|
" <td>28</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>214</th>\n",
|
|
" <td>5037</td>\n",
|
|
" <td>2023-12-12 09:32:07</td>\n",
|
|
" <td>170</td>\n",
|
|
" <td>158</td>\n",
|
|
" <td>40</td>\n",
|
|
" <td>72</td>\n",
|
|
" <td>30</td>\n",
|
|
" <td>28</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>40</td>\n",
|
|
" <td>72</td>\n",
|
|
" <td>30</td>\n",
|
|
" <td>28</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>215</th>\n",
|
|
" <td>5037</td>\n",
|
|
" <td>2023-12-12 09:34:57</td>\n",
|
|
" <td>170</td>\n",
|
|
" <td>98</td>\n",
|
|
" <td>40</td>\n",
|
|
" <td>72</td>\n",
|
|
" <td>30</td>\n",
|
|
" <td>28</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>40</td>\n",
|
|
" <td>72</td>\n",
|
|
" <td>30</td>\n",
|
|
" <td>28</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>216</th>\n",
|
|
" <td>5037</td>\n",
|
|
" <td>2023-12-12 09:38:22</td>\n",
|
|
" <td>205</td>\n",
|
|
" <td>143</td>\n",
|
|
" <td>47</td>\n",
|
|
" <td>81</td>\n",
|
|
" <td>41</td>\n",
|
|
" <td>36</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>47</td>\n",
|
|
" <td>81</td>\n",
|
|
" <td>41</td>\n",
|
|
" <td>36</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>True</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>217</th>\n",
|
|
" <td>5037</td>\n",
|
|
" <td>2023-12-12 09:41:02</td>\n",
|
|
" <td>160</td>\n",
|
|
" <td>143</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>63</td>\n",
|
|
" <td>32</td>\n",
|
|
" <td>28</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>63</td>\n",
|
|
" <td>32</td>\n",
|
|
" <td>28</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>218</th>\n",
|
|
" <td>5037</td>\n",
|
|
" <td>2023-12-12 09:43:43</td>\n",
|
|
" <td>160</td>\n",
|
|
" <td>143</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>63</td>\n",
|
|
" <td>32</td>\n",
|
|
" <td>28</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>63</td>\n",
|
|
" <td>32</td>\n",
|
|
" <td>28</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>265</th>\n",
|
|
" <td>5037</td>\n",
|
|
" <td>2023-12-12 11:49:04</td>\n",
|
|
" <td>160</td>\n",
|
|
" <td>144</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>63</td>\n",
|
|
" <td>32</td>\n",
|
|
" <td>28</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>63</td>\n",
|
|
" <td>32</td>\n",
|
|
" <td>28</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>266</th>\n",
|
|
" <td>5037</td>\n",
|
|
" <td>2023-12-12 11:51:42</td>\n",
|
|
" <td>159</td>\n",
|
|
" <td>142</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>63</td>\n",
|
|
" <td>31</td>\n",
|
|
" <td>28</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>63</td>\n",
|
|
" <td>31</td>\n",
|
|
" <td>28</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>267</th>\n",
|
|
" <td>5037</td>\n",
|
|
" <td>2023-12-12 11:53:54</td>\n",
|
|
" <td>104</td>\n",
|
|
" <td>114</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>49</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>28</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>49</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>28</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>268</th>\n",
|
|
" <td>5037</td>\n",
|
|
" <td>2023-12-12 11:55:52</td>\n",
|
|
" <td>118</td>\n",
|
|
" <td>72</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>33</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>28</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>33</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>28</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>269</th>\n",
|
|
" <td>5037</td>\n",
|
|
" <td>2023-12-12 11:59:25</td>\n",
|
|
" <td>213</td>\n",
|
|
" <td>125</td>\n",
|
|
" <td>49</td>\n",
|
|
" <td>84</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>49</td>\n",
|
|
" <td>84</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" 현장교차로ID 수집날짜시각 주기시간 옵셋시간 A링1현시시간 A링2현시시간 A링3현시시간 \\\n",
|
|
"0 5037 2023-12-12 00:01:47 140 107 37 45 30 \n",
|
|
"1 5037 2023-12-12 00:04:27 160 128 43 51 34 \n",
|
|
"2 5037 2023-12-12 00:06:47 139 127 37 45 29 \n",
|
|
"3 5037 2023-12-12 00:09:06 140 127 37 45 30 \n",
|
|
"153 5037 2023-12-12 05:59:06 140 127 37 45 30 \n",
|
|
"154 5037 2023-12-12 06:01:26 140 87 37 45 30 \n",
|
|
"155 5037 2023-12-12 06:04:43 197 134 50 71 39 \n",
|
|
"156 5037 2023-12-12 06:07:13 150 134 38 54 30 \n",
|
|
"157 5037 2023-12-12 06:09:43 150 134 38 54 30 \n",
|
|
"165 5037 2023-12-12 06:29:43 150 134 38 54 30 \n",
|
|
"166 5037 2023-12-12 06:32:13 150 14 38 54 30 \n",
|
|
"167 5037 2023-12-12 06:34:27 134 148 37 49 20 \n",
|
|
"168 5037 2023-12-12 06:37:05 158 146 39 62 29 \n",
|
|
"169 5037 2023-12-12 06:39:45 160 146 39 63 30 \n",
|
|
"177 5037 2023-12-12 07:01:06 160 146 39 63 30 \n",
|
|
"178 5037 2023-12-12 07:03:46 160 96 39 63 30 \n",
|
|
"179 5037 2023-12-12 07:07:32 226 152 53 96 40 \n",
|
|
"180 5037 2023-12-12 07:10:28 176 158 41 75 31 \n",
|
|
"181 5037 2023-12-12 07:13:18 170 158 40 72 30 \n",
|
|
"182 5037 2023-12-12 07:16:08 170 158 40 72 30 \n",
|
|
"214 5037 2023-12-12 09:32:07 170 158 40 72 30 \n",
|
|
"215 5037 2023-12-12 09:34:57 170 98 40 72 30 \n",
|
|
"216 5037 2023-12-12 09:38:22 205 143 47 81 41 \n",
|
|
"217 5037 2023-12-12 09:41:02 160 143 37 63 32 \n",
|
|
"218 5037 2023-12-12 09:43:43 160 143 37 63 32 \n",
|
|
"265 5037 2023-12-12 11:49:04 160 144 37 63 32 \n",
|
|
"266 5037 2023-12-12 11:51:42 159 142 37 63 31 \n",
|
|
"267 5037 2023-12-12 11:53:54 104 114 0 49 27 \n",
|
|
"268 5037 2023-12-12 11:55:52 118 72 37 33 20 \n",
|
|
"269 5037 2023-12-12 11:59:25 213 125 49 84 43 \n",
|
|
"\n",
|
|
" A링4현시시간 A링5현시시간 A링6현시시간 B링1현시시간 B링2현시시간 B링3현시시간 B링4현시시간 B링5현시시간 \\\n",
|
|
"0 28 0 0 37 45 30 28 0 \n",
|
|
"1 32 0 0 43 51 34 32 0 \n",
|
|
"2 28 0 0 37 45 29 28 0 \n",
|
|
"3 28 0 0 37 45 30 28 0 \n",
|
|
"153 28 0 0 37 45 30 28 0 \n",
|
|
"154 28 0 0 37 45 30 28 0 \n",
|
|
"155 37 0 0 50 71 39 37 0 \n",
|
|
"156 28 0 0 38 54 30 28 0 \n",
|
|
"157 28 0 0 38 54 30 28 0 \n",
|
|
"165 28 0 0 38 54 30 28 0 \n",
|
|
"166 28 0 0 38 54 30 28 0 \n",
|
|
"167 28 0 0 37 49 20 28 0 \n",
|
|
"168 28 0 0 39 62 29 28 0 \n",
|
|
"169 28 0 0 39 63 30 28 0 \n",
|
|
"177 28 0 0 39 63 30 28 0 \n",
|
|
"178 28 0 0 39 63 30 28 0 \n",
|
|
"179 37 0 0 53 96 40 37 0 \n",
|
|
"180 29 0 0 41 75 31 29 0 \n",
|
|
"181 28 0 0 40 72 30 28 0 \n",
|
|
"182 28 0 0 40 72 30 28 0 \n",
|
|
"214 28 0 0 40 72 30 28 0 \n",
|
|
"215 28 0 0 40 72 30 28 0 \n",
|
|
"216 36 0 0 47 81 41 36 0 \n",
|
|
"217 28 0 0 37 63 32 28 0 \n",
|
|
"218 28 0 0 37 63 32 28 0 \n",
|
|
"265 28 0 0 37 63 32 28 0 \n",
|
|
"266 28 0 0 37 63 31 28 0 \n",
|
|
"267 28 0 0 0 49 27 28 0 \n",
|
|
"268 28 0 0 37 33 20 28 0 \n",
|
|
"269 37 0 0 49 84 43 37 0 \n",
|
|
"\n",
|
|
" B링6현시시간 전이시간여부 이상치존재 \n",
|
|
"0 0 False False \n",
|
|
"1 0 False True \n",
|
|
"2 0 False False \n",
|
|
"3 0 False False \n",
|
|
"153 0 False False \n",
|
|
"154 0 True False \n",
|
|
"155 0 True True \n",
|
|
"156 0 True False \n",
|
|
"157 0 True False \n",
|
|
"165 0 False False \n",
|
|
"166 0 True False \n",
|
|
"167 0 True True \n",
|
|
"168 0 True False \n",
|
|
"169 0 True False \n",
|
|
"177 0 True False \n",
|
|
"178 0 True False \n",
|
|
"179 0 True True \n",
|
|
"180 0 True True \n",
|
|
"181 0 True False \n",
|
|
"182 0 True False \n",
|
|
"214 0 True False \n",
|
|
"215 0 True False \n",
|
|
"216 0 True True \n",
|
|
"217 0 True False \n",
|
|
"218 0 True False \n",
|
|
"265 0 False False \n",
|
|
"266 0 False False \n",
|
|
"267 0 False True \n",
|
|
"268 0 False True \n",
|
|
"269 0 False True "
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"\"\"\"\n",
|
|
"3. 이상치 관찰\n",
|
|
"\n",
|
|
"이상 전이시간이 발생하는 경우를 관찰하기 위한 데이터프레임입니다.\n",
|
|
"이상치가 존재하는 순간을 포함하여 기준으로 앞의 두 순간, 뒤의 두 순간을 포함하여 총 다섯 행을 만듭니다.\n",
|
|
"이 다섯 행들을 모두 합치되 중복을 제거하여, 이상치가 발생하는 순간과, 그 전후 상황이 어떻게 나타나는지 관찰할 수 있게 합니다.\n",
|
|
"\n",
|
|
"이상치가 존재하는 경우는 전이시간에 포함되는 경우, 포함되지 않는 경우로 나뉘어서 보아야 할 것이므로\n",
|
|
"\"이상치존재\" 열과 \"전이시간여부\" 행을 명시했습니다.\n",
|
|
"\n",
|
|
"해석 : (교차로ID = 5037)\n",
|
|
"첫번째로 이상치가 존재하는 경우 (index = 1)는 2현시시간인 51이 이상 현시시간입니다.\n",
|
|
"이것은 여타 현시시간과 큰 값의 차이가 나는 것은 아니지만, 정상 현시시간으로 규정한 값에 포함되지 않습니다.\n",
|
|
"두번째로 이상치가 존재하는 경우 (index = 155)에도 2현시시간인 71이 이상현시시간입니다.\n",
|
|
"\"\"\"\n",
|
|
"\n",
|
|
"inter_no = 5037\n",
|
|
"print(f\"accepted_durations \\n {infos['accepted_durations'][inter_no]}\")\n",
|
|
"print(f\"전이시간이 아닌데 이상치가 발생한 경우 \\n {sorted(infos['outlier_dfs'][inter_no][infos['outlier_dfs'][inter_no]['전이시간여부']==False].index)}\")\n",
|
|
"for (hour, minute) in infos['offsets'][inter_no]:\n",
|
|
" print(f\"{hour}:{minute} {infos['offsets'][inter_no][(hour, minute)]}\")\n",
|
|
"display(infos['context_dfs'][inter_no][:30])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 11,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"2023-12-12 00:00:09\n",
|
|
"2023-12-15 16:59:54\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"print([dt for dt in hstr.수집날짜시각 if dt.hour!=23][0])\n",
|
|
"print([dt for dt in hstr.수집날짜시각 if dt.hour!=23][-1])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 12,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"전체 현시시간 개수 : 32466\n",
|
|
"이상 현시시간 개수 : 940\n",
|
|
"전이시간 바깥의 이상 현시시간 개수 : 255\n",
|
|
"이상 현시시간 비율 : 2.895336659890347 %\n",
|
|
"이상 현시시간일 때, 그 이상치가 전이시간 바깥에서 존재하는 비율 : 27.127659574468083 %\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"\"\"\"\n",
|
|
"4. 이상 현시시간 비율 및 전이시간과의 관계\n",
|
|
"\"\"\"\n",
|
|
"\n",
|
|
"n_outlier = 0\n",
|
|
"n_outlier_oustide_transition_ranges = 0\n",
|
|
"for inter_no in inter_nos:\n",
|
|
" df = infos['outlier_dfs'][inter_no]\n",
|
|
" n_outlier += len(df)\n",
|
|
" n_outlier_oustide_transition_ranges += len(df[(df['전이시간여부'] == False) & (df['이상치존재'] == True)])\n",
|
|
"print(f\"전체 현시시간 개수 : {len(hstr)}\")\n",
|
|
"print(f\"이상 현시시간 개수 : {n_outlier}\")\n",
|
|
"print(f\"전이시간 바깥의 이상 현시시간 개수 : {n_outlier_oustide_transition_ranges}\")\n",
|
|
"print(f\"이상 현시시간 비율 : {n_outlier / len(hstr) * 100} %\")\n",
|
|
"print(f\"이상 현시시간일 때, 그 이상치가 전이시간 바깥에서 존재하는 비율 : {n_outlier_oustide_transition_ranges / n_outlier * 100} %\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 13,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>현장교차로ID</th>\n",
|
|
" <th>수집날짜시각</th>\n",
|
|
" <th>주기시간</th>\n",
|
|
" <th>옵셋시간</th>\n",
|
|
" <th>A링1현시시간</th>\n",
|
|
" <th>A링2현시시간</th>\n",
|
|
" <th>A링3현시시간</th>\n",
|
|
" <th>A링4현시시간</th>\n",
|
|
" <th>A링5현시시간</th>\n",
|
|
" <th>A링6현시시간</th>\n",
|
|
" <th>B링1현시시간</th>\n",
|
|
" <th>B링2현시시간</th>\n",
|
|
" <th>B링3현시시간</th>\n",
|
|
" <th>B링4현시시간</th>\n",
|
|
" <th>B링5현시시간</th>\n",
|
|
" <th>B링6현시시간</th>\n",
|
|
" <th>전이시간여부</th>\n",
|
|
" <th>이상치존재</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>776</th>\n",
|
|
" <td>5031</td>\n",
|
|
" <td>2023-12-13 10:31:40</td>\n",
|
|
" <td>160</td>\n",
|
|
" <td>140</td>\n",
|
|
" <td>49</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>29</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>49</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>29</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>777</th>\n",
|
|
" <td>5031</td>\n",
|
|
" <td>2023-12-13 10:34:20</td>\n",
|
|
" <td>160</td>\n",
|
|
" <td>140</td>\n",
|
|
" <td>49</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>29</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>49</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>29</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>778</th>\n",
|
|
" <td>5031</td>\n",
|
|
" <td>2023-12-13 10:39:07</td>\n",
|
|
" <td>31</td>\n",
|
|
" <td>107</td>\n",
|
|
" <td>49</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>156</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>49</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>156</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>779</th>\n",
|
|
" <td>5031</td>\n",
|
|
" <td>2023-12-13 10:41:27</td>\n",
|
|
" <td>140</td>\n",
|
|
" <td>87</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>16</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>25</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>16</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>25</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>780</th>\n",
|
|
" <td>5031</td>\n",
|
|
" <td>2023-12-13 10:45:00</td>\n",
|
|
" <td>213</td>\n",
|
|
" <td>140</td>\n",
|
|
" <td>69</td>\n",
|
|
" <td>31</td>\n",
|
|
" <td>31</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>39</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>69</td>\n",
|
|
" <td>31</td>\n",
|
|
" <td>31</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>39</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>781</th>\n",
|
|
" <td>5031</td>\n",
|
|
" <td>2023-12-13 10:47:40</td>\n",
|
|
" <td>160</td>\n",
|
|
" <td>140</td>\n",
|
|
" <td>49</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>29</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>49</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>29</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>782</th>\n",
|
|
" <td>5031</td>\n",
|
|
" <td>2023-12-13 10:50:20</td>\n",
|
|
" <td>160</td>\n",
|
|
" <td>140</td>\n",
|
|
" <td>49</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>29</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>49</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>29</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>910</th>\n",
|
|
" <td>5031</td>\n",
|
|
" <td>2023-12-13 18:02:38</td>\n",
|
|
" <td>180</td>\n",
|
|
" <td>159</td>\n",
|
|
" <td>65</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>33</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>65</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>33</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>911</th>\n",
|
|
" <td>5031</td>\n",
|
|
" <td>2023-12-13 18:05:38</td>\n",
|
|
" <td>180</td>\n",
|
|
" <td>159</td>\n",
|
|
" <td>65</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>33</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>65</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>33</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>912</th>\n",
|
|
" <td>5031</td>\n",
|
|
" <td>2023-12-13 18:10:47</td>\n",
|
|
" <td>52</td>\n",
|
|
" <td>107</td>\n",
|
|
" <td>65</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>161</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>65</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>161</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>913</th>\n",
|
|
" <td>5031</td>\n",
|
|
" <td>2023-12-13 18:13:07</td>\n",
|
|
" <td>140</td>\n",
|
|
" <td>67</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>16</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>25</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>16</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>25</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>914</th>\n",
|
|
" <td>5031</td>\n",
|
|
" <td>2023-12-13 18:17:06</td>\n",
|
|
" <td>239</td>\n",
|
|
" <td>126</td>\n",
|
|
" <td>90</td>\n",
|
|
" <td>31</td>\n",
|
|
" <td>31</td>\n",
|
|
" <td>48</td>\n",
|
|
" <td>39</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>90</td>\n",
|
|
" <td>31</td>\n",
|
|
" <td>31</td>\n",
|
|
" <td>48</td>\n",
|
|
" <td>39</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>915</th>\n",
|
|
" <td>5031</td>\n",
|
|
" <td>2023-12-13 18:20:39</td>\n",
|
|
" <td>213</td>\n",
|
|
" <td>159</td>\n",
|
|
" <td>78</td>\n",
|
|
" <td>25</td>\n",
|
|
" <td>31</td>\n",
|
|
" <td>40</td>\n",
|
|
" <td>39</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>78</td>\n",
|
|
" <td>25</td>\n",
|
|
" <td>31</td>\n",
|
|
" <td>40</td>\n",
|
|
" <td>39</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>916</th>\n",
|
|
" <td>5031</td>\n",
|
|
" <td>2023-12-13 18:23:39</td>\n",
|
|
" <td>180</td>\n",
|
|
" <td>160</td>\n",
|
|
" <td>65</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>33</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>65</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>33</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>917</th>\n",
|
|
" <td>5031</td>\n",
|
|
" <td>2023-12-13 18:26:38</td>\n",
|
|
" <td>179</td>\n",
|
|
" <td>159</td>\n",
|
|
" <td>65</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>32</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>65</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>32</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1031</th>\n",
|
|
" <td>5031</td>\n",
|
|
" <td>2023-12-13 23:45:40</td>\n",
|
|
" <td>140</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>16</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>25</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>16</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>25</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1032</th>\n",
|
|
" <td>5031</td>\n",
|
|
" <td>2023-12-13 23:48:00</td>\n",
|
|
" <td>140</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>16</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>25</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>16</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>25</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1033</th>\n",
|
|
" <td>5031</td>\n",
|
|
" <td>2023-12-13 23:52:43</td>\n",
|
|
" <td>26</td>\n",
|
|
" <td>3</td>\n",
|
|
" <td>179</td>\n",
|
|
" <td>16</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>25</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>179</td>\n",
|
|
" <td>16</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>25</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1034</th>\n",
|
|
" <td>5031</td>\n",
|
|
" <td>2023-12-13 23:55:02</td>\n",
|
|
" <td>140</td>\n",
|
|
" <td>2</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>16</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>25</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>16</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>25</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1035</th>\n",
|
|
" <td>5031</td>\n",
|
|
" <td>2023-12-13 23:57:22</td>\n",
|
|
" <td>140</td>\n",
|
|
" <td>2</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>16</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>25</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>16</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>25</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1761</th>\n",
|
|
" <td>5031</td>\n",
|
|
" <td>2023-12-15 07:14:41</td>\n",
|
|
" <td>180</td>\n",
|
|
" <td>161</td>\n",
|
|
" <td>49</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>34</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>49</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>34</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1762</th>\n",
|
|
" <td>5031</td>\n",
|
|
" <td>2023-12-15 07:17:41</td>\n",
|
|
" <td>180</td>\n",
|
|
" <td>161</td>\n",
|
|
" <td>49</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>34</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>49</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>34</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1763</th>\n",
|
|
" <td>5031</td>\n",
|
|
" <td>2023-12-15 07:21:58</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>58</td>\n",
|
|
" <td>126</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>34</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>126</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>34</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1764</th>\n",
|
|
" <td>5031</td>\n",
|
|
" <td>2023-12-15 07:24:18</td>\n",
|
|
" <td>140</td>\n",
|
|
" <td>19</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>16</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>25</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>16</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>25</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1765</th>\n",
|
|
" <td>5031</td>\n",
|
|
" <td>2023-12-15 07:26:49</td>\n",
|
|
" <td>151</td>\n",
|
|
" <td>169</td>\n",
|
|
" <td>39</td>\n",
|
|
" <td>25</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>25</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>39</td>\n",
|
|
" <td>25</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>25</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1766</th>\n",
|
|
" <td>5031</td>\n",
|
|
" <td>2023-12-15 07:29:41</td>\n",
|
|
" <td>172</td>\n",
|
|
" <td>161</td>\n",
|
|
" <td>47</td>\n",
|
|
" <td>32</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>31</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>47</td>\n",
|
|
" <td>32</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>31</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1767</th>\n",
|
|
" <td>5031</td>\n",
|
|
" <td>2023-12-15 07:32:41</td>\n",
|
|
" <td>180</td>\n",
|
|
" <td>161</td>\n",
|
|
" <td>49</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>34</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>49</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>34</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1768</th>\n",
|
|
" <td>5031</td>\n",
|
|
" <td>2023-12-15 07:35:41</td>\n",
|
|
" <td>180</td>\n",
|
|
" <td>161</td>\n",
|
|
" <td>49</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>34</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>49</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>34</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" 현장교차로ID 수집날짜시각 주기시간 옵셋시간 A링1현시시간 A링2현시시간 A링3현시시간 \\\n",
|
|
"776 5031 2023-12-13 10:31:40 160 140 49 20 27 \n",
|
|
"777 5031 2023-12-13 10:34:20 160 140 49 20 27 \n",
|
|
"778 5031 2023-12-13 10:39:07 31 107 49 20 27 \n",
|
|
"779 5031 2023-12-13 10:41:27 140 87 37 16 27 \n",
|
|
"780 5031 2023-12-13 10:45:00 213 140 69 31 31 \n",
|
|
"781 5031 2023-12-13 10:47:40 160 140 49 20 27 \n",
|
|
"782 5031 2023-12-13 10:50:20 160 140 49 20 27 \n",
|
|
"910 5031 2023-12-13 18:02:38 180 159 65 20 27 \n",
|
|
"911 5031 2023-12-13 18:05:38 180 159 65 20 27 \n",
|
|
"912 5031 2023-12-13 18:10:47 52 107 65 20 27 \n",
|
|
"913 5031 2023-12-13 18:13:07 140 67 37 16 27 \n",
|
|
"914 5031 2023-12-13 18:17:06 239 126 90 31 31 \n",
|
|
"915 5031 2023-12-13 18:20:39 213 159 78 25 31 \n",
|
|
"916 5031 2023-12-13 18:23:39 180 160 65 20 27 \n",
|
|
"917 5031 2023-12-13 18:26:38 179 159 65 20 27 \n",
|
|
"1031 5031 2023-12-13 23:45:40 140 0 37 16 27 \n",
|
|
"1032 5031 2023-12-13 23:48:00 140 0 37 16 27 \n",
|
|
"1033 5031 2023-12-13 23:52:43 26 3 179 16 27 \n",
|
|
"1034 5031 2023-12-13 23:55:02 140 2 37 16 27 \n",
|
|
"1035 5031 2023-12-13 23:57:22 140 2 37 16 27 \n",
|
|
"1761 5031 2023-12-15 07:14:41 180 161 49 35 27 \n",
|
|
"1762 5031 2023-12-15 07:17:41 180 161 49 35 27 \n",
|
|
"1763 5031 2023-12-15 07:21:58 1 58 126 35 27 \n",
|
|
"1764 5031 2023-12-15 07:24:18 140 19 37 16 27 \n",
|
|
"1765 5031 2023-12-15 07:26:49 151 169 39 25 27 \n",
|
|
"1766 5031 2023-12-15 07:29:41 172 161 47 32 27 \n",
|
|
"1767 5031 2023-12-15 07:32:41 180 161 49 35 27 \n",
|
|
"1768 5031 2023-12-15 07:35:41 180 161 49 35 27 \n",
|
|
"\n",
|
|
" A링4현시시간 A링5현시시간 A링6현시시간 B링1현시시간 B링2현시시간 B링3현시시간 B링4현시시간 B링5현시시간 \\\n",
|
|
"776 29 35 0 49 20 27 29 35 \n",
|
|
"777 29 35 0 49 20 27 29 35 \n",
|
|
"778 156 35 0 49 20 27 156 35 \n",
|
|
"779 25 35 0 37 16 27 25 35 \n",
|
|
"780 43 39 0 69 31 31 43 39 \n",
|
|
"781 29 35 0 49 20 27 29 35 \n",
|
|
"782 29 35 0 49 20 27 29 35 \n",
|
|
"910 33 35 0 65 20 27 33 35 \n",
|
|
"911 33 35 0 65 20 27 33 35 \n",
|
|
"912 161 35 0 65 20 27 161 35 \n",
|
|
"913 25 35 0 37 16 27 25 35 \n",
|
|
"914 48 39 0 90 31 31 48 39 \n",
|
|
"915 40 39 0 78 25 31 40 39 \n",
|
|
"916 33 35 0 65 20 27 33 35 \n",
|
|
"917 32 35 0 65 20 27 32 35 \n",
|
|
"1031 25 35 0 37 16 27 25 35 \n",
|
|
"1032 25 35 0 37 16 27 25 35 \n",
|
|
"1033 25 35 0 179 16 27 25 35 \n",
|
|
"1034 25 35 0 37 16 27 25 35 \n",
|
|
"1035 25 35 0 37 16 27 25 35 \n",
|
|
"1761 34 35 0 49 35 27 34 35 \n",
|
|
"1762 34 35 0 49 35 27 34 35 \n",
|
|
"1763 34 35 0 126 35 27 34 35 \n",
|
|
"1764 25 35 0 37 16 27 25 35 \n",
|
|
"1765 25 35 0 39 25 27 25 35 \n",
|
|
"1766 31 35 0 47 32 27 31 35 \n",
|
|
"1767 34 35 0 49 35 27 34 35 \n",
|
|
"1768 34 35 0 49 35 27 34 35 \n",
|
|
"\n",
|
|
" B링6현시시간 전이시간여부 이상치존재 \n",
|
|
"776 0 False False \n",
|
|
"777 0 False False \n",
|
|
"778 0 False True \n",
|
|
"779 0 False False \n",
|
|
"780 0 False True \n",
|
|
"781 0 False False \n",
|
|
"782 0 False False \n",
|
|
"910 0 False False \n",
|
|
"911 0 False False \n",
|
|
"912 0 False True \n",
|
|
"913 0 False False \n",
|
|
"914 0 False True \n",
|
|
"915 0 False True \n",
|
|
"916 0 False False \n",
|
|
"917 0 False False \n",
|
|
"1031 0 True False \n",
|
|
"1032 0 True False \n",
|
|
"1033 0 False True \n",
|
|
"1034 0 False False \n",
|
|
"1035 0 False False \n",
|
|
"1761 0 True False \n",
|
|
"1762 0 True False \n",
|
|
"1763 0 False True \n",
|
|
"1764 0 False False \n",
|
|
"1765 0 False False \n",
|
|
"1766 0 False True \n",
|
|
"1767 0 False False \n",
|
|
"1768 0 False False "
|
|
]
|
|
},
|
|
"execution_count": 13,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"\"\"\"\n",
|
|
"5. 전이시간 바깥에서 발생하는 이상현시시간 관찰\n",
|
|
"\n",
|
|
"이상치존재가 True이고 전이시간여부가 False인 경우에 대하여 앞의 두 번 뒤의 두 번을 포함해 관찰합니다.\n",
|
|
"\"\"\"\n",
|
|
"\n",
|
|
"infos['context_dfs_outside_the_transition_ranges'] = {}\n",
|
|
"infos['outlier_lists'] = {}\n",
|
|
"infos['outliers'] = []\n",
|
|
"for inter_no in inter_nos:\n",
|
|
" dfs = infos['context_dfs_list'][inter_no]\n",
|
|
" dfs = [dfs[i] for i in range(len(dfs)) if ~dfs[i].iloc[2]['전이시간여부']]\n",
|
|
" infos['context_dfs_outside_the_transition_ranges'][inter_no] = pd.concat(dfs).drop_duplicates()\n",
|
|
"\n",
|
|
" df = infos['outlier_dfs'][inter_no].iloc[:,4:-2]\n",
|
|
" is_outlier = df.isin(infos['unaccepted_durations'][inter_no])\n",
|
|
" temp = df[is_outlier].values.flatten()\n",
|
|
" temp = np.unique(temp[pd.notna(temp)])\n",
|
|
" infos['outlier_lists'][inter_no] = np.unique(temp[pd.notna(temp)])\n",
|
|
" infos['outliers'].extend(infos['outlier_lists'][inter_no])\n",
|
|
"infos['context_dfs_outside_the_transition_ranges'][5031]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 14,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhwAAAHFCAYAAAC5JyAGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA5cUlEQVR4nO3deXgUZb728btDks4ChCVAIECCgCiCMiIDDMgy4gKouADuguKCLBrk4LB4BA4q4A6OeMYZZRlGUFFRiRg4sgwMIIsogoIii2EPi2Qh6aST5/0jbxqadKeT0EV3w/dzXXVZqeWpX6dCcvtU1VM2Y4wRAACAhcICXQAAALjwETgAAIDlCBwAAMByBA4AAGA5AgcAALAcgQMAAFiOwAEAACxH4AACZM+ePbLZbDp06FCl9v/11181bty4Sh9/+PDhevHFFz2uO3z4sMLDw7V3795Ktz9r1ixddtllld5fkrp166YpU6ZUev/HHntMa9euPacaAPgHgQMIYl999ZWSk5M9rktPT9e0adMq3XZGRoaOHz/ucZ0xRoWFhQrWcQEvu+wy2Ww2j9PJkydd2y1ZskT79++vUNtHjx6VzWbTzp07vW7zyCOPaPDgwZWuH7gYhQe6AOBCtGPHDo0cOVIrVqxQeHi4evXqpVdffVX169evUDvGGL/90X/rrbe0fPly19fffPONYmJitGfPHteyW2+9VQ8++GC527TZbNqwYYOuueaaStU0a9YsvfLKK9q6dWuF9vv6669VUFDgtuxf//qXZsyYobi4uErVcrbCwkI5nU6P68o6JwsWLFC/fv3KfZz09HQ1bNiwwvUBoYbAAfjZgQMH1LlzZ/Xq1Utr166Vw+HQc889p65du2rz5s2KjY0td1uHDh3S0aNH5XQ6FR5+bv9ck5OT3YKBp5DQqFGjczrG+ZKYmFhq2TfffKNevXr57Ri+Lgc9/vjjHpffeuutrt6j6dOna9y4cYqIiHCt3717tz744AONHj1aklSrVi2/1QwEMwIH4GcvvPCCmjZtqlmzZslms0mSPv30UzVv3lzTpk3T2LFjy93W4sWLderUKaWlpal3796l1htjXF3/9evXLzPM9O7dW71791ZWVpbeffddbdu2TeHh4br66qs1YMAARUZG6vfff9ehQ4eUkZHhs7aioiK3/1ZGUVHROe1fYsuWLUpNTdWaNWvOua0S69evV5MmTTyuGzFihNf9IiMjFR8fr9zcXL311luaMGGC4uPjXevXrl2ruXPn6pVXXvFbrUAo4B4OwM8WLVqkoUOHusKGJNntdj366KP64osvyt3O5s2b9dlnn+m+++7TqFGjlJOTU2qbU6dOqXnz5mrevLkWL17ss83t27erefPm+vzzz9WkSRMlJCTorbfeUuvWrXX48GENHDhQ9evX15VXXumzrSNHjkiSDh48WO7P5KmNyt40WyIvL08PPfSQ7rjjDrVv377U+unTp+v+++/Xq6++WqF27Xa7oqKiPE5VqlTxuX9MTIwkKTs72215dna2qlatWqFagAsBgQPwI6fTqd9++00tW7Yste7yyy/Xr7/+Wq520tPTddttt2nkyJGaOXOmEhMT1atXr1KhIzY21nWfR9++fX22O3bsWHXv3l3Lli3T2LFjNX78eG3cuFE1atTQSy+9pI8++ki5ublu93V4s27dOknSypUry/WZvLVx4sQJbdmypVL7O51O3X///Tp+/Ljeeecdj9vUqFFDCQkJqlmzZoXavuqqq1StWjWP0+zZs33uX9LblJWV5bY8KyurQpfVgAsFgQPwo5LLA9HR0aXWRUdHq7Cw0Gcba9euVffu3dW5c2c9//zzioiI0MKFC1WtWjW1adNGaWlpla7v8OHDpXoBwsPDdc011+i3335TRESEoqKiZLfbfbY1e/Zsde3aVXPnzi31f/HlceTIES1ZskTXXnut3n777Qrvf/LkSd1222365ptvtHTpUq+B4sEHH9Qrr7yihx9+uFztxsfHKysry+fk6wmhqKgohYWF0cMB/H8EDsCPIiMjVbt2bY/jV+zZs0cNGjQoc/9jx46pX79+uueeezR37lyFhRX/E42NjdXnn3+uxx57rFzd+d707NlTb731lltPy4YNGzR//nzddNNNmj9/viZMmODz/oI1a9bo66+/1rx589S0adMK3ZdS4r//+7/Vq1cvvfXWW5ozZ46++eabcu1njNEnn3yiq666Svv27dN//vMfNWvWrMLHP1t+fr6ys7PLHZ4KCgo8bj969GjXI7pFRUX605/+5PbY7siRI7VmzRrX1wsXLjzn2oFQwE2jgJ91795d8+fPV8+ePd2Wv//++/rzn/9c5r61a9fWrl27FBkZWWpdWFiYRo0a5fo6MTHR65MS3owePVr79+9Xy5YtlZSUJKfTqcOHD2vUqFF6+OGHNWPGDO3bt0+5uble2zh27JjuvvtuTZkyRfXr19fs2bPVtm1bdejQQffee2+56vjwww/14YcfauvWrUpMTNS4cePUt29fbdq0SXXr1i1z38mTJ+t//ud/lJKSogkTJigqKqpC3wNvXnzxRU2cOLFS++bm5rrqGDt2rIYNG+a2fvPmzbr11lu1Z8+eUoHxzBtKgQuaAeBXGzZsMFFRUWbhwoWuZdOnTzexsbFm9+7drmW7d+82kszBgwe9trVy5Upz1113maSkJGO3201ERIRJSEgwN954o5k7d64pKiqqVI1Hjhwxq1atMmvXrjW///57qfUHDx40ktzqNcaYQ4cOmQ4dOpj777/fbfmXX35poqKizBtvvOFaNnPmTNOiRYtSbS9atMjUqFHDLF682LWsqKjI3HfffaZp06Zmy5YtruVdu3Y1kydPdts/Pz/f7N+/v1yfMykpyXz00Ufl2tbhcJisrCyPU7t27czUqVO9rvdl7dq1RpIpKCgoVy3AhYhLKoCfXXPNNZo7d64GDRqkFi1aqEmTJnr55ZeVmprqddRQT95++21df/31atKkiT766CPt3r1b+/fv19KlS3XjjTcqJSVFAwYMqFSNa9euVUJCgjp06FDugbJOnTqlTp06qV69enr33Xfd1vXs2VNz587V+PHjtX37dq9tfPXVV7rzzjv15ptv6qabbnItt9lsmjlzptq3b68nn3yyzDoiIiLUoEED/fDDDxX6fvoSGRmpqlWr6vjx4xo9erRiYmJUtWpVVa1aVWFhYa71niYA5RDoxANcqPLy8syGDRvM5s2bjdPpLLXeVw9HnTp1zJQpU7y2v2bNGiPJ/PzzzxWu7aqrrjIzZ86s8H7btm0zhYWFXtefOHHCNe+ph6OoqMhs3brV6/5FRUXm5MmTrq899XCU2LBhg7HiV1hJu2f2RrRv3968/vrrPvd1Op2moKCg1LR69WojyeTl5XlcX9b3FLhQcA8HYBG73V7pIb9L+GNQLH/y9LjvmWrUqFHmepvNpiuuuKLM9dWrV69MaZbq2rWrmjZt6nO7pk2blvnCO2/3m9x1112aP39+pesDQgGBAwhSEydO1FNPPaWTJ0/qzjvvVKNGjRQeHq4jR47o66+/1vPPP68HHnhAzZs3r1T72dnZOnr0aJnbxMTEuAawClb79u0rc73dbledOnUq3O7hw4ddN3iWjCx69iBlCQkJbl9v2LChXI8+n83TY9TAhYbAAQSpJ554Qi1bttSMGTPUt29fHTp0SEVFRapVq5batGmjV199Vffdd1+l2x8+fLiGDx9e5jYjR44M+iG4fb3/pX379q5ByiqiPC9UM2e9xK0ywQa4WNjM2f9iAJw3/ngpW7AyxqioqOicxg0pLCxUWFiY2zDxAEITgQMAAFiOx2IBAIDlCBwAAMByBA5cVNLS0tSrV69Al4EgMWTIEP3nP/8pc5uGDRt6fN/Jnj17ZLPZSj25AsAzAgdC3qFDh9xejuVpmjVrliTpxIkT+vHHHz22c/ToUZ/t2Gw29evX7zx+uotP586dy3UebDab/uu//uucjvXll18qPT3dT5UDKMuFeXs8Lir16tVTRkZGmdtUq1bNZzu1atXy+cdn0qRJ+v333ytS3kXllVdecXvBXFmqVKkip9NZavmCBQuUl5fn+trpdKpLly5q1aqV3nnnHbdtPQ3LftNNNyktLc3rcbt27aoVK1Z4XT927Fj9+9//dn2dkZGhsWPHuj0evGDBAq/7A/CMHg6EPJvNpvj4eP3973/XhAkTFB8fr/j4eM2cOVMTJkxQXl6eoqKiZLPZdM8993htJywsTA0bNixzio2Ntewx1p9++km33367atWqpejoaLVu3dot3GRkZGjAgAGqVauWatWqpT59+uiXX37x2l52draefvppNWrUSNHR0WrVqpXee+89t22ysrI0dOhQJScnKzo6Ws2bN9fUqVNLjS9RXkOHDlVGRoZ++eUXffTRR8rIyHCbNm/erC+//FIZGRk6fPiwxzYSEhKUnJys5ORkNWrUSC+//LJiY2P17bffauXKla51ycnJqlmzZqn9582bpy1btmjQoEHav3+/Dh48qO3bt2vQoEHavXu3nn/+ea1evVqrV6+Ww+EotX+vXr00bNgw11SzZs1Sy8oTYCsrNTVVnTt3Vs2aNVWzZk317t1bW7du9bjt7NmzdfXVVys6Olo1a9Yss8dnzpw5atu2rapXr666devq7rvv1m+//VZqu6KiIr322mu6/PLLFRUVpfj4eL3++ut++3y4eNHDgQtGfn6+Dh486Pr68OHDysvLU2JiorKysiRJH3/8scaPH1/pYzidTkVERJxzrWfbsmWLrr32Wj388MMaN26cYmNjtW3bNrdj3XzzzSooKNCnn36qqlWrasKECbruuuu0ZcsWj0OKT5w4UTt37tSsWbNUr149ffnll3r00UcVGRmp+++/X1JxiKlSpYr++c9/qnbt2lqzZo2GDx+usLCwcvdUnCk6OlrR0dHauXOn7rvvvlJ/0OfMmaOFCxe69SB4YozRokWLNGnSJEVERGjFihU6dOiQ+vbtq6VLl+ovf/mLWrdu7XHfmjVr6vjx43r33Xc1ffp0xcTEKCcnR++++67efPNNvfzyy1q5cqUk6dixY6X279y5s9vXzz77rDp37qzbbrvNbbmvXrXK2rx5swYPHqw2bdro5MmTmjRpkq6//nrt2LHDbdj38ePH6x//+IdeeOEFdejQQTk5OWXW9P3332vcuHG67LLLdPDgQY0ePVq9evXSDz/84DbOyUMPPaRvvvlGzz//vFq3bq0TJ04oPz/fks+Ki0zgXuMC+NdLL71kevXq5fp66NChZvjw4W7bzJs3zyQlJVX6GI8//rgZPHhwpff3pKioyFx99dVm/PjxXrfZsmWLkWS+/fZb17KcnBxjt9vNBx984HGfH3/8sdSyAQMGmO7du5dZz+OPP266dOlSvuK9+OGHH4wkk5+f77Z84sSJpmfPnl73W7VqlbnrrrtMUlKSufLKK82cOXPcXmyWlZVlxo0bZ+rUqWPatm1rBg0aZHbv3l2qnQMHDhhJ5vjx48aY4pfO2Wy2UtslJSWZefPmlflZ6tWrZ+bOnVtqua+X7/nLwYMHjSSzbNky17LNmzebqKgos2PHjkq3u3btWiPJ7Nq1y7Vs4cKFJj4+3mRkZJxTzYAnXFLBBSMmJsbt/6jz8vIUGxurffv2uW4yLOuSSnnk5OSU+3XuOTk5Sk5O1rRp08rcbtWqVdq1a5dGjhzpdZuS0TpjY2Ndy+x2uyIiIry+u+Pyyy8vtezSSy/1eimjRGFhoerVq1fmNr6U1Jmdne22PDs7u8zXubdp00Zdu3bVF198oe+//14PPPCAwsJO/5qqWrWqnn/+ef3222968cUXdemll6px48al2il5N0nJz4PD4XAte/PNN/XII4/okUce8djDcaZ9+/bp8OHD2rBhg9dt1q9fr9WrV2vHjh1ltjVy5MhKvcyv5PyeeU6mT5+ue++9V5deemmF2zuz3fDwcNWqVcu1bNq0aXryyScVHx9f6XYBbwgcuGB4ChwxMTGKj4/Xzz//rKysLNfTKmeaMGFCuZ+KmDt3rqZOner6+sybG88WHh6uRo0aqXbt2mXWvWTJEv3xj39UWlqaWrdurbi4OP3pT39ydftLxW9pvf7665WSkqJDhw4pKytLTz31lOrVq6c+ffqU+3u0adMmr29rPXHihP7+978rNTVV48aNK3ebnlQ2cFStWlVPPPGE18slJaKionTDDTfomWeecQskJTwFjpKX0NWvX1/NmjVTs2bNfN6PM3PmTDVr1kxz5851XZY72+DBg3X33Xdr+vTpZbYVHx/vMRx5U1BQoO+//14DBw7UoEGD3N7Uu2TJEl177bUaPny46tevr7p162rgwIE6fvy4z3YdDofWrl2rYcOGafz48a4AnZeXp1WrVqlt27a6//77VadOHSUmJiolJaXMn3Og3ALdxQKcq6lTp5rY2FgTExNjoqKiTGxsrImNjTXR0dEmOjra1KxZ01x++eXGGM+XVE6cOGF2797tNo0dO9Z06tTJ9fXzzz9vWrduXWq7oqKic67/jjvuMFdeeaVp3769Wbx4sVm9erW55557jN1uN7/++qtruyNHjpikpCQjydhsNhMbG2u2bNlS7uMsWrTIREZGmrVr17otf/PNN01ERISRZBo3bmy+/vrrSn+Wu+66y0gq97R582bXvjNnzqzQvmdOP/30kzGm+DLTzJkzXW1NmTLFzJw504wZM8bUrFnTzJgxw0yZMsV8//33xpiyL6kcOHDAxMXFmVWrVpmePXuaRx55xG29lZdU6tWrZ2w2m5FkHn30UZOTk+Nal5mZaSSZP/zhD2bEiBFm3bp1ZsGCBSY5Odlcf/31Xtv8/fffjd1uN5JMeHi4GTdunHE6na71JZft2rVrZyZNmmTWr19vZs2aZeLj40t9dqAyCBy4qKxbt86MHDnS53Yvv/yyue6661xfv/3226Zt27aW1NSjRw9Tu3Zt1/0GxhhTWFhorrjiCjNkyBBjTPEfmTZt2phbbrnFLFu2zKxevdoMHjzY1K9f3+0avDf/+7//a2JjY83MmTNLrTt+/LjZtm2bWb58uZkwYYKJi4szr732WqU+S2ZmpsnIyDDbtm1z3XOSkZHhmgYMGGDuvvtu19dn/sHLyckx6enpHqdu3bqZJ5980uv6goICY4wxGRkZ5sYbb/Q43XTTTaZPnz5m4MCBZsOGDcYY74HD4XCYbt26ub7/Bw8eNPXr1zcTJ050bWNl4Pj555/Nxo0bzQcffGC6du1qWrRoYQ4fPmyMMWbfvn1GknnooYfc9lm3bp2RZNavX++xzcLCQvPTTz+ZdevWmdmzZ5s2bdqYjh07mlOnThljjFm9erWR5PYZjTFm/vz5JiwszBw6dMjvnxMXFwIHLjiff/656dOnj2nYsKGJjIw0ERERpkGDBqZXr17mww8/9Lpffn6++eWXX0xhYeF5DRw9e/Y0vXv3LrV82LBhrps3J06caFq3bu32B9oYY/r162fuvPNOr21nZ2ebu+++2yQmJpqVK1eWq57333/fREREnNONgyU3Op59Q+fjjz9uBgwYUOH2brzxRjNu3LhK1+ONp8Bx/Phxc+ONN5quXbuavLw81/Jt27aZevXqmdtvv9389ttv5+2m0fz8fHPFFVeYlJQUY4wxhw8fNpLMRx99VGrbatWqmffee69c7f7++++mTp065o033jDGGPPNN98YSa4wVuLo0aOlbloFKoN7OHBBee6553TXXXepTZs2+uSTT7Rr1y7t2bNHX3zxhTp37qwhQ4Zo+PDhHvfdu3evmjdvrszMzPNac5MmTTwOJnbmo4pr165V+/btS73qvUuXLlqzZo3HdrOzs9W9e3edOHFCW7ZsUZcuXcpVT+fOnVVQUKBff/21/B/Cz9q0aaPNmzefUxtz587Vgw8+WOH9+vfvL6fTqc8++0x2u921vGXLllq/fr3y8/PP689IRESE2rdvr+3bt0uS6tSpo6pVq/r8mfElLi5OrVu3drXbpEkTSSrVbkXaBMrCOBy4YOTl5Wnq1Kn629/+poEDB7qta9Cgga6++mp16NBB1113nZ599tkyn8Ro166d25gHbdq00QMPPGBJ3TfccIPeeecd7dq1S5dccomk4vE+0tLS1LdvX1f9mzZtkjHG7Q/AunXrVL9+fY/tjh07VlFRUVq0aJHXmyOLiopK3XS5fv16ValSxVVLeZ05amjJkxWFhYVuy01xr6rbsrCwsFI1bN26VTk5ORU6/tmOHj2qXbt2lbnNnj17Si376KOPVK1atVLhTpIaN26sRYsWed33XJ19fqXi7+GmTZvUtWtXScUBoEePHpo3b54eeeQR13arVq1SVlaWOnXqVKpdT+c5JydHP/74o26++WZJxUGmTZs2mjdvnnr06OHaLjU1VdHR0Wrbtq3fPicuUoHtYAH8Jzc310RERJhZs2Z53Wb58uXGZrN5vB79yy+/GEnmxIkTfqnH4XCY6667zuc4D4WFhaZdu3bm8ssvN2lpaWb9+vWmb9++JiEhwXXdfsuWLSY6Otrce++9Zt26debbb781o0aNMjabzdW1vmLFCtOxY0dz5MgRY4wxCQkJ5oUXXih1o+vu3btd42M8+eSTZtKkSeY///mP2bJli5kxY4apXbu2+ctf/uKqb+HChSYxMdHnDbKq5A2fZx6rRJUqVcyqVatcX+fm5hqHw1GO7/ppr7/+uunUqVOF9qmIil5SeeWVV0z//v19ttm9e3fz8ccfu+6r6dOnj6lTp47Zu3eva7uNGzeayMhI89hjj5lNmzaZhQsXmoYNG7rd19G/f3/z6quvGmOKfzbuuOMOk5qaan788UezePFic+2115rmzZubzMxM1z6fffaZCQsLM88++6z57rvvzJw5c0yNGjVK3dcBVAY9HLhgREVF6ZlnntGQIUOUnp6unj17qn79+rLZbDp8+LCWLl2ql19+WU888USZvRsHDhwo9TjnmWw2mxITE33WU1BQoB07dvgc9yIsLEypqakaMWKE+vfvr4KCAnXv3l3//ve/VbduXUlS69attX79eo0bN0633nqrHA6HrrrqKi1ZssT1f6MlQ4rn5uZKKh5pddy4cR4fcf3hhx/UqlUr3XDDDZo0aZJefvll2Ww2tWzZUjNmzFD//v1d265cuVJ9+/b12bV+5iivFeHtMdmMjAzt27evzH0bNGjg8bHYEk6nU0ePHi2zDbvdbulQ5SV+++037dy5s8xt6tSpo6ZNmyolJUVHjhxRYmKievTooe+++04NGjRwbde2bVulpqZqzJgx6tixo2rXrq2HHnpIEydOdG2zY8cO18/ppZdeqoiICD3yyCM6ceKEGjdurD59+mjs2LFun/3WW2/Vv/71L02aNElTp05VYmKinnvuOY0YMcLP3w1cjGzGVPKlCUCQ+uyzz/Tuu+/q22+/1ZEjR2SMUXx8vP7whz9owIABuuuuuzzut3PnTjVv3txn+95eOnahatu2raZPn+6xq94q4eHhXgc0O9PBgweVkJDgcd0bb7xRrj+Uffr08fj6eV/27NmjJk2alFkDgNMIHAC8OnnypFq3bq29e/dy86AHTqfTspf5ARcaAgcAALAcj8UCAADLETgAAIDlCBwAAMByBA4AAGC5oLm9uqioSAcOHFC1atW4Gx4AgBBhjFFWVpbPcXGCJnAcOHBAjRo1CnQZAACgEtLT09WwYUOv64MmcJSMdpeenu72DgugTDk5UskIjAcOSLGxga0HAC4ymZmZatSokc8Re4MmcJRcRqlevTqBA+V35gu2qlcncABAgPi6HYKbRgEAgOWCpocDqJTwcGnAgNPzAICgxG9ohDa7XZo1K9BVAAB84JIKAACwHD0cCG3GSKdOFc/HxEiM4QIAQYkeDoS2U6ekqlWLp5LgAQAIOgQOAABgOQIHAACwHIEDAABYjsABAAAsV+HAYYzRnDlz1LFjR7flmzdvVocOHZSUlKSWLVtq6dKlfisSAACEtgo9FvvVV19p1KhRys3NVfgZozpmZWXplltu0axZs9SjRw+tXLlSffr00fbt25WQkOD3ogEAQGipUA9HTk6Opk6dqn/84x9uy+fNm6d27dqpR48ekqSuXbuqS5cu+uCDD/xXKeBJlSpS377F05kvcgMABJUK9XDceeedkqQVK1a4LV+7dq06derktqx9+/b67rvvvLblcDjkcDhcX2dmZlakFKBYVJT00UeBrgIA4INfbho9ePCg6tWr57asbt26OnbsmNd9Jk+erLi4ONfUqFEjf5RyQUkenark0amBLgMAgHPml8DhdDpljHFbVlhYKFsZw0yPGTNGJ0+edE3p6en+KAUAAAQhv7xLpVatWjp69KjbsoyMjDJvGLXb7bLb7f44PC5mOTnFw5pLUna2FBsb2HoAAB75pYejbdu2WrNmjduyNWvWlHp0FgAAXJz8Ejjuu+8+ff3111q2bJkk6csvv9RPP/2kfv36+aN5AAAQ4vxySaVhw4aaP3++hgwZouPHj6tZs2b64osvFEv3NgAAUCUDR7du3bR9+3a3ZTfeeGOpZQAAABLvUgEAAOcBgQMAAFjOL/dwAAFTpYrUq9fpeQBAUCJwILRFRUmpjMYKAMGOSyoAAMByBA4AAGA5AgdCW05O8XDmsbHF8wCAoMQ9HAh9p04FugIAgA/0cAAAAMsROAAAgOUIHAAAwHIEDgAAYDkCBwAAsBxPqSC0hYVJXbuengcABCUCB0JbdLS0YkWgqwAA+MD/EgIAAMsROAAAgOUIHAhtOTlSnTrFE0ObA0DQ4h4OhL6jRwNdAQDAB3o4AACA5QgcAADAcgQOAABgOQIHAACwHIEDAABYjqdUENrCwqRrrjk9DwAISgQOhLboaGnDhkBXAQDwgf8lBAAAliNwAAAAy3FJJQglj04N+LH3TOkdsBoq5NQpqWXL4vkff5RiYgJbDwDAIwIHQpsx0t69p+cBAEGJSyoAAMByBA4AAGA5AgcAALAcgQMAAFiOwAEAACzHUyoIbTbb6cdibbbA1gIA8IrAgdAWEyNt2xboKgAAPnBJBQAAWI7AAQAALEfgQGg7dUq64ori6dSpQFcDAPCCezgQ2owpfodKyTwAICjRwwEAACxH4AAAAJYjcAAAAMsROAAAgOUIHAAAwHI8pYLQZrNJSUmn5wEAQYnAgdAWEyPt2RPoKgAAPnBJBQAAWI7AAQAALEfgQGjLzZXatSuecnMDXQ0AwAvu4UBoKyqSNm48PQ8ACEr0cAAAAMsROAAAgOUIHAAAwHIEDgAAYDkCBwAAsBxPqSD0xccHugIAgA8EDoS22FgpIyPQVQAAfPDrJZX9+/frlltuUWJioi655BJNmjTJn80DAIAQ5dfA8eCDD6ply5bat2+fNm7cqI8//lizZs3y5yEAAEAI8mvg2Lx5sx544AHZbDbVqlVLN998szaWjAIJWCE3V+rWrXhiaHMACFp+DRx9+/bVX//6V+Xn52vv3r367LPP1LdvX38eAnBXVCStXFk8MbQ5AAQtv940+sILL6hdu3aqWbOmcnNzNWzYMHXr1s3jtg6HQw6Hw/V1ZmamP0sBAABBxG89HIWFherVq5dSUlJ08uRJ7d+/X99//72mTZvmcfvJkycrLi7ONTVq1MhfpcAPkkenKnl0aqDLAABcIPwWOJYtW6b8/HylpKQoPDxc9evX12uvvaaXXnrJ4/ZjxozRyZMnXVN6erq/SgEAAEHGb5dU8vPzFR7u3lxERITy8/M9bm+322W32/11eAAAEMT81sPRuXNnHTp0SPPmzZMkZWdna9y4cdw0CgAA/Bc44uLilJaWppkzZyo5OVlXXnmlmjVrpldffdVfhwA8i4kpngAAQcuvT6m0atVKS5Ys8WeTQNliY6WcnEBXAQDwgbfFAgAAyxE4AACA5QgcCG15eVLv3sVTXl6gqwEAeMHr6RHaCgulL788PQ8ACEr0cAAAAMsROAAAgOUIHAAAwHIEDgAAYDkCBwAAsByBAwAAWI7HYhHaYmMlYwJdBQDAB3o4AACA5QgcAADAcgQOhLa8PKlfv+KJoc0BIGgROBDaCgulBQuKJ4Y2B4CgReAAAACWI3AAAADLETgAAIDlCBwAAMByBA4AAGA5AgcAALAcQ5sjtMXESNnZp+cBAEGJwIHQZrMVv08FABDUuKQCAAAsR+BAaHM4pIEDiyeHI9DVAAC8IHAgtDmd0uzZxZPTGehqAABeEDgAAIDlCBwAAMByBA4AAGA5HosNoOTRqZKkPVN6B0Ud57pPoD/HuQqW8wEAFyJ6OAAAgOUIHAAAwHJcUkFoi4mRjhw5PQ8ACEoEDoQ2m02qUyfQVQAAfOCSCgAAsByBA6HN4ZCGDi2eGNocAIIWgQOhzemUZswonhjaHACCFoEDAABYjsABAAAsR+AAAACWI3AAAADLETgAAIDlCBwAAMByjDSK0BYdLe3efXoeABCUCBwIbWFhUnJyoKsAAPjAJRUAAGA5AgdCW36+NGpU8ZSfH+hqAABeEDgQ2goKpFdeKZ4KCgJdDQDACwIHAACwHIEDAABYjsABAAAsR+AAAACWI3AAAADLETgAAIDlGGkUoS06Wtq69fQ8ACAoETgQ2sLCpCuuCHQVAAAfuKQCAAAsRw8HQlt+vvTii8XzY8dKkZGBrQcA4BGBA6GtoECaOLF4ftQoAgcABCm/X1JZv369unTpoqSkJDVo0ECffPKJvw8BAABCjF97OLZv367bbrtNc+bMUY8ePZSfn6/ff//dn4cAAAAhyK89HOPGjdPw4cPVo0cPSVJkZKTq1q3rz0MAAIAQ5LfAkZeXp0WLFumhhx7yV5MAAOAC4bfA8fPPPys6OlrLly/XlVdeqUsuuUSPP/64MjMzPW7vcDiUmZnpNgEAgAuT3+7hyMrKktPp1MaNG7V+/XoVFBRowIABeuqppzRz5sxS20+ePFkTS54uwHmRPDpVkrRnSu8K71OiPPtWZh9/q8xnBQBYx289HPHx8SooKNCUKVMUFRWlatWqacKECfr88889bj9mzBidPHnSNaWnp/urFFxMoqKk9euLp6ioQFcDAPDCbz0cSUlJioyMVF5eniIiIiRJYWFhivLyR8But8tut/vr8LhYVakitWsX6CoAAD74rYcjKipKDz74oEaOHCmn0ymHw6Hx48fr/vvv99chAABAiPLrY7FTp05Vbm6uEhMTdcUVV6hZs2aaNGmSPw8BuMvPl15+uXjKzw90NQAAL/w68FfVqlX1z3/+059NAmUrKJCeeaZ4fsgQhjYHgCDF22IBAIDlCBwAAMByBA4AAGA5AgcAALAcgQMAAFiOwAEAACzn18digfMuKkpavvz0PAAgKBE4ENqqVJG6dQt0FQAAH7ikAgAALEcPB0JbQYH0zjvF8489Jv3/FwcCAIILgQOhLT9fGjaseH7gQAIHAAQpLqkAAADLETgAAIDlCBwAAMByBA4AAGA5AgcAALAcgQMAAFiOx2IR2ux2adGi0/MAgKBE4EBoCw+XevcOdBUAAB+4pAIAACxHDwdCW0GB9K9/Fc/fdx8jjQJAkCJwILTl50sPPVQ8368fgQMAghSXVAAAgOUIHAAAwHIEDgAAYDkCBwAAsByBAwAAWI7AAQAALMdjsQhtdrv04Yen5wEAQemiCxzJo1MlSXum+G847JI2/d2uv5xZXyge5+x23b7H4eHF42+Us42KnJ+z9/H0+c5u71x+voL95wgAzgWXVAAAgOUuuh4OXGCcTunTT4vnb7+9uMcDABB0+O2M0OZwSP37F89nZxM4ACBIcUkFAABYjsABAAAsR+AAAACWI3AAAADLETgAAIDlCBwAAMByPEOI0BYZKc2ceXoeABCUCBwIbRER0sCBga4CAOADl1QAAIDl6OFAaHM6pbS04vkbb2SkUQAIUvx2RmhzOKSbby6eZ2hzAAhaXFIBAACWI3AAAADLETgAAIDlCBwAAMByBA4AAGA5AgcAALAczxAitEVGSn/96+l5AEBQInAgtEVESEOHBroKAIAPXFIBAACWo4cDoa2wUFq1qnj+2mulKlUCWw8AwCMCB0JbXp7UvXvxfHa2FBsb2HoAAB5xSQUAAFiOwAEAACxH4AAAAJYjcAAAAMsROAAAgOUsCxxPPPGELrvsMquaBwAAIcSSx2LT09M1Z84cNWrUyIrmgdMiIqSXXjo9DwAISpYEjhEjRuihhx7S//3f/1nRPHBaZKQ0alSgqwAA+OD3Syqpqak6duyY+vbtW+Z2DodDmZmZbhMAALgw+bWH49ixY3ryySeVmpqqQ4cOlbnt5MmTNXHiRH8e/rxJHp0qSdozpXeF1pW33bKWn91ueWqp6PGsdPYxvX2fylNb8uhUhRUVqtXhXyVJW+s11a6Xbi2zHU/fL398n8raxtdnDsR5uFCcy783AOeX33o4jDEaNGiQUlJSynWz6JgxY3Ty5EnXlJ6e7q9ScBGxOwv0+Zyn9fmcp2V3FgS6HACAF37r4ZgyZYoKCgo0bNiwcm1vt9tlt9v9dXgAABDE/BY4pk+frpycHNWsWVOS5HQ6lZubqxo1amjDhg1q3ry5vw4FAABCjN8Cx8GDB92+XrFihQYPHqzt27f76xAAACBEMdIoAACwnGWBo1u3bvRuAAAASfRwAACA88CSkUaB88VZpYre6HSPax4AEJwIHAhpBVUi9Ebn+wJdBgDABy6pAAAAy9HDgZBmM0VqdrR4lNqd8bydGACCFYEDIS2qIF9L3xsqSbp8xIIAVwMA8IZLKgAAwHIEDgAAYDkCBwAAsByBAwAAWI7AAQAALEfgAAAAluOxWIQ0Z5Uq+tsf73DNAwCCE4EDIa2gSoQmd3840GUAAHzgkgoAALAcPRwIaTZTpMTMDEnS/up1AlwNAMAbAgdCWlRBvlb/7yBJDG0OAMGMSyoAAMByBA4AAGA5AgcAALAcgQMAAFiOwAEAACxH4AAAAJbjsViEtMKwKprzh96ueQBAcCJwIKTlh0fouRueCHQZAAAfuKQCAAAsRw8HQpsxqpWbKUk6Hl09wMUAALwhcCCkRRc49O2b90liaHMACGZcUgEAAJajh+McJI9OtWTbyrQXyFr8ebzzVVtZxzlf9Vakhj1Telf4uGfvU55ayrOPt2NX5HgALj70cAAAAMsROAAAgOUIHAAAwHIEDgAAYDluGkVIKwyrogWtrnPNAwCCE4EDIS0/PEL/1XtEoMsAAPjAJRUAAGA5ejgQ2oxRdIFDkpQbYQ9wMQAAbwgcCGnRBQ799HpfSQxtDgDBjEsqAADAcgQOAABgOQIHAACwHIEDAABYjsABAAAsR+AAAACW47FYhLSisDCltujkmgcABCcCB0KaIzxSQ28bE+gyAAA+8L+EAADAcgQOAABgOS6pIKRF5+cxtDkAhAB6OAAAgOUIHAAAwHIEDgAAYDkCBwAAsByBAwAAWI7AAQAALMdjsQhpRWFhWnbJNa55AEBwInAgpDnCI/VwvwmBLgMA4AP/SwgAACzn18CxbNkyderUSc2aNVPTpk315ptv+rN5AAAQovx6SeWzzz7Te++9pxYtWmjXrl3q0qWLmjdvrptuusmfhwFcovPztOmv90mS2g77V4CrAQB449cejmnTpqlFixaSpEsuuUT9+/fXsmXL/HkIoJSYAodiChyBLgMAUAZL7+HIyMhQXFyclYcAAAAhwLLAsX79ei1atEj33nuvx/UOh0OZmZluEwAAuDBZ8ljs/PnzlZKSotmzZ6tJkyYet5k8ebImTpxoxeH9Jnl0akD2DUS7gTp+SXt7pvT2Sw2B/v6UsKrGiux79vf2zH29fb8rcz4qwur2L0Z8TxEq/Bo4CgsLNXz4cC1fvlxpaWm66qqrvG47ZswYPf30066vMzMz1ahRI3+WAwAAgoRfA0dKSop27dqljRs3KjY2tsxt7Xa77Ha7Pw8PAACClN8CR15ent5++22lp6f7DBuAvxTZbFrXqJVrHgAQnPwWOHbt2qWioiJ17NjRbXmLFi2Ulpbmr8MAbhwRdt1975RAlwEA8MFvgaNly5YqKiryV3MAAOACwrtUAACA5QgcCGnR+XnaNP1ebZp+r6Lz8wJdDgDAC15Pj5BXO5dB4wAg2NHDAQAALEfgAAAAliNwAAAAyxE4AACA5QgcAADAcjylgpBWZLPp+4TmrnkAQHAicCCkOSLs6jPg9UCXAQDwgUsqAADAcgQOAABgOQIHQlpUQZ5Wv/2wVr/9sKIKGNocAIIV93AgpNmM1DDziGseABCc6OEAAACWI3AAAADLETgAAIDlCBwAAMByBA4AAGA5nlJBSDM26efajV3zAIDgROBASMuLiNINj8wIdBkAAB+4pAIAACxH4AAAAJYjcCCkRRXkack/hmjJP4YwtDkABDHu4UBIsxnp0mO/ueYBAMGJHg4AAGA5AgcAALAcgQMAAFiOwAEAACxnM8YExa12mZmZiouL08mTJ1W9enW/t588OtXt6z1TentcjtASnZ+nn17vK0m6fMQC5UZGBbgiawTq57XkuBU9dmXq9cdnPLNeb0raP5dtPS33ta2nGitSi7f2PLXra9+zv9cVOX5lnFmzt2N5q62sfSrSjr9/Nsrblr/aO5f2rT7P5f37zVMqCGnGJu2rXtc1DwAITgQOhLS8iCh1fuK9QJcBAPCBezgAAIDlCBwAAMByBA6ENHuBQ5/NHqHPZo+QvcAR6HIAAF5wDwdCWpgxuurQL655AEBwoocDAABYjsABAAAsR+AAAACWI3AAAADLETgAAIDleEoFIe9YtP/fvQMA8C8CB0JabmSU2j75fqDLAAD4wCUVAABgOQIHAACwHIEDIc1e4ND890dr/vujGdocAIIY93AgpIUZow7pW13zAIDgRA8HAACwHIEDAABYjsABAAAsR+AAAACWI3AAAADL8ZQKQt6pCHugSwAA+EDgQEjLjYxSy6c/DnQZAAAfuKQCAAAsR+AAAACW45IKQprdma+3P31RkvTE7WPlCI8McEUAAE8IHAhpYUVF+vOuja55AEBw4pIKAACwHIEDAABYzq+BIzc3V4899piSkpLUsGFDPfPMMzK8wRMAgIueXwPHyJEjVVRUpF9//VXbtm3T8uXL9de//tWfhwAAACHIb4EjOztbs2fP1ksvvaTw8HDFxcVpzJgxeu+99/x1CAAAEKL89pTKpk2b1KRJE9WqVcu1rH379tq6dasKCwtVpUoVt+0dDoccDofr65MnT0qSMjMz/VWSmyLHKbevS45z9nKElsL8PJX8xBQ6TqnIXJhPqgTq5/XMf48VOXZl6vXHZyzP74+S9s9lW0/LfW3rqcaK1OKtPU/t+tr37O+1Vb93zz5uWcfyVltZ+1SkHX//bJS3LX+1dy7tW32eS9r1eQuF8ZN58+aZP//5z27L8vPzjSRz7NixUtuPHz/eSGJiYmJiYmK6AKb09PQyc4LfejicTmepdFNYWChJstlspbYfM2aMnn76adfXRUVFOn78uGrXru1xewRWZmamGjVqpPT0dFWvXj3Q5aAcOGehh3MWmi7282aMUVZWlho0aFDmdn4LHLVq1dLRo0fdlmVkZCgqKkpxcXGltrfb7bLb3d/yWaNGDX+VA4tUr179ovwHFco4Z6GHcxaaLubz5unv/Nn8dtPo1VdfrR07dujEiROuZWvWrFH79u0VFsZwHwAAXMz8lgQSEhJ00003aezYsXI6nTp69KheeOEFpaSk+OsQAAAgRPm16+Hdd9/VgQMHVL9+fV1zzTV67LHHdNttt/nzEAgQu92u8ePHl7oMhuDFOQs9nLPQxHkrH5thKFAAAGAxbq4AAACWI3AAAADLETgAAIDlCBxwM2zYMMXFxSk5Odk17d27V5K0efNmdejQQUlJSWrZsqWWLl0a4GovbsYYzZkzRx07dnRb7us8vfHGG2rWrJkSExN1++2369ixY+ez7Iuat3NWtWpVJSYmuv7N9evXz2095yxwli1bpk6dOqlZs2Zq2rSp3nzzTde6PXv26Prrr1dSUpKaNWumuXPnuu07b948XX755WrYsKG6d++u3bt3n+/yg4ufRjbHBWLo0KHmueeeK7U8MzPTJCYmmqVLlxpjjFmxYoWJi4szBw8ePN8lwhizePFi06pVK9O0aVPTokUL13Jf5+mDDz4wf/jDH8yxY8eM0+k0gwcPNnfccUdAPsPFxts5M8aY2NhYs2vXLo/7cc4C68knnzTbt283xhjz66+/msTERLN48WLjdDpNq1atzMyZM40xxmzbts3UrFnTbN682RhjzJo1a0xycrLZu3evMcaYF154wbRt2zYQHyFoEDjgZujQoea1114rtfxvf/ubue2229yW3XLLLeaNN944X6XhDAsWLDCpqalm+fLlbn+8fJ2njh07moULF7rWZWRkmPDwcI/vO4J/eTtnxhQHjuPHj3vcj3MWXEaMGGFGjRpl0tLSTJs2bdzWDR8+3KSkpBhjjLnnnnvcfj8WFBSYWrVqme++++681htMuKSCUjwNMb927Vp16tTJbVn79u313XffnZ+i4ObOO+9Ur169Si0v6zw5nU5t3LjRbX18fLySk5P1ww8/WF7zxc7bOZOksLAwj0NDc86CT0ZGhuLi4nz+Tjx7fXh4uK6++uqL+ncmgQOljBkzRo0bN1b37t21ZMkSSdLBgwdVr149t+3q1q3LteQgU9Z5Onr0qAoLCxUfH+9xPQLHZrOpadOmuvTSSzVo0CAdOHBAkjhnQWb9+vVatGiR7r33Xp+/E/mdWRqBA26mT5+uQ4cOaffu3Ro1apT69++vTZs2eX0bMG/2DS5lnSen0ylJnMcgdOLECe3evVsbNmxQTEyMbrnlFhljOGdBZP78+br11ls1e/ZsNWnSxOfvRH5nlua3t8XiwlDyor0qVaqoV69euueee7Rw4UKvbwNOSEgIRJnwoqzzVLNmTRljdOLECdWqVavUegROyb+7uLg4TZs2TdWrV9euXbuUkJDAOQuwwsJCDR8+XMuXL1daWpquuuoqSWX/WztzfePGjT2uvxjRw4EyOZ1ORUZGqm3btlqzZo3bujVr1pR6vA+BVdZ5io2NVYsWLdzWHzx4UIcPH3b9EkXgFRUVqaioSJGRkZyzIJCSkqJdu3Zp48aNbt9zX78Tz16fn5+vTZs2qUOHDuen8GAUsNtVEZS++uorU1hYaIwxJi0tzdSsWdNs27bNpKenmxo1apivv/7aGGNMamqqSUpKMtnZ2YEs96J39hMPvs7Ta6+9Zq655hpz4sQJ43A4zIABA1x31eP8OPuc7dy50+zYscMYY0xeXp4ZMmSI6dKli2s95yxwcnNzTZUqVcyBAwdKrcvJyTH169c3//znP40xxmzYsMHUr1/fpKenG2OM+eSTT0xycrJJT083TqfTPPvss6WeILvYcEkFbl5//XU98MADiomJUePGjfXpp5+qZcuWkoqvYQ4ZMkTHjx9Xs2bN9MUXXyg2NjbAFeNMDRs2LPM8PfXUU9q/f78uvfRShYeHq0+fPpoyZUqAq764HT9+XPfcc49yc3Nlt9t13XXXacGCBa71nLPA2bVrl4qKikr15LZo0UJpaWn64osv9Oijj+rpp59WQkKC3n//fTVs2FCSdPvtt2vnzp364x//qKKiInXr1k3vvfdeID5G0OBtsQAAwHLcwwEAACxH4AAAAJYjcAAAAMsROAAAgOUIHAAAwHIEDgAAYDkCBwAAsByBAwAAWI7AAQAALEfgAAAAliNwAAAAyxE4AACA5f4fZQdW0cElupQAAAAASUVORK5CYII=",
|
|
"text/plain": [
|
|
"<Figure size 640x480 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"임계값 = 75초 -> 소실비율 = 36.93 %\n",
|
|
"임계값 = 90초 -> 소실비율 = 21.86 %\n",
|
|
"임계값 = 120초 -> 소실비율 = 8.04 %\n",
|
|
"임계값 = 180초 -> 소실비율 = 1.76 %\n",
|
|
"임계값 = 240초 -> 소실비율 = 0.00 %\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"\"\"\"\n",
|
|
"6. 이상 현시시간 분포\n",
|
|
"\n",
|
|
"이상 현시시간은 그림에서 나오는 것과 같은 분포를 가집니다.\n",
|
|
"정규분포는 아니고 카이제곱분포처럼 생겼습니다.\n",
|
|
"\n",
|
|
"신호이력을 수집하는 시간간격(threshold, 임계값)을 바꿔가면서 얼마만큼의 비율의 이상 현시시간이 소실되는지를 관찰했습니다.\n",
|
|
"임계값이 4분이면 아무런 소실이 없습니다.\n",
|
|
"그밖에 임계값을 2분 혹은 3분으로 하면서 8.04 %, 1.76 % 의 소실비율을 용인하는 것도 가능합니다.\n",
|
|
"\"\"\"\n",
|
|
"outliers = np.array(infos['outliers'])\n",
|
|
"Unique_values, Frequency = np.unique(outliers, return_counts=True)\n",
|
|
"mean = \"{:.2f}\".format(outliers.mean())\n",
|
|
"std = \"{:.2f}\".format(outliers.std())\n",
|
|
"# plt.figure(figsize=(20,10))\n",
|
|
"plt.hist(outliers, bins=int(outliers.max() - outliers.min() + 1))\n",
|
|
"plt.axvline(x=float(mean), color='r', linestyle='--')\n",
|
|
"plt.title(f'이상 현시시간 분포\\n 평균 : {mean}, 표준편차 : {std}')\n",
|
|
"plt.show()\n",
|
|
"plt.scatter(Unique_values, Frequency)\n",
|
|
"plt.axvline(x=float(mean), color='r', linestyle='--')\n",
|
|
"plt.title(f'이상 현시시간 분포\\n 평균 : {mean}, 표준편차 : {std}')\n",
|
|
"plt.close()\n",
|
|
"thresholds = [75, 90, 120, 180, 240]\n",
|
|
"for threshold in thresholds:\n",
|
|
" n_greater = [outlier for outlier in outliers if outlier > threshold]\n",
|
|
" print(f\"임계값 = {threshold}초 -> 소실비율 = \" + \"{:.2f}\".format(len(n_greater)/len(outliers)*100) + \" %\")\n",
|
|
" mean = \"{:.2f}\".format(outliers.mean())"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 15,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# k = 2 # context number\n",
|
|
"\n",
|
|
"# # 이상치 dataframe, 이상치를 포함한 주변에 대한 dataframe, 정상 dataframe\n",
|
|
"# infos['outlier_dfs'] = {}\n",
|
|
"# infos['context_dfs'] = {}\n",
|
|
"# infos['context_dfs_list'] = {}\n",
|
|
"# infos['normal_dfs'] = {}\n",
|
|
"# hstr_context = []\n",
|
|
"# hstr_outlier = []\n",
|
|
"# for inter_no in inter_nos:\n",
|
|
"# df = infos['hstr'][inter_no].sort_values(by='수집날짜시각').reset_index(drop=True)\n",
|
|
"# outliers = infos['unaccepted_durations'][inter_no]\n",
|
|
"# ring_columns = [col for col in df.columns if '현시시간' in col]\n",
|
|
"# outlier_indices = df[df[ring_columns].isin(outliers).any(axis=1)].index\n",
|
|
"# context_indices = [] # 각 아웃라이어 인덱스에 대해 위아래 네 행의 인덱스를 구합니다.\n",
|
|
"# context_indices_list = []\n",
|
|
"# for idx in outlier_indices:\n",
|
|
"# start_idx = max(idx - k, 0) # 데이터프레임의 시작을 넘어가지 않도록 합니다.\n",
|
|
"# end_idx = min(idx + k + 1, len(df)) # 데이터프레임의 끝을 넘어가지 않도록 합니다.\n",
|
|
"# context_indices.extend(range(start_idx, end_idx))\n",
|
|
"# context_indices_list.append(list(range(start_idx, end_idx)))\n",
|
|
"# context_indices = sorted(context_indices)\n",
|
|
"# normal_indices = sorted(set(df.index) - set(outlier_indices))\n",
|
|
"\n",
|
|
"# df['전이시간여부'] = False\n",
|
|
"# for _, row in infos['transition_times'][inter_no].iterrows():\n",
|
|
"# hour = row.시작시\n",
|
|
"# minute = row.시작분\n",
|
|
"# transition_range = ((df['수집날짜시각'].dt.hour==hour) & (df['수집날짜시각'].dt.minute >= minute) & (df['수집날짜시각'].dt.minute <= minute+20))\n",
|
|
"# df.loc[transition_range, '전이시간여부'] = True\n",
|
|
"\n",
|
|
"# df['이상치존재'] = False\n",
|
|
"# df.loc[outlier_indices, '이상치존재'] = True\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 16,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"k = 3 # context number\n",
|
|
"max_cycle = timeplans['주기시간'].max()\n",
|
|
"infos['missing_df'] = {}\n",
|
|
"\n",
|
|
"for inter_no in inter_nos:\n",
|
|
" df = infos['hstr'][inter_no].sort_values(by='수집날짜시각').reset_index(drop=True)\n",
|
|
" df['시간차이'] = df['수집날짜시각'].diff().dt.total_seconds()\n",
|
|
" df.dropna(inplace=True)\n",
|
|
" df = df.reset_index(drop=True)\n",
|
|
" missed_indices = df[df['시간차이'] > max_cycle + 10].index\n",
|
|
" df['결측여부'] = False\n",
|
|
" df.loc[missed_indices, '결측여부'] = True\n",
|
|
"\n",
|
|
" df['전이시간여부'] = False\n",
|
|
" for _, row in infos['transition_times'][inter_no].iterrows():\n",
|
|
" hour = row.시작시\n",
|
|
" minute = row.시작분\n",
|
|
" transition_range = ((df['수집날짜시각'].dt.hour==hour) & (df['수집날짜시각'].dt.minute >= minute) & (df['수집날짜시각'].dt.minute <= minute+20))\n",
|
|
" df.loc[transition_range, '전이시간여부'] = True\n",
|
|
"\n",
|
|
" ring_columns = [col for col in df.columns if '현시시간' in col]\n",
|
|
" df['주기일치'] = (df['주기시간'].astype(float) == df[ring_columns].sum(axis=1)/2)\n",
|
|
"\n",
|
|
" outliers = infos['unaccepted_durations'][inter_no]\n",
|
|
" df['이상치존재'] = False\n",
|
|
" df.loc[outlier_indices, '이상치존재'] = True\n",
|
|
"\n",
|
|
" infos['missing_df'][inter_no] = missed_indices\n",
|
|
" context_indices = []\n",
|
|
" for idx in missed_indices:\n",
|
|
" start_idx = max(idx - k, 0) # 데이터프레임의 시작을 넘어가지 않도록 합니다.\n",
|
|
" end_idx = min(idx + k + 1, len(df)) # 데이터프레임의 끝을 넘어가지 않도록 합니다.\n",
|
|
" context_indices.extend(range(start_idx, end_idx))\n",
|
|
" infos['missing_df'][inter_no] = df.iloc[context_indices].drop_duplicates()\n",
|
|
"# for inter_no in inter_nos:\n",
|
|
"# print(inter_no)\n",
|
|
"# with pd.option_context('display.max_rows', None, 'display.max_columns', None):\n",
|
|
"# display(infos['missing_df'][inter_no])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 30,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"infos['missing_dfs'] = {}\n",
|
|
"for inter_no in inter_nos:\n",
|
|
" DF = infos['missing_df'][inter_no]\n",
|
|
" dfs = []\n",
|
|
" temp_indices = []\n",
|
|
"\n",
|
|
" for i in DF.index:\n",
|
|
" if not temp_indices or i == temp_indices[-1] + 1: # 첫 인덱스이거나 이전 인덱스와 연속적인 경우\n",
|
|
" temp_indices.append(i)\n",
|
|
" else: # 연속이 끊긴 경우\n",
|
|
" dfs.append(DF.loc[temp_indices]) # 현재까지의 임시 데이터프레임을 결과 리스트에 추가\n",
|
|
" temp_indices = [i] # 새로운 임시 데이터프레임 시작\n",
|
|
"\n",
|
|
" if temp_indices:\n",
|
|
" dfs.append(DF.loc[temp_indices])\n",
|
|
" infos['missing_dfs'][inter_no] = dfs"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 23,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>현장교차로ID</th>\n",
|
|
" <th>수집날짜시각</th>\n",
|
|
" <th>주기시간</th>\n",
|
|
" <th>옵셋시간</th>\n",
|
|
" <th>A링1현시시간</th>\n",
|
|
" <th>A링2현시시간</th>\n",
|
|
" <th>A링3현시시간</th>\n",
|
|
" <th>A링4현시시간</th>\n",
|
|
" <th>A링5현시시간</th>\n",
|
|
" <th>A링6현시시간</th>\n",
|
|
" <th>B링1현시시간</th>\n",
|
|
" <th>B링2현시시간</th>\n",
|
|
" <th>B링3현시시간</th>\n",
|
|
" <th>B링4현시시간</th>\n",
|
|
" <th>B링5현시시간</th>\n",
|
|
" <th>B링6현시시간</th>\n",
|
|
" <th>시간차이</th>\n",
|
|
" <th>결측여부</th>\n",
|
|
" <th>전이시간여부</th>\n",
|
|
" <th>주기일치</th>\n",
|
|
" <th>이상치존재</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>197</th>\n",
|
|
" <td>5031</td>\n",
|
|
" <td>2023-12-12 08:05:40</td>\n",
|
|
" <td>180</td>\n",
|
|
" <td>161</td>\n",
|
|
" <td>49</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>34</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>49</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>34</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>180.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>198</th>\n",
|
|
" <td>5031</td>\n",
|
|
" <td>2023-12-12 08:08:41</td>\n",
|
|
" <td>180</td>\n",
|
|
" <td>161</td>\n",
|
|
" <td>49</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>34</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>49</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>34</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>181.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>199</th>\n",
|
|
" <td>5031</td>\n",
|
|
" <td>2023-12-12 08:11:41</td>\n",
|
|
" <td>180</td>\n",
|
|
" <td>161</td>\n",
|
|
" <td>49</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>34</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>49</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>34</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>180.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>200</th>\n",
|
|
" <td>5031</td>\n",
|
|
" <td>2023-12-12 09:02:41</td>\n",
|
|
" <td>180</td>\n",
|
|
" <td>161</td>\n",
|
|
" <td>49</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>34</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>49</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>34</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>3060.0</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>201</th>\n",
|
|
" <td>5031</td>\n",
|
|
" <td>2023-12-12 09:05:41</td>\n",
|
|
" <td>180</td>\n",
|
|
" <td>161</td>\n",
|
|
" <td>49</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>34</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>49</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>34</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>180.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>202</th>\n",
|
|
" <td>5031</td>\n",
|
|
" <td>2023-12-12 09:08:41</td>\n",
|
|
" <td>180</td>\n",
|
|
" <td>161</td>\n",
|
|
" <td>49</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>34</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>49</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>34</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>180.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>203</th>\n",
|
|
" <td>5031</td>\n",
|
|
" <td>2023-12-12 09:11:41</td>\n",
|
|
" <td>180</td>\n",
|
|
" <td>161</td>\n",
|
|
" <td>49</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>34</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>49</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>34</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>180.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" 현장교차로ID 수집날짜시각 주기시간 옵셋시간 A링1현시시간 A링2현시시간 A링3현시시간 \\\n",
|
|
"197 5031 2023-12-12 08:05:40 180 161 49 35 27 \n",
|
|
"198 5031 2023-12-12 08:08:41 180 161 49 35 27 \n",
|
|
"199 5031 2023-12-12 08:11:41 180 161 49 35 27 \n",
|
|
"200 5031 2023-12-12 09:02:41 180 161 49 35 27 \n",
|
|
"201 5031 2023-12-12 09:05:41 180 161 49 35 27 \n",
|
|
"202 5031 2023-12-12 09:08:41 180 161 49 35 27 \n",
|
|
"203 5031 2023-12-12 09:11:41 180 161 49 35 27 \n",
|
|
"\n",
|
|
" A링4현시시간 A링5현시시간 A링6현시시간 B링1현시시간 B링2현시시간 B링3현시시간 B링4현시시간 B링5현시시간 \\\n",
|
|
"197 34 35 0 49 35 27 34 35 \n",
|
|
"198 34 35 0 49 35 27 34 35 \n",
|
|
"199 34 35 0 49 35 27 34 35 \n",
|
|
"200 34 35 0 49 35 27 34 35 \n",
|
|
"201 34 35 0 49 35 27 34 35 \n",
|
|
"202 34 35 0 49 35 27 34 35 \n",
|
|
"203 34 35 0 49 35 27 34 35 \n",
|
|
"\n",
|
|
" B링6현시시간 시간차이 결측여부 전이시간여부 주기일치 이상치존재 \n",
|
|
"197 0 180.0 False False True False \n",
|
|
"198 0 181.0 False False True False \n",
|
|
"199 0 180.0 False False True False \n",
|
|
"200 0 3060.0 True False True False \n",
|
|
"201 0 180.0 False False True False \n",
|
|
"202 0 180.0 False False True False \n",
|
|
"203 0 180.0 False False True False "
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"4141.0\n",
|
|
"1.0\n",
|
|
"{(6, 0): 150, (6, 30): 160, (7, 0): 180, (9, 30): 160, (16, 0): 170, (17, 0): 180, (20, 30): 170, (21, 30): 160, (22, 30): 150, (23, 30): 140}\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"inter_no = 5031\n",
|
|
"j = 1\n",
|
|
"cycle = 180\n",
|
|
"with pd.option_context('display.max_rows', None, 'display.max_columns', None):\n",
|
|
" display(infos['missing_dfs'][inter_no][j])\n",
|
|
"sum_of_durations = infos['missing_dfs'][inter_no][j].시간차이.sum()\n",
|
|
"print(sum_of_durations)\n",
|
|
"print(sum_of_durations % cycle)\n",
|
|
"print(infos['cycles'][inter_no])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 26,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>현장교차로ID</th>\n",
|
|
" <th>수집날짜시각</th>\n",
|
|
" <th>주기시간</th>\n",
|
|
" <th>옵셋시간</th>\n",
|
|
" <th>A링1현시시간</th>\n",
|
|
" <th>A링2현시시간</th>\n",
|
|
" <th>A링3현시시간</th>\n",
|
|
" <th>A링4현시시간</th>\n",
|
|
" <th>A링5현시시간</th>\n",
|
|
" <th>A링6현시시간</th>\n",
|
|
" <th>B링1현시시간</th>\n",
|
|
" <th>B링2현시시간</th>\n",
|
|
" <th>B링3현시시간</th>\n",
|
|
" <th>B링4현시시간</th>\n",
|
|
" <th>B링5현시시간</th>\n",
|
|
" <th>B링6현시시간</th>\n",
|
|
" <th>시간차이</th>\n",
|
|
" <th>결측여부</th>\n",
|
|
" <th>전이시간여부</th>\n",
|
|
" <th>주기일치</th>\n",
|
|
" <th>이상치존재</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>774</th>\n",
|
|
" <td>5031</td>\n",
|
|
" <td>2023-12-13 10:29:00</td>\n",
|
|
" <td>160</td>\n",
|
|
" <td>140</td>\n",
|
|
" <td>49</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>29</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>49</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>29</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>160.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>775</th>\n",
|
|
" <td>5031</td>\n",
|
|
" <td>2023-12-13 10:31:40</td>\n",
|
|
" <td>160</td>\n",
|
|
" <td>140</td>\n",
|
|
" <td>49</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>29</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>49</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>29</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>160.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>776</th>\n",
|
|
" <td>5031</td>\n",
|
|
" <td>2023-12-13 10:34:20</td>\n",
|
|
" <td>160</td>\n",
|
|
" <td>140</td>\n",
|
|
" <td>49</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>29</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>49</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>29</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>160.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>777</th>\n",
|
|
" <td>5031</td>\n",
|
|
" <td>2023-12-13 10:39:07</td>\n",
|
|
" <td>31</td>\n",
|
|
" <td>107</td>\n",
|
|
" <td>49</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>156</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>49</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>156</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>287.0</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>778</th>\n",
|
|
" <td>5031</td>\n",
|
|
" <td>2023-12-13 10:41:27</td>\n",
|
|
" <td>140</td>\n",
|
|
" <td>87</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>16</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>25</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>16</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>25</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>140.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>779</th>\n",
|
|
" <td>5031</td>\n",
|
|
" <td>2023-12-13 10:45:00</td>\n",
|
|
" <td>213</td>\n",
|
|
" <td>140</td>\n",
|
|
" <td>69</td>\n",
|
|
" <td>31</td>\n",
|
|
" <td>31</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>39</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>69</td>\n",
|
|
" <td>31</td>\n",
|
|
" <td>31</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>39</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>213.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>780</th>\n",
|
|
" <td>5031</td>\n",
|
|
" <td>2023-12-13 10:47:40</td>\n",
|
|
" <td>160</td>\n",
|
|
" <td>140</td>\n",
|
|
" <td>49</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>29</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>49</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>29</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>160.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" 현장교차로ID 수집날짜시각 주기시간 옵셋시간 A링1현시시간 A링2현시시간 A링3현시시간 \\\n",
|
|
"774 5031 2023-12-13 10:29:00 160 140 49 20 27 \n",
|
|
"775 5031 2023-12-13 10:31:40 160 140 49 20 27 \n",
|
|
"776 5031 2023-12-13 10:34:20 160 140 49 20 27 \n",
|
|
"777 5031 2023-12-13 10:39:07 31 107 49 20 27 \n",
|
|
"778 5031 2023-12-13 10:41:27 140 87 37 16 27 \n",
|
|
"779 5031 2023-12-13 10:45:00 213 140 69 31 31 \n",
|
|
"780 5031 2023-12-13 10:47:40 160 140 49 20 27 \n",
|
|
"\n",
|
|
" A링4현시시간 A링5현시시간 A링6현시시간 B링1현시시간 B링2현시시간 B링3현시시간 B링4현시시간 B링5현시시간 \\\n",
|
|
"774 29 35 0 49 20 27 29 35 \n",
|
|
"775 29 35 0 49 20 27 29 35 \n",
|
|
"776 29 35 0 49 20 27 29 35 \n",
|
|
"777 156 35 0 49 20 27 156 35 \n",
|
|
"778 25 35 0 37 16 27 25 35 \n",
|
|
"779 43 39 0 69 31 31 43 39 \n",
|
|
"780 29 35 0 49 20 27 29 35 \n",
|
|
"\n",
|
|
" B링6현시시간 시간차이 결측여부 전이시간여부 주기일치 이상치존재 \n",
|
|
"774 0 160.0 False False True False \n",
|
|
"775 0 160.0 False False True False \n",
|
|
"776 0 160.0 False False True False \n",
|
|
"777 0 287.0 True False False False \n",
|
|
"778 0 140.0 False False True False \n",
|
|
"779 0 213.0 False False True False \n",
|
|
"780 0 160.0 False False True False "
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"1280.0\n",
|
|
"0.0\n",
|
|
"{(6, 0): 150, (6, 30): 160, (7, 0): 180, (9, 30): 160, (16, 0): 170, (17, 0): 180, (20, 30): 170, (21, 30): 160, (22, 30): 150, (23, 30): 140}\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"inter_no = 5031\n",
|
|
"j = 3\n",
|
|
"cycle = 160\n",
|
|
"with pd.option_context('display.max_rows', None, 'display.max_columns', None):\n",
|
|
" display(infos['missing_dfs'][inter_no][j])\n",
|
|
"sum_of_durations = infos['missing_dfs'][inter_no][j].시간차이.sum()\n",
|
|
"print(sum_of_durations)\n",
|
|
"print(sum_of_durations % cycle)\n",
|
|
"print(infos['cycles'][inter_no])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 29,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>현장교차로ID</th>\n",
|
|
" <th>수집날짜시각</th>\n",
|
|
" <th>주기시간</th>\n",
|
|
" <th>옵셋시간</th>\n",
|
|
" <th>A링1현시시간</th>\n",
|
|
" <th>A링2현시시간</th>\n",
|
|
" <th>A링3현시시간</th>\n",
|
|
" <th>A링4현시시간</th>\n",
|
|
" <th>A링5현시시간</th>\n",
|
|
" <th>A링6현시시간</th>\n",
|
|
" <th>B링1현시시간</th>\n",
|
|
" <th>B링2현시시간</th>\n",
|
|
" <th>B링3현시시간</th>\n",
|
|
" <th>B링4현시시간</th>\n",
|
|
" <th>B링5현시시간</th>\n",
|
|
" <th>B링6현시시간</th>\n",
|
|
" <th>시간차이</th>\n",
|
|
" <th>결측여부</th>\n",
|
|
" <th>전이시간여부</th>\n",
|
|
" <th>주기일치</th>\n",
|
|
" <th>이상치존재</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>908</th>\n",
|
|
" <td>5031</td>\n",
|
|
" <td>2023-12-13 17:59:38</td>\n",
|
|
" <td>180</td>\n",
|
|
" <td>159</td>\n",
|
|
" <td>65</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>33</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>65</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>33</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>180.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>909</th>\n",
|
|
" <td>5031</td>\n",
|
|
" <td>2023-12-13 18:02:38</td>\n",
|
|
" <td>180</td>\n",
|
|
" <td>159</td>\n",
|
|
" <td>65</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>33</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>65</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>33</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>180.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>910</th>\n",
|
|
" <td>5031</td>\n",
|
|
" <td>2023-12-13 18:05:38</td>\n",
|
|
" <td>180</td>\n",
|
|
" <td>159</td>\n",
|
|
" <td>65</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>33</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>65</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>33</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>180.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>True</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>911</th>\n",
|
|
" <td>5031</td>\n",
|
|
" <td>2023-12-13 18:10:47</td>\n",
|
|
" <td>52</td>\n",
|
|
" <td>107</td>\n",
|
|
" <td>65</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>161</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>65</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>161</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>309.0</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>912</th>\n",
|
|
" <td>5031</td>\n",
|
|
" <td>2023-12-13 18:13:07</td>\n",
|
|
" <td>140</td>\n",
|
|
" <td>67</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>16</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>25</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>16</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>25</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>140.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>True</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>913</th>\n",
|
|
" <td>5031</td>\n",
|
|
" <td>2023-12-13 18:17:06</td>\n",
|
|
" <td>239</td>\n",
|
|
" <td>126</td>\n",
|
|
" <td>90</td>\n",
|
|
" <td>31</td>\n",
|
|
" <td>31</td>\n",
|
|
" <td>48</td>\n",
|
|
" <td>39</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>90</td>\n",
|
|
" <td>31</td>\n",
|
|
" <td>31</td>\n",
|
|
" <td>48</td>\n",
|
|
" <td>39</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>239.0</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>914</th>\n",
|
|
" <td>5031</td>\n",
|
|
" <td>2023-12-13 18:20:39</td>\n",
|
|
" <td>213</td>\n",
|
|
" <td>159</td>\n",
|
|
" <td>78</td>\n",
|
|
" <td>25</td>\n",
|
|
" <td>31</td>\n",
|
|
" <td>40</td>\n",
|
|
" <td>39</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>78</td>\n",
|
|
" <td>25</td>\n",
|
|
" <td>31</td>\n",
|
|
" <td>40</td>\n",
|
|
" <td>39</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>213.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>915</th>\n",
|
|
" <td>5031</td>\n",
|
|
" <td>2023-12-13 18:23:39</td>\n",
|
|
" <td>180</td>\n",
|
|
" <td>160</td>\n",
|
|
" <td>65</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>33</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>65</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>33</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>180.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>916</th>\n",
|
|
" <td>5031</td>\n",
|
|
" <td>2023-12-13 18:26:38</td>\n",
|
|
" <td>179</td>\n",
|
|
" <td>159</td>\n",
|
|
" <td>65</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>32</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>65</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>32</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>179.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" 현장교차로ID 수집날짜시각 주기시간 옵셋시간 A링1현시시간 A링2현시시간 A링3현시시간 \\\n",
|
|
"908 5031 2023-12-13 17:59:38 180 159 65 20 27 \n",
|
|
"909 5031 2023-12-13 18:02:38 180 159 65 20 27 \n",
|
|
"910 5031 2023-12-13 18:05:38 180 159 65 20 27 \n",
|
|
"911 5031 2023-12-13 18:10:47 52 107 65 20 27 \n",
|
|
"912 5031 2023-12-13 18:13:07 140 67 37 16 27 \n",
|
|
"913 5031 2023-12-13 18:17:06 239 126 90 31 31 \n",
|
|
"914 5031 2023-12-13 18:20:39 213 159 78 25 31 \n",
|
|
"915 5031 2023-12-13 18:23:39 180 160 65 20 27 \n",
|
|
"916 5031 2023-12-13 18:26:38 179 159 65 20 27 \n",
|
|
"\n",
|
|
" A링4현시시간 A링5현시시간 A링6현시시간 B링1현시시간 B링2현시시간 B링3현시시간 B링4현시시간 B링5현시시간 \\\n",
|
|
"908 33 35 0 65 20 27 33 35 \n",
|
|
"909 33 35 0 65 20 27 33 35 \n",
|
|
"910 33 35 0 65 20 27 33 35 \n",
|
|
"911 161 35 0 65 20 27 161 35 \n",
|
|
"912 25 35 0 37 16 27 25 35 \n",
|
|
"913 48 39 0 90 31 31 48 39 \n",
|
|
"914 40 39 0 78 25 31 40 39 \n",
|
|
"915 33 35 0 65 20 27 33 35 \n",
|
|
"916 32 35 0 65 20 27 32 35 \n",
|
|
"\n",
|
|
" B링6현시시간 시간차이 결측여부 전이시간여부 주기일치 이상치존재 \n",
|
|
"908 0 180.0 False False True False \n",
|
|
"909 0 180.0 False False True False \n",
|
|
"910 0 180.0 False False True True \n",
|
|
"911 0 309.0 True False False True \n",
|
|
"912 0 140.0 False False True True \n",
|
|
"913 0 239.0 True False True False \n",
|
|
"914 0 213.0 False False True False \n",
|
|
"915 0 180.0 False False True False \n",
|
|
"916 0 179.0 False False True False "
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"1800.0\n",
|
|
"0.0\n",
|
|
"{(6, 0): 150, (6, 30): 160, (7, 0): 180, (9, 30): 160, (16, 0): 170, (17, 0): 180, (20, 30): 170, (21, 30): 160, (22, 30): 150, (23, 30): 140}\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"inter_no = 5031\n",
|
|
"j = 5\n",
|
|
"cycle = 180\n",
|
|
"with pd.option_context('display.max_rows', None, 'display.max_columns', None):\n",
|
|
" display(infos['missing_dfs'][inter_no][j])\n",
|
|
"sum_of_durations = infos['missing_dfs'][inter_no][j].시간차이.sum()\n",
|
|
"print(sum_of_durations)\n",
|
|
"print(sum_of_durations % cycle)\n",
|
|
"print(infos['cycles'][inter_no])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 36,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>현장교차로ID</th>\n",
|
|
" <th>수집날짜시각</th>\n",
|
|
" <th>주기시간</th>\n",
|
|
" <th>옵셋시간</th>\n",
|
|
" <th>A링1현시시간</th>\n",
|
|
" <th>A링2현시시간</th>\n",
|
|
" <th>A링3현시시간</th>\n",
|
|
" <th>A링4현시시간</th>\n",
|
|
" <th>A링5현시시간</th>\n",
|
|
" <th>A링6현시시간</th>\n",
|
|
" <th>B링1현시시간</th>\n",
|
|
" <th>B링2현시시간</th>\n",
|
|
" <th>B링3현시시간</th>\n",
|
|
" <th>B링4현시시간</th>\n",
|
|
" <th>B링5현시시간</th>\n",
|
|
" <th>B링6현시시간</th>\n",
|
|
" <th>시간차이</th>\n",
|
|
" <th>결측여부</th>\n",
|
|
" <th>전이시간여부</th>\n",
|
|
" <th>주기일치</th>\n",
|
|
" <th>이상치존재</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>200</th>\n",
|
|
" <td>5032</td>\n",
|
|
" <td>2023-12-12 08:08:15</td>\n",
|
|
" <td>170</td>\n",
|
|
" <td>55</td>\n",
|
|
" <td>24</td>\n",
|
|
" <td>61</td>\n",
|
|
" <td>24</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>24</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>24</td>\n",
|
|
" <td>61</td>\n",
|
|
" <td>24</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>24</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>170.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>201</th>\n",
|
|
" <td>5032</td>\n",
|
|
" <td>2023-12-12 08:11:05</td>\n",
|
|
" <td>170</td>\n",
|
|
" <td>55</td>\n",
|
|
" <td>24</td>\n",
|
|
" <td>61</td>\n",
|
|
" <td>24</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>24</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>24</td>\n",
|
|
" <td>61</td>\n",
|
|
" <td>24</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>24</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>170.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>202</th>\n",
|
|
" <td>5032</td>\n",
|
|
" <td>2023-12-12 08:13:55</td>\n",
|
|
" <td>170</td>\n",
|
|
" <td>55</td>\n",
|
|
" <td>24</td>\n",
|
|
" <td>61</td>\n",
|
|
" <td>24</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>24</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>24</td>\n",
|
|
" <td>61</td>\n",
|
|
" <td>24</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>24</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>170.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>203</th>\n",
|
|
" <td>5032</td>\n",
|
|
" <td>2023-12-12 09:02:04</td>\n",
|
|
" <td>169</td>\n",
|
|
" <td>55</td>\n",
|
|
" <td>24</td>\n",
|
|
" <td>61</td>\n",
|
|
" <td>24</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>23</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>24</td>\n",
|
|
" <td>61</td>\n",
|
|
" <td>24</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>23</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>2889.0</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>204</th>\n",
|
|
" <td>5032</td>\n",
|
|
" <td>2023-12-12 09:04:54</td>\n",
|
|
" <td>170</td>\n",
|
|
" <td>55</td>\n",
|
|
" <td>24</td>\n",
|
|
" <td>61</td>\n",
|
|
" <td>24</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>24</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>24</td>\n",
|
|
" <td>61</td>\n",
|
|
" <td>24</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>24</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>170.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>205</th>\n",
|
|
" <td>5032</td>\n",
|
|
" <td>2023-12-12 09:07:44</td>\n",
|
|
" <td>170</td>\n",
|
|
" <td>55</td>\n",
|
|
" <td>24</td>\n",
|
|
" <td>61</td>\n",
|
|
" <td>24</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>24</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>24</td>\n",
|
|
" <td>61</td>\n",
|
|
" <td>24</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>24</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>170.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>206</th>\n",
|
|
" <td>5032</td>\n",
|
|
" <td>2023-12-12 09:10:34</td>\n",
|
|
" <td>170</td>\n",
|
|
" <td>55</td>\n",
|
|
" <td>24</td>\n",
|
|
" <td>61</td>\n",
|
|
" <td>24</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>24</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>24</td>\n",
|
|
" <td>61</td>\n",
|
|
" <td>24</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>24</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>170.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" 현장교차로ID 수집날짜시각 주기시간 옵셋시간 A링1현시시간 A링2현시시간 A링3현시시간 \\\n",
|
|
"200 5032 2023-12-12 08:08:15 170 55 24 61 24 \n",
|
|
"201 5032 2023-12-12 08:11:05 170 55 24 61 24 \n",
|
|
"202 5032 2023-12-12 08:13:55 170 55 24 61 24 \n",
|
|
"203 5032 2023-12-12 09:02:04 169 55 24 61 24 \n",
|
|
"204 5032 2023-12-12 09:04:54 170 55 24 61 24 \n",
|
|
"205 5032 2023-12-12 09:07:44 170 55 24 61 24 \n",
|
|
"206 5032 2023-12-12 09:10:34 170 55 24 61 24 \n",
|
|
"\n",
|
|
" A링4현시시간 A링5현시시간 A링6현시시간 B링1현시시간 B링2현시시간 B링3현시시간 B링4현시시간 B링5현시시간 \\\n",
|
|
"200 37 24 0 24 61 24 37 24 \n",
|
|
"201 37 24 0 24 61 24 37 24 \n",
|
|
"202 37 24 0 24 61 24 37 24 \n",
|
|
"203 37 23 0 24 61 24 37 23 \n",
|
|
"204 37 24 0 24 61 24 37 24 \n",
|
|
"205 37 24 0 24 61 24 37 24 \n",
|
|
"206 37 24 0 24 61 24 37 24 \n",
|
|
"\n",
|
|
" B링6현시시간 시간차이 결측여부 전이시간여부 주기일치 이상치존재 \n",
|
|
"200 0 170.0 False False True False \n",
|
|
"201 0 170.0 False False True False \n",
|
|
"202 0 170.0 False False True False \n",
|
|
"203 0 2889.0 True False True False \n",
|
|
"204 0 170.0 False False True False \n",
|
|
"205 0 170.0 False False True False \n",
|
|
"206 0 170.0 False False True False "
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"3909.0\n",
|
|
"169.0\n",
|
|
"{(6, 0): 150, (6, 30): 160, (7, 0): 170, (9, 30): 170, (16, 0): 170, (17, 0): 180, (20, 30): 170, (21, 30): 160, (22, 30): 150, (23, 30): 140}\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"inter_no = 5032\n",
|
|
"j = 0\n",
|
|
"cycle = 170\n",
|
|
"with pd.option_context('display.max_rows', None, 'display.max_columns', None):\n",
|
|
" display(infos['missing_dfs'][inter_no][j])\n",
|
|
"sum_of_durations = infos['missing_dfs'][inter_no][j].시간차이.sum()\n",
|
|
"print(sum_of_durations)\n",
|
|
"print(sum_of_durations % cycle)\n",
|
|
"print(infos['cycles'][inter_no])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 41,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>현장교차로ID</th>\n",
|
|
" <th>수집날짜시각</th>\n",
|
|
" <th>주기시간</th>\n",
|
|
" <th>옵셋시간</th>\n",
|
|
" <th>A링1현시시간</th>\n",
|
|
" <th>A링2현시시간</th>\n",
|
|
" <th>A링3현시시간</th>\n",
|
|
" <th>A링4현시시간</th>\n",
|
|
" <th>A링5현시시간</th>\n",
|
|
" <th>A링6현시시간</th>\n",
|
|
" <th>B링1현시시간</th>\n",
|
|
" <th>B링2현시시간</th>\n",
|
|
" <th>B링3현시시간</th>\n",
|
|
" <th>B링4현시시간</th>\n",
|
|
" <th>B링5현시시간</th>\n",
|
|
" <th>B링6현시시간</th>\n",
|
|
" <th>시간차이</th>\n",
|
|
" <th>결측여부</th>\n",
|
|
" <th>전이시간여부</th>\n",
|
|
" <th>주기일치</th>\n",
|
|
" <th>이상치존재</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>653</th>\n",
|
|
" <td>5032</td>\n",
|
|
" <td>2023-12-13 05:09:01</td>\n",
|
|
" <td>140</td>\n",
|
|
" <td>61</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>140.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>654</th>\n",
|
|
" <td>5032</td>\n",
|
|
" <td>2023-12-13 05:11:20</td>\n",
|
|
" <td>139</td>\n",
|
|
" <td>60</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>19</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>19</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>139.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>655</th>\n",
|
|
" <td>5032</td>\n",
|
|
" <td>2023-12-13 05:13:40</td>\n",
|
|
" <td>141</td>\n",
|
|
" <td>60</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>38</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>38</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>140.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>656</th>\n",
|
|
" <td>5032</td>\n",
|
|
" <td>2023-12-13 05:17:53</td>\n",
|
|
" <td>252</td>\n",
|
|
" <td>32</td>\n",
|
|
" <td>132</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>132</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>20</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>253.0</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>657</th>\n",
|
|
" <td>5032</td>\n",
|
|
" <td>2023-12-13 05:19:50</td>\n",
|
|
" <td>117</td>\n",
|
|
" <td>9</td>\n",
|
|
" <td>18</td>\n",
|
|
" <td>24</td>\n",
|
|
" <td>19</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>19</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>18</td>\n",
|
|
" <td>24</td>\n",
|
|
" <td>19</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>19</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>117.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>658</th>\n",
|
|
" <td>5032</td>\n",
|
|
" <td>2023-12-13 05:22:55</td>\n",
|
|
" <td>186</td>\n",
|
|
" <td>55</td>\n",
|
|
" <td>30</td>\n",
|
|
" <td>60</td>\n",
|
|
" <td>30</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>29</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>30</td>\n",
|
|
" <td>60</td>\n",
|
|
" <td>30</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>29</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>185.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>659</th>\n",
|
|
" <td>5032</td>\n",
|
|
" <td>2023-12-13 05:25:20</td>\n",
|
|
" <td>145</td>\n",
|
|
" <td>60</td>\n",
|
|
" <td>21</td>\n",
|
|
" <td>45</td>\n",
|
|
" <td>21</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>21</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>21</td>\n",
|
|
" <td>45</td>\n",
|
|
" <td>21</td>\n",
|
|
" <td>37</td>\n",
|
|
" <td>21</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>145.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" 현장교차로ID 수집날짜시각 주기시간 옵셋시간 A링1현시시간 A링2현시시간 A링3현시시간 \\\n",
|
|
"653 5032 2023-12-13 05:09:01 140 61 20 43 20 \n",
|
|
"654 5032 2023-12-13 05:11:20 139 60 20 43 20 \n",
|
|
"655 5032 2023-12-13 05:13:40 141 60 20 43 20 \n",
|
|
"656 5032 2023-12-13 05:17:53 252 32 132 43 20 \n",
|
|
"657 5032 2023-12-13 05:19:50 117 9 18 24 19 \n",
|
|
"658 5032 2023-12-13 05:22:55 186 55 30 60 30 \n",
|
|
"659 5032 2023-12-13 05:25:20 145 60 21 45 21 \n",
|
|
"\n",
|
|
" A링4현시시간 A링5현시시간 A링6현시시간 B링1현시시간 B링2현시시간 B링3현시시간 B링4현시시간 B링5현시시간 \\\n",
|
|
"653 37 20 0 20 43 20 37 20 \n",
|
|
"654 37 19 0 20 43 20 37 19 \n",
|
|
"655 38 20 0 20 43 20 38 20 \n",
|
|
"656 37 20 0 132 43 20 37 20 \n",
|
|
"657 37 19 0 18 24 19 37 19 \n",
|
|
"658 37 29 0 30 60 30 37 29 \n",
|
|
"659 37 21 0 21 45 21 37 21 \n",
|
|
"\n",
|
|
" B링6현시시간 시간차이 결측여부 전이시간여부 주기일치 이상치존재 \n",
|
|
"653 0 140.0 False False True False \n",
|
|
"654 0 139.0 False False True False \n",
|
|
"655 0 140.0 False False True False \n",
|
|
"656 0 253.0 True False True False \n",
|
|
"657 0 117.0 False False True False \n",
|
|
"658 0 185.0 False False True False \n",
|
|
"659 0 145.0 False False True False "
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"1119.0\n",
|
|
"139.0\n",
|
|
"{(6, 0): 150, (6, 30): 160, (7, 0): 170, (9, 30): 170, (16, 0): 170, (17, 0): 180, (20, 30): 170, (21, 30): 160, (22, 30): 150, (23, 30): 140}\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"inter_no = 5032\n",
|
|
"j = 1\n",
|
|
"cycle = 140\n",
|
|
"with pd.option_context('display.max_rows', None, 'display.max_columns', None):\n",
|
|
" display(infos['missing_dfs'][inter_no][j])\n",
|
|
"sum_of_durations = infos['missing_dfs'][inter_no][j].시간차이.sum()\n",
|
|
"print(sum_of_durations)\n",
|
|
"print(sum_of_durations % cycle)\n",
|
|
"print(infos['cycles'][inter_no])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 46,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>현장교차로ID</th>\n",
|
|
" <th>수집날짜시각</th>\n",
|
|
" <th>주기시간</th>\n",
|
|
" <th>옵셋시간</th>\n",
|
|
" <th>A링1현시시간</th>\n",
|
|
" <th>A링2현시시간</th>\n",
|
|
" <th>A링3현시시간</th>\n",
|
|
" <th>A링4현시시간</th>\n",
|
|
" <th>A링5현시시간</th>\n",
|
|
" <th>A링6현시시간</th>\n",
|
|
" <th>B링1현시시간</th>\n",
|
|
" <th>B링2현시시간</th>\n",
|
|
" <th>B링3현시시간</th>\n",
|
|
" <th>B링4현시시간</th>\n",
|
|
" <th>B링5현시시간</th>\n",
|
|
" <th>B링6현시시간</th>\n",
|
|
" <th>시간차이</th>\n",
|
|
" <th>결측여부</th>\n",
|
|
" <th>전이시간여부</th>\n",
|
|
" <th>주기일치</th>\n",
|
|
" <th>이상치존재</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>200</th>\n",
|
|
" <td>5033</td>\n",
|
|
" <td>2023-12-12 08:07:51</td>\n",
|
|
" <td>170</td>\n",
|
|
" <td>32</td>\n",
|
|
" <td>42</td>\n",
|
|
" <td>86</td>\n",
|
|
" <td>42</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>42</td>\n",
|
|
" <td>86</td>\n",
|
|
" <td>42</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>170.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>201</th>\n",
|
|
" <td>5033</td>\n",
|
|
" <td>2023-12-12 08:10:41</td>\n",
|
|
" <td>170</td>\n",
|
|
" <td>32</td>\n",
|
|
" <td>42</td>\n",
|
|
" <td>86</td>\n",
|
|
" <td>42</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>42</td>\n",
|
|
" <td>86</td>\n",
|
|
" <td>42</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>170.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>202</th>\n",
|
|
" <td>5033</td>\n",
|
|
" <td>2023-12-12 08:13:32</td>\n",
|
|
" <td>170</td>\n",
|
|
" <td>32</td>\n",
|
|
" <td>42</td>\n",
|
|
" <td>86</td>\n",
|
|
" <td>42</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>42</td>\n",
|
|
" <td>86</td>\n",
|
|
" <td>42</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>171.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>203</th>\n",
|
|
" <td>5033</td>\n",
|
|
" <td>2023-12-12 09:01:42</td>\n",
|
|
" <td>170</td>\n",
|
|
" <td>32</td>\n",
|
|
" <td>42</td>\n",
|
|
" <td>86</td>\n",
|
|
" <td>42</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>42</td>\n",
|
|
" <td>86</td>\n",
|
|
" <td>42</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>2890.0</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>204</th>\n",
|
|
" <td>5033</td>\n",
|
|
" <td>2023-12-12 09:04:32</td>\n",
|
|
" <td>170</td>\n",
|
|
" <td>32</td>\n",
|
|
" <td>42</td>\n",
|
|
" <td>86</td>\n",
|
|
" <td>42</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>42</td>\n",
|
|
" <td>86</td>\n",
|
|
" <td>42</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>170.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>205</th>\n",
|
|
" <td>5033</td>\n",
|
|
" <td>2023-12-12 09:07:22</td>\n",
|
|
" <td>170</td>\n",
|
|
" <td>32</td>\n",
|
|
" <td>42</td>\n",
|
|
" <td>86</td>\n",
|
|
" <td>42</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>42</td>\n",
|
|
" <td>86</td>\n",
|
|
" <td>42</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>170.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>206</th>\n",
|
|
" <td>5033</td>\n",
|
|
" <td>2023-12-12 09:10:12</td>\n",
|
|
" <td>170</td>\n",
|
|
" <td>32</td>\n",
|
|
" <td>42</td>\n",
|
|
" <td>86</td>\n",
|
|
" <td>42</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>42</td>\n",
|
|
" <td>86</td>\n",
|
|
" <td>42</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>170.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" 현장교차로ID 수집날짜시각 주기시간 옵셋시간 A링1현시시간 A링2현시시간 A링3현시시간 \\\n",
|
|
"200 5033 2023-12-12 08:07:51 170 32 42 86 42 \n",
|
|
"201 5033 2023-12-12 08:10:41 170 32 42 86 42 \n",
|
|
"202 5033 2023-12-12 08:13:32 170 32 42 86 42 \n",
|
|
"203 5033 2023-12-12 09:01:42 170 32 42 86 42 \n",
|
|
"204 5033 2023-12-12 09:04:32 170 32 42 86 42 \n",
|
|
"205 5033 2023-12-12 09:07:22 170 32 42 86 42 \n",
|
|
"206 5033 2023-12-12 09:10:12 170 32 42 86 42 \n",
|
|
"\n",
|
|
" A링4현시시간 A링5현시시간 A링6현시시간 B링1현시시간 B링2현시시간 B링3현시시간 B링4현시시간 B링5현시시간 \\\n",
|
|
"200 0 0 0 42 86 42 0 0 \n",
|
|
"201 0 0 0 42 86 42 0 0 \n",
|
|
"202 0 0 0 42 86 42 0 0 \n",
|
|
"203 0 0 0 42 86 42 0 0 \n",
|
|
"204 0 0 0 42 86 42 0 0 \n",
|
|
"205 0 0 0 42 86 42 0 0 \n",
|
|
"206 0 0 0 42 86 42 0 0 \n",
|
|
"\n",
|
|
" B링6현시시간 시간차이 결측여부 전이시간여부 주기일치 이상치존재 \n",
|
|
"200 0 170.0 False False True False \n",
|
|
"201 0 170.0 False False True False \n",
|
|
"202 0 171.0 False False True False \n",
|
|
"203 0 2890.0 True False True False \n",
|
|
"204 0 170.0 False False True False \n",
|
|
"205 0 170.0 False False True False \n",
|
|
"206 0 170.0 False False True False "
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"3911.0\n",
|
|
"1.0\n",
|
|
"{(6, 0): 150, (6, 30): 160, (7, 0): 170, (9, 30): 170, (16, 0): 170, (17, 0): 180, (20, 30): 170, (21, 30): 160, (22, 30): 150, (23, 30): 140}\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"inter_no = 5033\n",
|
|
"j = 0\n",
|
|
"cycle = 170\n",
|
|
"with pd.option_context('display.max_rows', None, 'display.max_columns', None):\n",
|
|
" display(infos['missing_dfs'][inter_no][j])\n",
|
|
"sum_of_durations = infos['missing_dfs'][inter_no][j].시간차이.sum()\n",
|
|
"print(sum_of_durations)\n",
|
|
"print(sum_of_durations % cycle)\n",
|
|
"print(infos['cycles'][inter_no])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 49,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>현장교차로ID</th>\n",
|
|
" <th>수집날짜시각</th>\n",
|
|
" <th>주기시간</th>\n",
|
|
" <th>옵셋시간</th>\n",
|
|
" <th>A링1현시시간</th>\n",
|
|
" <th>A링2현시시간</th>\n",
|
|
" <th>A링3현시시간</th>\n",
|
|
" <th>A링4현시시간</th>\n",
|
|
" <th>A링5현시시간</th>\n",
|
|
" <th>A링6현시시간</th>\n",
|
|
" <th>B링1현시시간</th>\n",
|
|
" <th>B링2현시시간</th>\n",
|
|
" <th>B링3현시시간</th>\n",
|
|
" <th>B링4현시시간</th>\n",
|
|
" <th>B링5현시시간</th>\n",
|
|
" <th>B링6현시시간</th>\n",
|
|
" <th>시간차이</th>\n",
|
|
" <th>결측여부</th>\n",
|
|
" <th>전이시간여부</th>\n",
|
|
" <th>주기일치</th>\n",
|
|
" <th>이상치존재</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>891</th>\n",
|
|
" <td>5033</td>\n",
|
|
" <td>2023-12-13 17:30:43</td>\n",
|
|
" <td>180</td>\n",
|
|
" <td>44</td>\n",
|
|
" <td>42</td>\n",
|
|
" <td>94</td>\n",
|
|
" <td>44</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>42</td>\n",
|
|
" <td>94</td>\n",
|
|
" <td>44</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>180.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>892</th>\n",
|
|
" <td>5033</td>\n",
|
|
" <td>2023-12-13 17:33:43</td>\n",
|
|
" <td>180</td>\n",
|
|
" <td>44</td>\n",
|
|
" <td>42</td>\n",
|
|
" <td>94</td>\n",
|
|
" <td>44</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>42</td>\n",
|
|
" <td>94</td>\n",
|
|
" <td>44</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>180.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>893</th>\n",
|
|
" <td>5033</td>\n",
|
|
" <td>2023-12-13 17:36:43</td>\n",
|
|
" <td>180</td>\n",
|
|
" <td>44</td>\n",
|
|
" <td>42</td>\n",
|
|
" <td>94</td>\n",
|
|
" <td>44</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>42</td>\n",
|
|
" <td>94</td>\n",
|
|
" <td>44</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>180.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>894</th>\n",
|
|
" <td>5033</td>\n",
|
|
" <td>2023-12-13 17:42:34</td>\n",
|
|
" <td>94</td>\n",
|
|
" <td>34</td>\n",
|
|
" <td>42</td>\n",
|
|
" <td>94</td>\n",
|
|
" <td>214</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>42</td>\n",
|
|
" <td>94</td>\n",
|
|
" <td>214</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>351.0</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>895</th>\n",
|
|
" <td>5033</td>\n",
|
|
" <td>2023-12-13 17:44:33</td>\n",
|
|
" <td>119</td>\n",
|
|
" <td>153</td>\n",
|
|
" <td>42</td>\n",
|
|
" <td>53</td>\n",
|
|
" <td>24</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>42</td>\n",
|
|
" <td>53</td>\n",
|
|
" <td>24</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>119.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>896</th>\n",
|
|
" <td>5033</td>\n",
|
|
" <td>2023-12-13 17:48:32</td>\n",
|
|
" <td>239</td>\n",
|
|
" <td>32</td>\n",
|
|
" <td>54</td>\n",
|
|
" <td>126</td>\n",
|
|
" <td>59</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>54</td>\n",
|
|
" <td>126</td>\n",
|
|
" <td>59</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>239.0</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>897</th>\n",
|
|
" <td>5033</td>\n",
|
|
" <td>2023-12-13 17:51:44</td>\n",
|
|
" <td>192</td>\n",
|
|
" <td>44</td>\n",
|
|
" <td>45</td>\n",
|
|
" <td>100</td>\n",
|
|
" <td>47</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>45</td>\n",
|
|
" <td>100</td>\n",
|
|
" <td>47</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>192.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>898</th>\n",
|
|
" <td>5033</td>\n",
|
|
" <td>2023-12-13 17:54:44</td>\n",
|
|
" <td>180</td>\n",
|
|
" <td>44</td>\n",
|
|
" <td>42</td>\n",
|
|
" <td>94</td>\n",
|
|
" <td>44</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>42</td>\n",
|
|
" <td>94</td>\n",
|
|
" <td>44</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>180.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>899</th>\n",
|
|
" <td>5033</td>\n",
|
|
" <td>2023-12-13 17:57:44</td>\n",
|
|
" <td>180</td>\n",
|
|
" <td>44</td>\n",
|
|
" <td>42</td>\n",
|
|
" <td>94</td>\n",
|
|
" <td>44</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>42</td>\n",
|
|
" <td>94</td>\n",
|
|
" <td>44</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>180.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" 현장교차로ID 수집날짜시각 주기시간 옵셋시간 A링1현시시간 A링2현시시간 A링3현시시간 \\\n",
|
|
"891 5033 2023-12-13 17:30:43 180 44 42 94 44 \n",
|
|
"892 5033 2023-12-13 17:33:43 180 44 42 94 44 \n",
|
|
"893 5033 2023-12-13 17:36:43 180 44 42 94 44 \n",
|
|
"894 5033 2023-12-13 17:42:34 94 34 42 94 214 \n",
|
|
"895 5033 2023-12-13 17:44:33 119 153 42 53 24 \n",
|
|
"896 5033 2023-12-13 17:48:32 239 32 54 126 59 \n",
|
|
"897 5033 2023-12-13 17:51:44 192 44 45 100 47 \n",
|
|
"898 5033 2023-12-13 17:54:44 180 44 42 94 44 \n",
|
|
"899 5033 2023-12-13 17:57:44 180 44 42 94 44 \n",
|
|
"\n",
|
|
" A링4현시시간 A링5현시시간 A링6현시시간 B링1현시시간 B링2현시시간 B링3현시시간 B링4현시시간 B링5현시시간 \\\n",
|
|
"891 0 0 0 42 94 44 0 0 \n",
|
|
"892 0 0 0 42 94 44 0 0 \n",
|
|
"893 0 0 0 42 94 44 0 0 \n",
|
|
"894 0 0 0 42 94 214 0 0 \n",
|
|
"895 0 0 0 42 53 24 0 0 \n",
|
|
"896 0 0 0 54 126 59 0 0 \n",
|
|
"897 0 0 0 45 100 47 0 0 \n",
|
|
"898 0 0 0 42 94 44 0 0 \n",
|
|
"899 0 0 0 42 94 44 0 0 \n",
|
|
"\n",
|
|
" B링6현시시간 시간차이 결측여부 전이시간여부 주기일치 이상치존재 \n",
|
|
"891 0 180.0 False False True False \n",
|
|
"892 0 180.0 False False True False \n",
|
|
"893 0 180.0 False False True False \n",
|
|
"894 0 351.0 True False False False \n",
|
|
"895 0 119.0 False False True False \n",
|
|
"896 0 239.0 True False True False \n",
|
|
"897 0 192.0 False False True False \n",
|
|
"898 0 180.0 False False True False \n",
|
|
"899 0 180.0 False False True False "
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"1801.0\n",
|
|
"1.0\n",
|
|
"{(6, 0): 150, (6, 30): 160, (7, 0): 170, (9, 30): 170, (16, 0): 170, (17, 0): 180, (20, 30): 170, (21, 30): 160, (22, 30): 150, (23, 30): 140}\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"inter_no = 5033\n",
|
|
"j = 2\n",
|
|
"cycle = 180\n",
|
|
"with pd.option_context('display.max_rows', None, 'display.max_columns', None):\n",
|
|
" display(infos['missing_dfs'][inter_no][j])\n",
|
|
"sum_of_durations = infos['missing_dfs'][inter_no][j].시간차이.sum()\n",
|
|
"print(sum_of_durations)\n",
|
|
"print(sum_of_durations % cycle)\n",
|
|
"print(infos['cycles'][inter_no])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 53,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>현장교차로ID</th>\n",
|
|
" <th>수집날짜시각</th>\n",
|
|
" <th>주기시간</th>\n",
|
|
" <th>옵셋시간</th>\n",
|
|
" <th>A링1현시시간</th>\n",
|
|
" <th>A링2현시시간</th>\n",
|
|
" <th>A링3현시시간</th>\n",
|
|
" <th>A링4현시시간</th>\n",
|
|
" <th>A링5현시시간</th>\n",
|
|
" <th>A링6현시시간</th>\n",
|
|
" <th>B링1현시시간</th>\n",
|
|
" <th>B링2현시시간</th>\n",
|
|
" <th>B링3현시시간</th>\n",
|
|
" <th>B링4현시시간</th>\n",
|
|
" <th>B링5현시시간</th>\n",
|
|
" <th>B링6현시시간</th>\n",
|
|
" <th>시간차이</th>\n",
|
|
" <th>결측여부</th>\n",
|
|
" <th>전이시간여부</th>\n",
|
|
" <th>주기일치</th>\n",
|
|
" <th>이상치존재</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>186</th>\n",
|
|
" <td>5034</td>\n",
|
|
" <td>2023-12-12 08:05:37</td>\n",
|
|
" <td>180</td>\n",
|
|
" <td>158</td>\n",
|
|
" <td>53</td>\n",
|
|
" <td>33</td>\n",
|
|
" <td>51</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>26</td>\n",
|
|
" <td>60</td>\n",
|
|
" <td>51</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>180.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>187</th>\n",
|
|
" <td>5034</td>\n",
|
|
" <td>2023-12-12 08:08:37</td>\n",
|
|
" <td>180</td>\n",
|
|
" <td>157</td>\n",
|
|
" <td>53</td>\n",
|
|
" <td>33</td>\n",
|
|
" <td>51</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>26</td>\n",
|
|
" <td>60</td>\n",
|
|
" <td>51</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>180.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>188</th>\n",
|
|
" <td>5034</td>\n",
|
|
" <td>2023-12-12 08:11:38</td>\n",
|
|
" <td>181</td>\n",
|
|
" <td>159</td>\n",
|
|
" <td>53</td>\n",
|
|
" <td>33</td>\n",
|
|
" <td>52</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>26</td>\n",
|
|
" <td>60</td>\n",
|
|
" <td>52</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>181.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>189</th>\n",
|
|
" <td>5034</td>\n",
|
|
" <td>2023-12-12 09:02:37</td>\n",
|
|
" <td>180</td>\n",
|
|
" <td>158</td>\n",
|
|
" <td>53</td>\n",
|
|
" <td>33</td>\n",
|
|
" <td>51</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>26</td>\n",
|
|
" <td>60</td>\n",
|
|
" <td>51</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>3059.0</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>190</th>\n",
|
|
" <td>5034</td>\n",
|
|
" <td>2023-12-12 09:05:37</td>\n",
|
|
" <td>180</td>\n",
|
|
" <td>158</td>\n",
|
|
" <td>53</td>\n",
|
|
" <td>33</td>\n",
|
|
" <td>51</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>26</td>\n",
|
|
" <td>60</td>\n",
|
|
" <td>51</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>180.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>191</th>\n",
|
|
" <td>5034</td>\n",
|
|
" <td>2023-12-12 09:08:38</td>\n",
|
|
" <td>180</td>\n",
|
|
" <td>158</td>\n",
|
|
" <td>53</td>\n",
|
|
" <td>33</td>\n",
|
|
" <td>51</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>26</td>\n",
|
|
" <td>60</td>\n",
|
|
" <td>51</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>181.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>192</th>\n",
|
|
" <td>5034</td>\n",
|
|
" <td>2023-12-12 09:11:38</td>\n",
|
|
" <td>180</td>\n",
|
|
" <td>158</td>\n",
|
|
" <td>53</td>\n",
|
|
" <td>33</td>\n",
|
|
" <td>51</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>26</td>\n",
|
|
" <td>60</td>\n",
|
|
" <td>51</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>180.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" 현장교차로ID 수집날짜시각 주기시간 옵셋시간 A링1현시시간 A링2현시시간 A링3현시시간 \\\n",
|
|
"186 5034 2023-12-12 08:05:37 180 158 53 33 51 \n",
|
|
"187 5034 2023-12-12 08:08:37 180 157 53 33 51 \n",
|
|
"188 5034 2023-12-12 08:11:38 181 159 53 33 52 \n",
|
|
"189 5034 2023-12-12 09:02:37 180 158 53 33 51 \n",
|
|
"190 5034 2023-12-12 09:05:37 180 158 53 33 51 \n",
|
|
"191 5034 2023-12-12 09:08:38 180 158 53 33 51 \n",
|
|
"192 5034 2023-12-12 09:11:38 180 158 53 33 51 \n",
|
|
"\n",
|
|
" A링4현시시간 A링5현시시간 A링6현시시간 B링1현시시간 B링2현시시간 B링3현시시간 B링4현시시간 B링5현시시간 \\\n",
|
|
"186 43 0 0 26 60 51 43 0 \n",
|
|
"187 43 0 0 26 60 51 43 0 \n",
|
|
"188 43 0 0 26 60 52 43 0 \n",
|
|
"189 43 0 0 26 60 51 43 0 \n",
|
|
"190 43 0 0 26 60 51 43 0 \n",
|
|
"191 43 0 0 26 60 51 43 0 \n",
|
|
"192 43 0 0 26 60 51 43 0 \n",
|
|
"\n",
|
|
" B링6현시시간 시간차이 결측여부 전이시간여부 주기일치 이상치존재 \n",
|
|
"186 0 180.0 False False True False \n",
|
|
"187 0 180.0 False False True False \n",
|
|
"188 0 181.0 False False True False \n",
|
|
"189 0 3059.0 True False True False \n",
|
|
"190 0 180.0 False False True False \n",
|
|
"191 0 181.0 False False True False \n",
|
|
"192 0 180.0 False False True False "
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"4141.0\n",
|
|
"1.0\n",
|
|
"{(5, 30): 160, (6, 30): 170, (7, 0): 180, (9, 30): 170, (17, 0): 180, (21, 0): 170, (22, 0): 160, (23, 30): 150}\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"inter_no = 5034\n",
|
|
"j = 0\n",
|
|
"cycle = 180\n",
|
|
"with pd.option_context('display.max_rows', None, 'display.max_columns', None):\n",
|
|
" display(infos['missing_dfs'][inter_no][j])\n",
|
|
"sum_of_durations = infos['missing_dfs'][inter_no][j].시간차이.sum()\n",
|
|
"print(sum_of_durations)\n",
|
|
"print(sum_of_durations % cycle)\n",
|
|
"print(infos['cycles'][inter_no])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 56,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>현장교차로ID</th>\n",
|
|
" <th>수집날짜시각</th>\n",
|
|
" <th>주기시간</th>\n",
|
|
" <th>옵셋시간</th>\n",
|
|
" <th>A링1현시시간</th>\n",
|
|
" <th>A링2현시시간</th>\n",
|
|
" <th>A링3현시시간</th>\n",
|
|
" <th>A링4현시시간</th>\n",
|
|
" <th>A링5현시시간</th>\n",
|
|
" <th>A링6현시시간</th>\n",
|
|
" <th>B링1현시시간</th>\n",
|
|
" <th>B링2현시시간</th>\n",
|
|
" <th>B링3현시시간</th>\n",
|
|
" <th>B링4현시시간</th>\n",
|
|
" <th>B링5현시시간</th>\n",
|
|
" <th>B링6현시시간</th>\n",
|
|
" <th>시간차이</th>\n",
|
|
" <th>결측여부</th>\n",
|
|
" <th>전이시간여부</th>\n",
|
|
" <th>주기일치</th>\n",
|
|
" <th>이상치존재</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>384</th>\n",
|
|
" <td>5034</td>\n",
|
|
" <td>2023-12-12 18:19:05</td>\n",
|
|
" <td>57</td>\n",
|
|
" <td>65</td>\n",
|
|
" <td>57</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>31</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>88.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>385</th>\n",
|
|
" <td>5034</td>\n",
|
|
" <td>2023-12-12 18:22:05</td>\n",
|
|
" <td>180</td>\n",
|
|
" <td>65</td>\n",
|
|
" <td>57</td>\n",
|
|
" <td>33</td>\n",
|
|
" <td>45</td>\n",
|
|
" <td>45</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>31</td>\n",
|
|
" <td>59</td>\n",
|
|
" <td>45</td>\n",
|
|
" <td>45</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>180.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>386</th>\n",
|
|
" <td>5034</td>\n",
|
|
" <td>2023-12-12 18:24:35</td>\n",
|
|
" <td>150</td>\n",
|
|
" <td>35</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>21</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>21</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>150.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>387</th>\n",
|
|
" <td>5034</td>\n",
|
|
" <td>2023-12-12 18:28:35</td>\n",
|
|
" <td>240</td>\n",
|
|
" <td>95</td>\n",
|
|
" <td>76</td>\n",
|
|
" <td>44</td>\n",
|
|
" <td>60</td>\n",
|
|
" <td>60</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>41</td>\n",
|
|
" <td>79</td>\n",
|
|
" <td>60</td>\n",
|
|
" <td>60</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>240.0</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>388</th>\n",
|
|
" <td>5034</td>\n",
|
|
" <td>2023-12-12 18:32:35</td>\n",
|
|
" <td>240</td>\n",
|
|
" <td>155</td>\n",
|
|
" <td>76</td>\n",
|
|
" <td>44</td>\n",
|
|
" <td>60</td>\n",
|
|
" <td>60</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>41</td>\n",
|
|
" <td>79</td>\n",
|
|
" <td>60</td>\n",
|
|
" <td>60</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>240.0</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>389</th>\n",
|
|
" <td>5034</td>\n",
|
|
" <td>2023-12-12 18:35:39</td>\n",
|
|
" <td>184</td>\n",
|
|
" <td>159</td>\n",
|
|
" <td>58</td>\n",
|
|
" <td>34</td>\n",
|
|
" <td>46</td>\n",
|
|
" <td>46</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>32</td>\n",
|
|
" <td>60</td>\n",
|
|
" <td>46</td>\n",
|
|
" <td>46</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>184.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>390</th>\n",
|
|
" <td>5034</td>\n",
|
|
" <td>2023-12-12 18:38:39</td>\n",
|
|
" <td>180</td>\n",
|
|
" <td>159</td>\n",
|
|
" <td>57</td>\n",
|
|
" <td>33</td>\n",
|
|
" <td>45</td>\n",
|
|
" <td>45</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>31</td>\n",
|
|
" <td>59</td>\n",
|
|
" <td>45</td>\n",
|
|
" <td>45</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>180.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>391</th>\n",
|
|
" <td>5034</td>\n",
|
|
" <td>2023-12-12 18:41:39</td>\n",
|
|
" <td>180</td>\n",
|
|
" <td>159</td>\n",
|
|
" <td>57</td>\n",
|
|
" <td>33</td>\n",
|
|
" <td>45</td>\n",
|
|
" <td>45</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>31</td>\n",
|
|
" <td>59</td>\n",
|
|
" <td>45</td>\n",
|
|
" <td>45</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>180.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" 현장교차로ID 수집날짜시각 주기시간 옵셋시간 A링1현시시간 A링2현시시간 A링3현시시간 \\\n",
|
|
"384 5034 2023-12-12 18:19:05 57 65 57 0 0 \n",
|
|
"385 5034 2023-12-12 18:22:05 180 65 57 33 45 \n",
|
|
"386 5034 2023-12-12 18:24:35 150 35 43 21 43 \n",
|
|
"387 5034 2023-12-12 18:28:35 240 95 76 44 60 \n",
|
|
"388 5034 2023-12-12 18:32:35 240 155 76 44 60 \n",
|
|
"389 5034 2023-12-12 18:35:39 184 159 58 34 46 \n",
|
|
"390 5034 2023-12-12 18:38:39 180 159 57 33 45 \n",
|
|
"391 5034 2023-12-12 18:41:39 180 159 57 33 45 \n",
|
|
"\n",
|
|
" A링4현시시간 A링5현시시간 A링6현시시간 B링1현시시간 B링2현시시간 B링3현시시간 B링4현시시간 B링5현시시간 \\\n",
|
|
"384 0 0 0 31 0 0 0 0 \n",
|
|
"385 45 0 0 31 59 45 45 0 \n",
|
|
"386 43 0 0 21 43 43 43 0 \n",
|
|
"387 60 0 0 41 79 60 60 0 \n",
|
|
"388 60 0 0 41 79 60 60 0 \n",
|
|
"389 46 0 0 32 60 46 46 0 \n",
|
|
"390 45 0 0 31 59 45 45 0 \n",
|
|
"391 45 0 0 31 59 45 45 0 \n",
|
|
"\n",
|
|
" B링6현시시간 시간차이 결측여부 전이시간여부 주기일치 이상치존재 \n",
|
|
"384 0 88.0 False False False False \n",
|
|
"385 0 180.0 False False True False \n",
|
|
"386 0 150.0 False False True False \n",
|
|
"387 0 240.0 True False True False \n",
|
|
"388 0 240.0 True False True False \n",
|
|
"389 0 184.0 False False True False \n",
|
|
"390 0 180.0 False False True False \n",
|
|
"391 0 180.0 False False True False "
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"1442.0\n",
|
|
"2.0\n",
|
|
"{(5, 30): 160, (6, 30): 170, (7, 0): 180, (9, 30): 170, (17, 0): 180, (21, 0): 170, (22, 0): 160, (23, 30): 150}\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"inter_no = 5034\n",
|
|
"j = 1\n",
|
|
"cycle = 180\n",
|
|
"with pd.option_context('display.max_rows', None, 'display.max_columns', None):\n",
|
|
" display(infos['missing_dfs'][inter_no][j])\n",
|
|
"sum_of_durations = infos['missing_dfs'][inter_no][j].시간차이.sum()\n",
|
|
"print(sum_of_durations)\n",
|
|
"print(sum_of_durations % cycle)\n",
|
|
"print(infos['cycles'][inter_no])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 57,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>현장교차로ID</th>\n",
|
|
" <th>수집날짜시각</th>\n",
|
|
" <th>주기시간</th>\n",
|
|
" <th>옵셋시간</th>\n",
|
|
" <th>A링1현시시간</th>\n",
|
|
" <th>A링2현시시간</th>\n",
|
|
" <th>A링3현시시간</th>\n",
|
|
" <th>A링4현시시간</th>\n",
|
|
" <th>A링5현시시간</th>\n",
|
|
" <th>A링6현시시간</th>\n",
|
|
" <th>B링1현시시간</th>\n",
|
|
" <th>B링2현시시간</th>\n",
|
|
" <th>B링3현시시간</th>\n",
|
|
" <th>B링4현시시간</th>\n",
|
|
" <th>B링5현시시간</th>\n",
|
|
" <th>B링6현시시간</th>\n",
|
|
" <th>시간차이</th>\n",
|
|
" <th>결측여부</th>\n",
|
|
" <th>전이시간여부</th>\n",
|
|
" <th>주기일치</th>\n",
|
|
" <th>이상치존재</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>705</th>\n",
|
|
" <td>5034</td>\n",
|
|
" <td>2023-12-13 08:47:40</td>\n",
|
|
" <td>180</td>\n",
|
|
" <td>160</td>\n",
|
|
" <td>53</td>\n",
|
|
" <td>33</td>\n",
|
|
" <td>51</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>26</td>\n",
|
|
" <td>60</td>\n",
|
|
" <td>51</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>180.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>706</th>\n",
|
|
" <td>5034</td>\n",
|
|
" <td>2023-12-13 08:50:40</td>\n",
|
|
" <td>180</td>\n",
|
|
" <td>160</td>\n",
|
|
" <td>53</td>\n",
|
|
" <td>33</td>\n",
|
|
" <td>51</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>26</td>\n",
|
|
" <td>60</td>\n",
|
|
" <td>51</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>180.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>707</th>\n",
|
|
" <td>5034</td>\n",
|
|
" <td>2023-12-13 08:53:40</td>\n",
|
|
" <td>180</td>\n",
|
|
" <td>160</td>\n",
|
|
" <td>53</td>\n",
|
|
" <td>33</td>\n",
|
|
" <td>51</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>26</td>\n",
|
|
" <td>60</td>\n",
|
|
" <td>51</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>180.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>708</th>\n",
|
|
" <td>5034</td>\n",
|
|
" <td>2023-12-13 08:59:12</td>\n",
|
|
" <td>46</td>\n",
|
|
" <td>132</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>46</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>46</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>332.0</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>709</th>\n",
|
|
" <td>5034</td>\n",
|
|
" <td>2023-12-13 09:02:40</td>\n",
|
|
" <td>208</td>\n",
|
|
" <td>160</td>\n",
|
|
" <td>61</td>\n",
|
|
" <td>39</td>\n",
|
|
" <td>59</td>\n",
|
|
" <td>49</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>30</td>\n",
|
|
" <td>70</td>\n",
|
|
" <td>59</td>\n",
|
|
" <td>49</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>208.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>710</th>\n",
|
|
" <td>5034</td>\n",
|
|
" <td>2023-12-13 09:05:40</td>\n",
|
|
" <td>180</td>\n",
|
|
" <td>160</td>\n",
|
|
" <td>53</td>\n",
|
|
" <td>33</td>\n",
|
|
" <td>51</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>26</td>\n",
|
|
" <td>60</td>\n",
|
|
" <td>51</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>180.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>711</th>\n",
|
|
" <td>5034</td>\n",
|
|
" <td>2023-12-13 09:08:40</td>\n",
|
|
" <td>180</td>\n",
|
|
" <td>160</td>\n",
|
|
" <td>53</td>\n",
|
|
" <td>33</td>\n",
|
|
" <td>51</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>26</td>\n",
|
|
" <td>60</td>\n",
|
|
" <td>51</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>180.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" 현장교차로ID 수집날짜시각 주기시간 옵셋시간 A링1현시시간 A링2현시시간 A링3현시시간 \\\n",
|
|
"705 5034 2023-12-13 08:47:40 180 160 53 33 51 \n",
|
|
"706 5034 2023-12-13 08:50:40 180 160 53 33 51 \n",
|
|
"707 5034 2023-12-13 08:53:40 180 160 53 33 51 \n",
|
|
"708 5034 2023-12-13 08:59:12 46 132 0 0 0 \n",
|
|
"709 5034 2023-12-13 09:02:40 208 160 61 39 59 \n",
|
|
"710 5034 2023-12-13 09:05:40 180 160 53 33 51 \n",
|
|
"711 5034 2023-12-13 09:08:40 180 160 53 33 51 \n",
|
|
"\n",
|
|
" A링4현시시간 A링5현시시간 A링6현시시간 B링1현시시간 B링2현시시간 B링3현시시간 B링4현시시간 B링5현시시간 \\\n",
|
|
"705 43 0 0 26 60 51 43 0 \n",
|
|
"706 43 0 0 26 60 51 43 0 \n",
|
|
"707 43 0 0 26 60 51 43 0 \n",
|
|
"708 46 0 0 0 0 0 46 0 \n",
|
|
"709 49 0 0 30 70 59 49 0 \n",
|
|
"710 43 0 0 26 60 51 43 0 \n",
|
|
"711 43 0 0 26 60 51 43 0 \n",
|
|
"\n",
|
|
" B링6현시시간 시간차이 결측여부 전이시간여부 주기일치 이상치존재 \n",
|
|
"705 0 180.0 False False True False \n",
|
|
"706 0 180.0 False False True False \n",
|
|
"707 0 180.0 False False True False \n",
|
|
"708 0 332.0 True False True False \n",
|
|
"709 0 208.0 False False True False \n",
|
|
"710 0 180.0 False False True False \n",
|
|
"711 0 180.0 False False True False "
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"1440.0\n",
|
|
"0.0\n",
|
|
"{(5, 30): 160, (6, 30): 170, (7, 0): 180, (9, 30): 170, (17, 0): 180, (21, 0): 170, (22, 0): 160, (23, 30): 150}\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"inter_no = 5034\n",
|
|
"j = 2\n",
|
|
"cycle = 180\n",
|
|
"with pd.option_context('display.max_rows', None, 'display.max_columns', None):\n",
|
|
" display(infos['missing_dfs'][inter_no][j])\n",
|
|
"sum_of_durations = infos['missing_dfs'][inter_no][j].시간차이.sum()\n",
|
|
"print(sum_of_durations)\n",
|
|
"print(sum_of_durations % cycle)\n",
|
|
"print(infos['cycles'][inter_no])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 59,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>현장교차로ID</th>\n",
|
|
" <th>수집날짜시각</th>\n",
|
|
" <th>주기시간</th>\n",
|
|
" <th>옵셋시간</th>\n",
|
|
" <th>A링1현시시간</th>\n",
|
|
" <th>A링2현시시간</th>\n",
|
|
" <th>A링3현시시간</th>\n",
|
|
" <th>A링4현시시간</th>\n",
|
|
" <th>A링5현시시간</th>\n",
|
|
" <th>A링6현시시간</th>\n",
|
|
" <th>B링1현시시간</th>\n",
|
|
" <th>B링2현시시간</th>\n",
|
|
" <th>B링3현시시간</th>\n",
|
|
" <th>B링4현시시간</th>\n",
|
|
" <th>B링5현시시간</th>\n",
|
|
" <th>B링6현시시간</th>\n",
|
|
" <th>시간차이</th>\n",
|
|
" <th>결측여부</th>\n",
|
|
" <th>전이시간여부</th>\n",
|
|
" <th>주기일치</th>\n",
|
|
" <th>이상치존재</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>825</th>\n",
|
|
" <td>5034</td>\n",
|
|
" <td>2023-12-13 14:32:27</td>\n",
|
|
" <td>170</td>\n",
|
|
" <td>157</td>\n",
|
|
" <td>51</td>\n",
|
|
" <td>33</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>57</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>170.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>826</th>\n",
|
|
" <td>5034</td>\n",
|
|
" <td>2023-12-13 14:35:17</td>\n",
|
|
" <td>170</td>\n",
|
|
" <td>157</td>\n",
|
|
" <td>51</td>\n",
|
|
" <td>33</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>57</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>170.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>827</th>\n",
|
|
" <td>5034</td>\n",
|
|
" <td>2023-12-13 14:38:07</td>\n",
|
|
" <td>170</td>\n",
|
|
" <td>157</td>\n",
|
|
" <td>51</td>\n",
|
|
" <td>33</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>57</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>170.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>828</th>\n",
|
|
" <td>5034</td>\n",
|
|
" <td>2023-12-13 16:00:18</td>\n",
|
|
" <td>170</td>\n",
|
|
" <td>157</td>\n",
|
|
" <td>51</td>\n",
|
|
" <td>33</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>57</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>4931.0</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>829</th>\n",
|
|
" <td>5034</td>\n",
|
|
" <td>2023-12-13 16:03:08</td>\n",
|
|
" <td>170</td>\n",
|
|
" <td>157</td>\n",
|
|
" <td>51</td>\n",
|
|
" <td>33</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>57</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>170.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>830</th>\n",
|
|
" <td>5034</td>\n",
|
|
" <td>2023-12-13 16:05:58</td>\n",
|
|
" <td>170</td>\n",
|
|
" <td>157</td>\n",
|
|
" <td>51</td>\n",
|
|
" <td>33</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>57</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>170.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>831</th>\n",
|
|
" <td>5034</td>\n",
|
|
" <td>2023-12-13 16:08:48</td>\n",
|
|
" <td>170</td>\n",
|
|
" <td>157</td>\n",
|
|
" <td>51</td>\n",
|
|
" <td>33</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>27</td>\n",
|
|
" <td>57</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>170.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" 현장교차로ID 수집날짜시각 주기시간 옵셋시간 A링1현시시간 A링2현시시간 A링3현시시간 \\\n",
|
|
"825 5034 2023-12-13 14:32:27 170 157 51 33 43 \n",
|
|
"826 5034 2023-12-13 14:35:17 170 157 51 33 43 \n",
|
|
"827 5034 2023-12-13 14:38:07 170 157 51 33 43 \n",
|
|
"828 5034 2023-12-13 16:00:18 170 157 51 33 43 \n",
|
|
"829 5034 2023-12-13 16:03:08 170 157 51 33 43 \n",
|
|
"830 5034 2023-12-13 16:05:58 170 157 51 33 43 \n",
|
|
"831 5034 2023-12-13 16:08:48 170 157 51 33 43 \n",
|
|
"\n",
|
|
" A링4현시시간 A링5현시시간 A링6현시시간 B링1현시시간 B링2현시시간 B링3현시시간 B링4현시시간 B링5현시시간 \\\n",
|
|
"825 43 0 0 27 57 43 43 0 \n",
|
|
"826 43 0 0 27 57 43 43 0 \n",
|
|
"827 43 0 0 27 57 43 43 0 \n",
|
|
"828 43 0 0 27 57 43 43 0 \n",
|
|
"829 43 0 0 27 57 43 43 0 \n",
|
|
"830 43 0 0 27 57 43 43 0 \n",
|
|
"831 43 0 0 27 57 43 43 0 \n",
|
|
"\n",
|
|
" B링6현시시간 시간차이 결측여부 전이시간여부 주기일치 이상치존재 \n",
|
|
"825 0 170.0 False False True False \n",
|
|
"826 0 170.0 False False True False \n",
|
|
"827 0 170.0 False False True False \n",
|
|
"828 0 4931.0 True False True False \n",
|
|
"829 0 170.0 False False True False \n",
|
|
"830 0 170.0 False False True False \n",
|
|
"831 0 170.0 False False True False "
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"5951.0\n",
|
|
"1.0\n",
|
|
"{(5, 30): 160, (6, 30): 170, (7, 0): 180, (9, 30): 170, (17, 0): 180, (21, 0): 170, (22, 0): 160, (23, 30): 150}\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"inter_no = 5034\n",
|
|
"j = 3\n",
|
|
"cycle = 170\n",
|
|
"with pd.option_context('display.max_rows', None, 'display.max_columns', None):\n",
|
|
" display(infos['missing_dfs'][inter_no][j])\n",
|
|
"sum_of_durations = infos['missing_dfs'][inter_no][j].시간차이.sum()\n",
|
|
"print(sum_of_durations)\n",
|
|
"print(sum_of_durations % cycle)\n",
|
|
"print(infos['cycles'][inter_no])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 61,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>현장교차로ID</th>\n",
|
|
" <th>수집날짜시각</th>\n",
|
|
" <th>주기시간</th>\n",
|
|
" <th>옵셋시간</th>\n",
|
|
" <th>A링1현시시간</th>\n",
|
|
" <th>A링2현시시간</th>\n",
|
|
" <th>A링3현시시간</th>\n",
|
|
" <th>A링4현시시간</th>\n",
|
|
" <th>A링5현시시간</th>\n",
|
|
" <th>A링6현시시간</th>\n",
|
|
" <th>B링1현시시간</th>\n",
|
|
" <th>B링2현시시간</th>\n",
|
|
" <th>B링3현시시간</th>\n",
|
|
" <th>B링4현시시간</th>\n",
|
|
" <th>B링5현시시간</th>\n",
|
|
" <th>B링6현시시간</th>\n",
|
|
" <th>시간차이</th>\n",
|
|
" <th>결측여부</th>\n",
|
|
" <th>전이시간여부</th>\n",
|
|
" <th>주기일치</th>\n",
|
|
" <th>이상치존재</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>864</th>\n",
|
|
" <td>5034</td>\n",
|
|
" <td>2023-12-13 17:42:38</td>\n",
|
|
" <td>57</td>\n",
|
|
" <td>38</td>\n",
|
|
" <td>57</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>31</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>59.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>865</th>\n",
|
|
" <td>5034</td>\n",
|
|
" <td>2023-12-13 17:45:38</td>\n",
|
|
" <td>180</td>\n",
|
|
" <td>39</td>\n",
|
|
" <td>57</td>\n",
|
|
" <td>33</td>\n",
|
|
" <td>45</td>\n",
|
|
" <td>45</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>31</td>\n",
|
|
" <td>59</td>\n",
|
|
" <td>45</td>\n",
|
|
" <td>45</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>180.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>866</th>\n",
|
|
" <td>5034</td>\n",
|
|
" <td>2023-12-13 17:48:08</td>\n",
|
|
" <td>150</td>\n",
|
|
" <td>8</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>21</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>21</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>150.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>867</th>\n",
|
|
" <td>5034</td>\n",
|
|
" <td>2023-12-13 17:52:08</td>\n",
|
|
" <td>240</td>\n",
|
|
" <td>68</td>\n",
|
|
" <td>76</td>\n",
|
|
" <td>44</td>\n",
|
|
" <td>60</td>\n",
|
|
" <td>60</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>41</td>\n",
|
|
" <td>79</td>\n",
|
|
" <td>60</td>\n",
|
|
" <td>60</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>240.0</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>868</th>\n",
|
|
" <td>5034</td>\n",
|
|
" <td>2023-12-13 17:56:08</td>\n",
|
|
" <td>240</td>\n",
|
|
" <td>128</td>\n",
|
|
" <td>76</td>\n",
|
|
" <td>44</td>\n",
|
|
" <td>60</td>\n",
|
|
" <td>60</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>41</td>\n",
|
|
" <td>79</td>\n",
|
|
" <td>60</td>\n",
|
|
" <td>60</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>240.0</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>869</th>\n",
|
|
" <td>5034</td>\n",
|
|
" <td>2023-12-13 17:59:38</td>\n",
|
|
" <td>210</td>\n",
|
|
" <td>159</td>\n",
|
|
" <td>67</td>\n",
|
|
" <td>38</td>\n",
|
|
" <td>53</td>\n",
|
|
" <td>52</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>36</td>\n",
|
|
" <td>69</td>\n",
|
|
" <td>53</td>\n",
|
|
" <td>52</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>210.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>870</th>\n",
|
|
" <td>5034</td>\n",
|
|
" <td>2023-12-13 18:02:38</td>\n",
|
|
" <td>180</td>\n",
|
|
" <td>159</td>\n",
|
|
" <td>57</td>\n",
|
|
" <td>33</td>\n",
|
|
" <td>45</td>\n",
|
|
" <td>45</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>31</td>\n",
|
|
" <td>59</td>\n",
|
|
" <td>45</td>\n",
|
|
" <td>45</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>180.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>871</th>\n",
|
|
" <td>5034</td>\n",
|
|
" <td>2023-12-13 18:05:38</td>\n",
|
|
" <td>180</td>\n",
|
|
" <td>159</td>\n",
|
|
" <td>57</td>\n",
|
|
" <td>33</td>\n",
|
|
" <td>45</td>\n",
|
|
" <td>45</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>31</td>\n",
|
|
" <td>59</td>\n",
|
|
" <td>45</td>\n",
|
|
" <td>45</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>180.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" 현장교차로ID 수집날짜시각 주기시간 옵셋시간 A링1현시시간 A링2현시시간 A링3현시시간 \\\n",
|
|
"864 5034 2023-12-13 17:42:38 57 38 57 0 0 \n",
|
|
"865 5034 2023-12-13 17:45:38 180 39 57 33 45 \n",
|
|
"866 5034 2023-12-13 17:48:08 150 8 43 21 43 \n",
|
|
"867 5034 2023-12-13 17:52:08 240 68 76 44 60 \n",
|
|
"868 5034 2023-12-13 17:56:08 240 128 76 44 60 \n",
|
|
"869 5034 2023-12-13 17:59:38 210 159 67 38 53 \n",
|
|
"870 5034 2023-12-13 18:02:38 180 159 57 33 45 \n",
|
|
"871 5034 2023-12-13 18:05:38 180 159 57 33 45 \n",
|
|
"\n",
|
|
" A링4현시시간 A링5현시시간 A링6현시시간 B링1현시시간 B링2현시시간 B링3현시시간 B링4현시시간 B링5현시시간 \\\n",
|
|
"864 0 0 0 31 0 0 0 0 \n",
|
|
"865 45 0 0 31 59 45 45 0 \n",
|
|
"866 43 0 0 21 43 43 43 0 \n",
|
|
"867 60 0 0 41 79 60 60 0 \n",
|
|
"868 60 0 0 41 79 60 60 0 \n",
|
|
"869 52 0 0 36 69 53 52 0 \n",
|
|
"870 45 0 0 31 59 45 45 0 \n",
|
|
"871 45 0 0 31 59 45 45 0 \n",
|
|
"\n",
|
|
" B링6현시시간 시간차이 결측여부 전이시간여부 주기일치 이상치존재 \n",
|
|
"864 0 59.0 False False False False \n",
|
|
"865 0 180.0 False False True False \n",
|
|
"866 0 150.0 False False True False \n",
|
|
"867 0 240.0 True False True False \n",
|
|
"868 0 240.0 True False True False \n",
|
|
"869 0 210.0 False False True False \n",
|
|
"870 0 180.0 False False True False \n",
|
|
"871 0 180.0 False False True False "
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"1439.0\n",
|
|
"179.0\n",
|
|
"{(5, 30): 160, (6, 30): 170, (7, 0): 180, (9, 30): 170, (17, 0): 180, (21, 0): 170, (22, 0): 160, (23, 30): 150}\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"inter_no = 5034\n",
|
|
"j = 4\n",
|
|
"cycle = 180\n",
|
|
"with pd.option_context('display.max_rows', None, 'display.max_columns', None):\n",
|
|
" display(infos['missing_dfs'][inter_no][j])\n",
|
|
"sum_of_durations = infos['missing_dfs'][inter_no][j].시간차이.sum()\n",
|
|
"print(sum_of_durations)\n",
|
|
"print(sum_of_durations % cycle)\n",
|
|
"print(infos['cycles'][inter_no])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 62,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>현장교차로ID</th>\n",
|
|
" <th>수집날짜시각</th>\n",
|
|
" <th>주기시간</th>\n",
|
|
" <th>옵셋시간</th>\n",
|
|
" <th>A링1현시시간</th>\n",
|
|
" <th>A링2현시시간</th>\n",
|
|
" <th>A링3현시시간</th>\n",
|
|
" <th>A링4현시시간</th>\n",
|
|
" <th>A링5현시시간</th>\n",
|
|
" <th>A링6현시시간</th>\n",
|
|
" <th>B링1현시시간</th>\n",
|
|
" <th>B링2현시시간</th>\n",
|
|
" <th>B링3현시시간</th>\n",
|
|
" <th>B링4현시시간</th>\n",
|
|
" <th>B링5현시시간</th>\n",
|
|
" <th>B링6현시시간</th>\n",
|
|
" <th>시간차이</th>\n",
|
|
" <th>결측여부</th>\n",
|
|
" <th>전이시간여부</th>\n",
|
|
" <th>주기일치</th>\n",
|
|
" <th>이상치존재</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>1201</th>\n",
|
|
" <td>5034</td>\n",
|
|
" <td>2023-12-14 08:59:38</td>\n",
|
|
" <td>180</td>\n",
|
|
" <td>158</td>\n",
|
|
" <td>53</td>\n",
|
|
" <td>33</td>\n",
|
|
" <td>51</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>26</td>\n",
|
|
" <td>60</td>\n",
|
|
" <td>51</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>180.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1202</th>\n",
|
|
" <td>5034</td>\n",
|
|
" <td>2023-12-14 09:02:38</td>\n",
|
|
" <td>180</td>\n",
|
|
" <td>158</td>\n",
|
|
" <td>53</td>\n",
|
|
" <td>33</td>\n",
|
|
" <td>51</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>26</td>\n",
|
|
" <td>60</td>\n",
|
|
" <td>51</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>180.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1203</th>\n",
|
|
" <td>5034</td>\n",
|
|
" <td>2023-12-14 09:05:38</td>\n",
|
|
" <td>180</td>\n",
|
|
" <td>158</td>\n",
|
|
" <td>53</td>\n",
|
|
" <td>33</td>\n",
|
|
" <td>51</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>26</td>\n",
|
|
" <td>60</td>\n",
|
|
" <td>51</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>180.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1204</th>\n",
|
|
" <td>5034</td>\n",
|
|
" <td>2023-12-14 09:10:40</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>100</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>302.0</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1205</th>\n",
|
|
" <td>5034</td>\n",
|
|
" <td>2023-12-14 09:13:09</td>\n",
|
|
" <td>150</td>\n",
|
|
" <td>69</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>21</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>21</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>149.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1206</th>\n",
|
|
" <td>5034</td>\n",
|
|
" <td>2023-12-14 09:17:08</td>\n",
|
|
" <td>239</td>\n",
|
|
" <td>128</td>\n",
|
|
" <td>70</td>\n",
|
|
" <td>44</td>\n",
|
|
" <td>68</td>\n",
|
|
" <td>57</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>34</td>\n",
|
|
" <td>80</td>\n",
|
|
" <td>68</td>\n",
|
|
" <td>57</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>239.0</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1207</th>\n",
|
|
" <td>5034</td>\n",
|
|
" <td>2023-12-14 09:20:38</td>\n",
|
|
" <td>210</td>\n",
|
|
" <td>158</td>\n",
|
|
" <td>62</td>\n",
|
|
" <td>38</td>\n",
|
|
" <td>60</td>\n",
|
|
" <td>50</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>30</td>\n",
|
|
" <td>70</td>\n",
|
|
" <td>60</td>\n",
|
|
" <td>50</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>210.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1208</th>\n",
|
|
" <td>5034</td>\n",
|
|
" <td>2023-12-14 09:23:38</td>\n",
|
|
" <td>180</td>\n",
|
|
" <td>159</td>\n",
|
|
" <td>53</td>\n",
|
|
" <td>33</td>\n",
|
|
" <td>51</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>26</td>\n",
|
|
" <td>60</td>\n",
|
|
" <td>51</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>180.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1209</th>\n",
|
|
" <td>5034</td>\n",
|
|
" <td>2023-12-14 09:26:37</td>\n",
|
|
" <td>179</td>\n",
|
|
" <td>157</td>\n",
|
|
" <td>53</td>\n",
|
|
" <td>33</td>\n",
|
|
" <td>50</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>26</td>\n",
|
|
" <td>60</td>\n",
|
|
" <td>50</td>\n",
|
|
" <td>43</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>179.0</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>False</td>\n",
|
|
" <td>True</td>\n",
|
|
" <td>False</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" 현장교차로ID 수집날짜시각 주기시간 옵셋시간 A링1현시시간 A링2현시시간 A링3현시시간 \\\n",
|
|
"1201 5034 2023-12-14 08:59:38 180 158 53 33 51 \n",
|
|
"1202 5034 2023-12-14 09:02:38 180 158 53 33 51 \n",
|
|
"1203 5034 2023-12-14 09:05:38 180 158 53 33 51 \n",
|
|
"1204 5034 2023-12-14 09:10:40 43 100 0 0 0 \n",
|
|
"1205 5034 2023-12-14 09:13:09 150 69 43 21 43 \n",
|
|
"1206 5034 2023-12-14 09:17:08 239 128 70 44 68 \n",
|
|
"1207 5034 2023-12-14 09:20:38 210 158 62 38 60 \n",
|
|
"1208 5034 2023-12-14 09:23:38 180 159 53 33 51 \n",
|
|
"1209 5034 2023-12-14 09:26:37 179 157 53 33 50 \n",
|
|
"\n",
|
|
" A링4현시시간 A링5현시시간 A링6현시시간 B링1현시시간 B링2현시시간 B링3현시시간 B링4현시시간 B링5현시시간 \\\n",
|
|
"1201 43 0 0 26 60 51 43 0 \n",
|
|
"1202 43 0 0 26 60 51 43 0 \n",
|
|
"1203 43 0 0 26 60 51 43 0 \n",
|
|
"1204 43 0 0 0 0 0 43 0 \n",
|
|
"1205 43 0 0 21 43 43 43 0 \n",
|
|
"1206 57 0 0 34 80 68 57 0 \n",
|
|
"1207 50 0 0 30 70 60 50 0 \n",
|
|
"1208 43 0 0 26 60 51 43 0 \n",
|
|
"1209 43 0 0 26 60 50 43 0 \n",
|
|
"\n",
|
|
" B링6현시시간 시간차이 결측여부 전이시간여부 주기일치 이상치존재 \n",
|
|
"1201 0 180.0 False False True False \n",
|
|
"1202 0 180.0 False False True False \n",
|
|
"1203 0 180.0 False False True False \n",
|
|
"1204 0 302.0 True False True False \n",
|
|
"1205 0 149.0 False False True False \n",
|
|
"1206 0 239.0 True False True False \n",
|
|
"1207 0 210.0 False False True False \n",
|
|
"1208 0 180.0 False False True False \n",
|
|
"1209 0 179.0 False False True False "
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"1799.0\n",
|
|
"179.0\n",
|
|
"{(5, 30): 160, (6, 30): 170, (7, 0): 180, (9, 30): 170, (17, 0): 180, (21, 0): 170, (22, 0): 160, (23, 30): 150}\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"inter_no = 5034\n",
|
|
"j = 5\n",
|
|
"cycle = 180\n",
|
|
"with pd.option_context('display.max_rows', None, 'display.max_columns', None):\n",
|
|
" display(infos['missing_dfs'][inter_no][j])\n",
|
|
"sum_of_durations = infos['missing_dfs'][inter_no][j].시간차이.sum()\n",
|
|
"print(sum_of_durations)\n",
|
|
"print(sum_of_durations % cycle)\n",
|
|
"print(infos['cycles'][inter_no])"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "rts",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.8.10"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|