{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import os\n",
|
|
"import pandas as pd\n",
|
|
"\n",
|
|
"path_root = os.path.dirname(os.path.abspath('.'))\n",
|
|
"path_yeday = os.path.join(path_root, '20240716')\n",
|
|
"path_today = os.path.join(path_root, '20240717')\n",
|
|
"\n",
|
|
"TM_FA_CRSRD_y = pd.read_csv(os.path.join(path_yeday, 'TM_FA_CRSRD.csv'))\n",
|
|
"TM_FA_CRSRD_t = pd.read_csv(os.path.join(path_today, 'TM_FA_CRSRD.csv'))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[0,\n",
|
|
" 2,\n",
|
|
" 4,\n",
|
|
" 5,\n",
|
|
" 6,\n",
|
|
" 7,\n",
|
|
" 8,\n",
|
|
" 9,\n",
|
|
" 10,\n",
|
|
" 11,\n",
|
|
" 12,\n",
|
|
" 13,\n",
|
|
" 14,\n",
|
|
" 15,\n",
|
|
" 16,\n",
|
|
" 17,\n",
|
|
" 18,\n",
|
|
" 19,\n",
|
|
" 20,\n",
|
|
" 21,\n",
|
|
" 22,\n",
|
|
" 23,\n",
|
|
" 24,\n",
|
|
" 25,\n",
|
|
" 26,\n",
|
|
" 27,\n",
|
|
" 28,\n",
|
|
" 29,\n",
|
|
" 30,\n",
|
|
" 31,\n",
|
|
" 32,\n",
|
|
" 33,\n",
|
|
" 34,\n",
|
|
" 35,\n",
|
|
" 36,\n",
|
|
" 37,\n",
|
|
" 38,\n",
|
|
" 39,\n",
|
|
" 40,\n",
|
|
" 41,\n",
|
|
" 42,\n",
|
|
" 43,\n",
|
|
" 44,\n",
|
|
" 45,\n",
|
|
" 46,\n",
|
|
" 47,\n",
|
|
" 48,\n",
|
|
" 49,\n",
|
|
" 50,\n",
|
|
" 51,\n",
|
|
" 52,\n",
|
|
" 53,\n",
|
|
" 54,\n",
|
|
" 55,\n",
|
|
" 56,\n",
|
|
" 57,\n",
|
|
" 58,\n",
|
|
" 59,\n",
|
|
" 60,\n",
|
|
" 61,\n",
|
|
" 62,\n",
|
|
" 63,\n",
|
|
" 64,\n",
|
|
" 65,\n",
|
|
" 66,\n",
|
|
" 67,\n",
|
|
" 68,\n",
|
|
" 69,\n",
|
|
" 70,\n",
|
|
" 71,\n",
|
|
" 72,\n",
|
|
" 73,\n",
|
|
" 74,\n",
|
|
" 75,\n",
|
|
" 76,\n",
|
|
" 77,\n",
|
|
" 78,\n",
|
|
" 79,\n",
|
|
" 80,\n",
|
|
" 81,\n",
|
|
" 82,\n",
|
|
" 83,\n",
|
|
" 84,\n",
|
|
" 85,\n",
|
|
" 86,\n",
|
|
" 87,\n",
|
|
" 88,\n",
|
|
" 89,\n",
|
|
" 90,\n",
|
|
" 91,\n",
|
|
" 92,\n",
|
|
" 93,\n",
|
|
" 94,\n",
|
|
" 95,\n",
|
|
" 96,\n",
|
|
" 97,\n",
|
|
" 98,\n",
|
|
" 99,\n",
|
|
" 100,\n",
|
|
" 101,\n",
|
|
" 102,\n",
|
|
" 103,\n",
|
|
" 104,\n",
|
|
" 105,\n",
|
|
" 106,\n",
|
|
" 107,\n",
|
|
" 108,\n",
|
|
" 109,\n",
|
|
" 110,\n",
|
|
" 111,\n",
|
|
" 112,\n",
|
|
" 113,\n",
|
|
" 114,\n",
|
|
" 115,\n",
|
|
" 116,\n",
|
|
" 117,\n",
|
|
" 118,\n",
|
|
" 119,\n",
|
|
" 120,\n",
|
|
" 121,\n",
|
|
" 122,\n",
|
|
" 123,\n",
|
|
" 124,\n",
|
|
" 125,\n",
|
|
" 126,\n",
|
|
" 127,\n",
|
|
" 128,\n",
|
|
" 129,\n",
|
|
" 130,\n",
|
|
" 131,\n",
|
|
" 132,\n",
|
|
" 133,\n",
|
|
" 134,\n",
|
|
" 135,\n",
|
|
" 136,\n",
|
|
" 137,\n",
|
|
" 138,\n",
|
|
" 139,\n",
|
|
" 140,\n",
|
|
" 141,\n",
|
|
" 142,\n",
|
|
" 143,\n",
|
|
" 144,\n",
|
|
" 145,\n",
|
|
" 146,\n",
|
|
" 147,\n",
|
|
" 148,\n",
|
|
" 149,\n",
|
|
" 150,\n",
|
|
" 151,\n",
|
|
" 152,\n",
|
|
" 153,\n",
|
|
" 154,\n",
|
|
" 155,\n",
|
|
" 156,\n",
|
|
" 157,\n",
|
|
" 158,\n",
|
|
" 159,\n",
|
|
" 160,\n",
|
|
" 161,\n",
|
|
" 162,\n",
|
|
" 163,\n",
|
|
" 164,\n",
|
|
" 165,\n",
|
|
" 166,\n",
|
|
" 167,\n",
|
|
" 168,\n",
|
|
" 169,\n",
|
|
" 170,\n",
|
|
" 171,\n",
|
|
" 172,\n",
|
|
" 173,\n",
|
|
" 174,\n",
|
|
" 175,\n",
|
|
" 176,\n",
|
|
" 177,\n",
|
|
" 178,\n",
|
|
" 179,\n",
|
|
" 180,\n",
|
|
" 181,\n",
|
|
" 182,\n",
|
|
" 183,\n",
|
|
" 184,\n",
|
|
" 185,\n",
|
|
" 186,\n",
|
|
" 187,\n",
|
|
" 188,\n",
|
|
" 189,\n",
|
|
" 190,\n",
|
|
" 191,\n",
|
|
" 192,\n",
|
|
" 193,\n",
|
|
" 194,\n",
|
|
" 195,\n",
|
|
" 196,\n",
|
|
" 197,\n",
|
|
" 198,\n",
|
|
" 199,\n",
|
|
" 200,\n",
|
|
" 201,\n",
|
|
" 202,\n",
|
|
" 203,\n",
|
|
" 204,\n",
|
|
" 205,\n",
|
|
" 206,\n",
|
|
" 207,\n",
|
|
" 208,\n",
|
|
" 209,\n",
|
|
" 210,\n",
|
|
" 211,\n",
|
|
" 212,\n",
|
|
" 213,\n",
|
|
" 214,\n",
|
|
" 215,\n",
|
|
" 216,\n",
|
|
" 217,\n",
|
|
" 218,\n",
|
|
" 219,\n",
|
|
" 220,\n",
|
|
" 221,\n",
|
|
" 222,\n",
|
|
" 223,\n",
|
|
" 224,\n",
|
|
" 225,\n",
|
|
" 226,\n",
|
|
" 227,\n",
|
|
" 228,\n",
|
|
" 229,\n",
|
|
" 230,\n",
|
|
" 231,\n",
|
|
" 232,\n",
|
|
" 233,\n",
|
|
" 234,\n",
|
|
" 235,\n",
|
|
" 236,\n",
|
|
" 237,\n",
|
|
" 238,\n",
|
|
" 239,\n",
|
|
" 240,\n",
|
|
" 241,\n",
|
|
" 242,\n",
|
|
" 243,\n",
|
|
" 244,\n",
|
|
" 245,\n",
|
|
" 246,\n",
|
|
" 247,\n",
|
|
" 248,\n",
|
|
" 249,\n",
|
|
" 250,\n",
|
|
" 251,\n",
|
|
" 252,\n",
|
|
" 253,\n",
|
|
" 254,\n",
|
|
" 255,\n",
|
|
" 256,\n",
|
|
" 257,\n",
|
|
" 258,\n",
|
|
" 259,\n",
|
|
" 260,\n",
|
|
" 261,\n",
|
|
" 262,\n",
|
|
" 263,\n",
|
|
" 264,\n",
|
|
" 265,\n",
|
|
" 266,\n",
|
|
" 267,\n",
|
|
" 268,\n",
|
|
" 269,\n",
|
|
" 270,\n",
|
|
" 271,\n",
|
|
" 272,\n",
|
|
" 273,\n",
|
|
" 274,\n",
|
|
" 275,\n",
|
|
" 276,\n",
|
|
" 277,\n",
|
|
" 278,\n",
|
|
" 279,\n",
|
|
" 280,\n",
|
|
" 281,\n",
|
|
" 282,\n",
|
|
" 283,\n",
|
|
" 284,\n",
|
|
" 285,\n",
|
|
" 286,\n",
|
|
" 287,\n",
|
|
" 288,\n",
|
|
" 289,\n",
|
|
" 290,\n",
|
|
" 291,\n",
|
|
" 292,\n",
|
|
" 293,\n",
|
|
" 294,\n",
|
|
" 295,\n",
|
|
" 296,\n",
|
|
" 297,\n",
|
|
" 298,\n",
|
|
" 299,\n",
|
|
" 300,\n",
|
|
" 301,\n",
|
|
" 302,\n",
|
|
" 303,\n",
|
|
" 304,\n",
|
|
" 305,\n",
|
|
" 306,\n",
|
|
" 307,\n",
|
|
" 308,\n",
|
|
" 309,\n",
|
|
" 310,\n",
|
|
" 311,\n",
|
|
" 312,\n",
|
|
" 313,\n",
|
|
" 314,\n",
|
|
" 315,\n",
|
|
" 316,\n",
|
|
" 317,\n",
|
|
" 318,\n",
|
|
" 319,\n",
|
|
" 320,\n",
|
|
" 321,\n",
|
|
" 322,\n",
|
|
" 323,\n",
|
|
" 324,\n",
|
|
" 325,\n",
|
|
" 326,\n",
|
|
" 327,\n",
|
|
" 328,\n",
|
|
" 329,\n",
|
|
" 330,\n",
|
|
" 331,\n",
|
|
" 332,\n",
|
|
" 333,\n",
|
|
" 334,\n",
|
|
" 335,\n",
|
|
" 336,\n",
|
|
" 337,\n",
|
|
" 338,\n",
|
|
" 339,\n",
|
|
" 340,\n",
|
|
" 341,\n",
|
|
" 342,\n",
|
|
" 343,\n",
|
|
" 344,\n",
|
|
" 345,\n",
|
|
" 346,\n",
|
|
" 347,\n",
|
|
" 348,\n",
|
|
" 349,\n",
|
|
" 350,\n",
|
|
" 351,\n",
|
|
" 352,\n",
|
|
" 353,\n",
|
|
" 354,\n",
|
|
" 355,\n",
|
|
" 356,\n",
|
|
" 357,\n",
|
|
" 358,\n",
|
|
" 359,\n",
|
|
" 360,\n",
|
|
" 361,\n",
|
|
" 362,\n",
|
|
" 363,\n",
|
|
" 364,\n",
|
|
" 365,\n",
|
|
" 366,\n",
|
|
" 367,\n",
|
|
" 368,\n",
|
|
" 369,\n",
|
|
" 370,\n",
|
|
" 371,\n",
|
|
" 372,\n",
|
|
" 373,\n",
|
|
" 374,\n",
|
|
" 375,\n",
|
|
" 376,\n",
|
|
" 377,\n",
|
|
" 378,\n",
|
|
" 379,\n",
|
|
" 380,\n",
|
|
" 381,\n",
|
|
" 382,\n",
|
|
" 383,\n",
|
|
" 384,\n",
|
|
" 385,\n",
|
|
" 386,\n",
|
|
" 387,\n",
|
|
" 388,\n",
|
|
" 389,\n",
|
|
" 390,\n",
|
|
" 391,\n",
|
|
" 392,\n",
|
|
" 393,\n",
|
|
" 394,\n",
|
|
" 395,\n",
|
|
" 396,\n",
|
|
" 397,\n",
|
|
" 398,\n",
|
|
" 399,\n",
|
|
" 400,\n",
|
|
" 401,\n",
|
|
" 402,\n",
|
|
" 403,\n",
|
|
" 404,\n",
|
|
" 405,\n",
|
|
" 406,\n",
|
|
" 407,\n",
|
|
" 408,\n",
|
|
" 409,\n",
|
|
" 410,\n",
|
|
" 411,\n",
|
|
" 412,\n",
|
|
" 413,\n",
|
|
" 414,\n",
|
|
" 415,\n",
|
|
" 416,\n",
|
|
" 417,\n",
|
|
" 418,\n",
|
|
" 419,\n",
|
|
" 420,\n",
|
|
" 421,\n",
|
|
" 422,\n",
|
|
" 423,\n",
|
|
" 424,\n",
|
|
" 425,\n",
|
|
" 426,\n",
|
|
" 427,\n",
|
|
" 428,\n",
|
|
" 429,\n",
|
|
" 430,\n",
|
|
" 431,\n",
|
|
" 432,\n",
|
|
" 433,\n",
|
|
" 434,\n",
|
|
" 435,\n",
|
|
" 436,\n",
|
|
" 437,\n",
|
|
" 438,\n",
|
|
" 439,\n",
|
|
" 440,\n",
|
|
" 441,\n",
|
|
" 442,\n",
|
|
" 443,\n",
|
|
" 444,\n",
|
|
" 445,\n",
|
|
" 446,\n",
|
|
" 447,\n",
|
|
" 448,\n",
|
|
" 449,\n",
|
|
" 450,\n",
|
|
" 451,\n",
|
|
" 452,\n",
|
|
" 453,\n",
|
|
" 454,\n",
|
|
" 455,\n",
|
|
" 456,\n",
|
|
" 457,\n",
|
|
" 458,\n",
|
|
" 459,\n",
|
|
" 460,\n",
|
|
" 461,\n",
|
|
" 462,\n",
|
|
" 463,\n",
|
|
" 464,\n",
|
|
" 465,\n",
|
|
" 466,\n",
|
|
" 467,\n",
|
|
" 468,\n",
|
|
" 469,\n",
|
|
" 470,\n",
|
|
" 471,\n",
|
|
" 472,\n",
|
|
" 473,\n",
|
|
" 474,\n",
|
|
" 475,\n",
|
|
" 476,\n",
|
|
" 477,\n",
|
|
" 478,\n",
|
|
" 479,\n",
|
|
" 480,\n",
|
|
" 481,\n",
|
|
" 482,\n",
|
|
" 483,\n",
|
|
" 484,\n",
|
|
" 485,\n",
|
|
" 486,\n",
|
|
" 487,\n",
|
|
" 488,\n",
|
|
" 489,\n",
|
|
" 490,\n",
|
|
" 491,\n",
|
|
" 492,\n",
|
|
" 493,\n",
|
|
" 494,\n",
|
|
" 495,\n",
|
|
" 496,\n",
|
|
" 497,\n",
|
|
" 498,\n",
|
|
" 499,\n",
|
|
" 500,\n",
|
|
" 501,\n",
|
|
" 502,\n",
|
|
" 503,\n",
|
|
" 504,\n",
|
|
" 505,\n",
|
|
" 506,\n",
|
|
" 507,\n",
|
|
" 508,\n",
|
|
" 509,\n",
|
|
" 510,\n",
|
|
" 511,\n",
|
|
" 512,\n",
|
|
" 513,\n",
|
|
" 514,\n",
|
|
" 515,\n",
|
|
" 516,\n",
|
|
" 517,\n",
|
|
" 518,\n",
|
|
" 519,\n",
|
|
" 520,\n",
|
|
" 521,\n",
|
|
" 522,\n",
|
|
" 523,\n",
|
|
" 524,\n",
|
|
" 525,\n",
|
|
" 526,\n",
|
|
" 527,\n",
|
|
" 528,\n",
|
|
" 529,\n",
|
|
" 530,\n",
|
|
" 531,\n",
|
|
" 532,\n",
|
|
" 533,\n",
|
|
" 534,\n",
|
|
" 535,\n",
|
|
" 536,\n",
|
|
" 537,\n",
|
|
" 538,\n",
|
|
" 539,\n",
|
|
" 540,\n",
|
|
" 541,\n",
|
|
" 542,\n",
|
|
" 543,\n",
|
|
" 544,\n",
|
|
" 545,\n",
|
|
" 546,\n",
|
|
" 547,\n",
|
|
" 548,\n",
|
|
" 549,\n",
|
|
" 550,\n",
|
|
" 551,\n",
|
|
" 552,\n",
|
|
" 553,\n",
|
|
" 554,\n",
|
|
" 555,\n",
|
|
" 556,\n",
|
|
" 557,\n",
|
|
" 558,\n",
|
|
" 559,\n",
|
|
" 560,\n",
|
|
" 561,\n",
|
|
" 562,\n",
|
|
" 563,\n",
|
|
" 564,\n",
|
|
" 565,\n",
|
|
" 566,\n",
|
|
" 567,\n",
|
|
" 568,\n",
|
|
" 569,\n",
|
|
" 570,\n",
|
|
" 571,\n",
|
|
" 572,\n",
|
|
" 573,\n",
|
|
" 574,\n",
|
|
" 575,\n",
|
|
" 576,\n",
|
|
" 577,\n",
|
|
" 578,\n",
|
|
" 579,\n",
|
|
" 580,\n",
|
|
" 581,\n",
|
|
" 582,\n",
|
|
" 583,\n",
|
|
" 584,\n",
|
|
" 585,\n",
|
|
" 586,\n",
|
|
" 587,\n",
|
|
" 588,\n",
|
|
" 589,\n",
|
|
" 590,\n",
|
|
" 591,\n",
|
|
" 592,\n",
|
|
" 593,\n",
|
|
" 594,\n",
|
|
" 595,\n",
|
|
" 596,\n",
|
|
" 597,\n",
|
|
" 598,\n",
|
|
" 599,\n",
|
|
" 600,\n",
|
|
" 601,\n",
|
|
" 602,\n",
|
|
" 603,\n",
|
|
" 604,\n",
|
|
" 605,\n",
|
|
" 606,\n",
|
|
" 607,\n",
|
|
" 608,\n",
|
|
" 609,\n",
|
|
" 610,\n",
|
|
" 611,\n",
|
|
" 612,\n",
|
|
" 613,\n",
|
|
" 614,\n",
|
|
" 615,\n",
|
|
" 616,\n",
|
|
" 617,\n",
|
|
" 618,\n",
|
|
" 619,\n",
|
|
" 620,\n",
|
|
" 621,\n",
|
|
" 622,\n",
|
|
" 623,\n",
|
|
" 624,\n",
|
|
" 625,\n",
|
|
" 626,\n",
|
|
" 627,\n",
|
|
" 628,\n",
|
|
" 629,\n",
|
|
" 630,\n",
|
|
" 631,\n",
|
|
" 632,\n",
|
|
" 633,\n",
|
|
" 634,\n",
|
|
" 635,\n",
|
|
" 636,\n",
|
|
" 637,\n",
|
|
" 638,\n",
|
|
" 639,\n",
|
|
" 640,\n",
|
|
" 641,\n",
|
|
" 642,\n",
|
|
" 643,\n",
|
|
" 644,\n",
|
|
" 645,\n",
|
|
" 646,\n",
|
|
" 648,\n",
|
|
" 649,\n",
|
|
" 650,\n",
|
|
" 651,\n",
|
|
" 652,\n",
|
|
" 653,\n",
|
|
" 654,\n",
|
|
" 655,\n",
|
|
" 656,\n",
|
|
" 657,\n",
|
|
" 658,\n",
|
|
" 659,\n",
|
|
" 660,\n",
|
|
" 661,\n",
|
|
" 662,\n",
|
|
" 663,\n",
|
|
" 664,\n",
|
|
" 665,\n",
|
|
" 666,\n",
|
|
" 667,\n",
|
|
" 668,\n",
|
|
" 669,\n",
|
|
" 670,\n",
|
|
" 671,\n",
|
|
" 672,\n",
|
|
" 673,\n",
|
|
" 674,\n",
|
|
" 675,\n",
|
|
" 676,\n",
|
|
" 677,\n",
|
|
" 678,\n",
|
|
" 679,\n",
|
|
" 680,\n",
|
|
" 681,\n",
|
|
" 682,\n",
|
|
" 683,\n",
|
|
" 684,\n",
|
|
" 685,\n",
|
|
" 686,\n",
|
|
" 687,\n",
|
|
" 688,\n",
|
|
" 689,\n",
|
|
" 690,\n",
|
|
" 691,\n",
|
|
" 692,\n",
|
|
" 693,\n",
|
|
" 694,\n",
|
|
" 695,\n",
|
|
" 696,\n",
|
|
" 697,\n",
|
|
" 698,\n",
|
|
" 699,\n",
|
|
" 700,\n",
|
|
" 701,\n",
|
|
" 702,\n",
|
|
" 703,\n",
|
|
" 704,\n",
|
|
" 705,\n",
|
|
" 706,\n",
|
|
" 707,\n",
|
|
" 708,\n",
|
|
" 709,\n",
|
|
" 710,\n",
|
|
" 711,\n",
|
|
" 712,\n",
|
|
" 713,\n",
|
|
" 714,\n",
|
|
" 715,\n",
|
|
" 716,\n",
|
|
" 717,\n",
|
|
" 718,\n",
|
|
" 719,\n",
|
|
" 720,\n",
|
|
" 721,\n",
|
|
" 722,\n",
|
|
" 723,\n",
|
|
" 724,\n",
|
|
" 725,\n",
|
|
" 726,\n",
|
|
" 727,\n",
|
|
" 728,\n",
|
|
" 729,\n",
|
|
" 730,\n",
|
|
" 731,\n",
|
|
" 732,\n",
|
|
" 733,\n",
|
|
" 734,\n",
|
|
" 735,\n",
|
|
" 736,\n",
|
|
" 737,\n",
|
|
" 738,\n",
|
|
" 739,\n",
|
|
" 740,\n",
|
|
" 741,\n",
|
|
" 742,\n",
|
|
" 743,\n",
|
|
" 744,\n",
|
|
" 745,\n",
|
|
" 746,\n",
|
|
" 747,\n",
|
|
" 748,\n",
|
|
" 749,\n",
|
|
" 750,\n",
|
|
" 751,\n",
|
|
" 752,\n",
|
|
" 753,\n",
|
|
" 754]"
|
|
]
|
|
},
|
|
"execution_count": 8,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"sorted(TM_FA_CRSRD_y.NODE_ID)\n",
|
|
"# display(TM_FA_CRSRD_y[:60])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 10,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[2,\n",
|
|
" 5,\n",
|
|
" 6,\n",
|
|
" 9,\n",
|
|
" 14,\n",
|
|
" 15,\n",
|
|
" 16,\n",
|
|
" 18,\n",
|
|
" 19,\n",
|
|
" 24,\n",
|
|
" 25,\n",
|
|
" 27,\n",
|
|
" 28,\n",
|
|
" 33,\n",
|
|
" 38,\n",
|
|
" 40,\n",
|
|
" 44,\n",
|
|
" 46,\n",
|
|
" 49,\n",
|
|
" 50,\n",
|
|
" 53,\n",
|
|
" 57,\n",
|
|
" 64,\n",
|
|
" 72,\n",
|
|
" 78,\n",
|
|
" 79,\n",
|
|
" 83,\n",
|
|
" 89,\n",
|
|
" 91,\n",
|
|
" 95,\n",
|
|
" 96,\n",
|
|
" 100,\n",
|
|
" 102,\n",
|
|
" 103,\n",
|
|
" 104,\n",
|
|
" 106,\n",
|
|
" 119,\n",
|
|
" 123,\n",
|
|
" 131,\n",
|
|
" 134,\n",
|
|
" 135,\n",
|
|
" 144,\n",
|
|
" 145,\n",
|
|
" 151,\n",
|
|
" 154,\n",
|
|
" 155,\n",
|
|
" 156,\n",
|
|
" 163,\n",
|
|
" 167,\n",
|
|
" 169,\n",
|
|
" 172,\n",
|
|
" 175,\n",
|
|
" 178,\n",
|
|
" 180,\n",
|
|
" 183,\n",
|
|
" 185,\n",
|
|
" 191,\n",
|
|
" 193,\n",
|
|
" 201,\n",
|
|
" 208,\n",
|
|
" 214,\n",
|
|
" 215,\n",
|
|
" 217,\n",
|
|
" 220,\n",
|
|
" 222,\n",
|
|
" 226,\n",
|
|
" 231,\n",
|
|
" 232,\n",
|
|
" 240,\n",
|
|
" 243,\n",
|
|
" 245,\n",
|
|
" 247,\n",
|
|
" 249,\n",
|
|
" 250,\n",
|
|
" 254,\n",
|
|
" 256,\n",
|
|
" 259,\n",
|
|
" 260,\n",
|
|
" 263,\n",
|
|
" 267,\n",
|
|
" 270,\n",
|
|
" 272,\n",
|
|
" 273,\n",
|
|
" 279,\n",
|
|
" 281,\n",
|
|
" 284,\n",
|
|
" 287,\n",
|
|
" 291,\n",
|
|
" 293,\n",
|
|
" 297,\n",
|
|
" 298,\n",
|
|
" 299,\n",
|
|
" 300,\n",
|
|
" 302,\n",
|
|
" 305,\n",
|
|
" 307,\n",
|
|
" 320,\n",
|
|
" 321,\n",
|
|
" 325,\n",
|
|
" 350,\n",
|
|
" 354,\n",
|
|
" 355,\n",
|
|
" 358,\n",
|
|
" 361,\n",
|
|
" 364,\n",
|
|
" 365,\n",
|
|
" 367,\n",
|
|
" 369,\n",
|
|
" 371,\n",
|
|
" 373,\n",
|
|
" 375,\n",
|
|
" 376,\n",
|
|
" 377,\n",
|
|
" 378,\n",
|
|
" 379,\n",
|
|
" 405,\n",
|
|
" 409,\n",
|
|
" 410,\n",
|
|
" 411,\n",
|
|
" 412,\n",
|
|
" 414,\n",
|
|
" 415,\n",
|
|
" 416,\n",
|
|
" 417,\n",
|
|
" 420,\n",
|
|
" 424,\n",
|
|
" 425,\n",
|
|
" 437,\n",
|
|
" 443,\n",
|
|
" 445,\n",
|
|
" 448,\n",
|
|
" 456,\n",
|
|
" 457,\n",
|
|
" 459,\n",
|
|
" 461,\n",
|
|
" 462,\n",
|
|
" 463,\n",
|
|
" 466,\n",
|
|
" 467,\n",
|
|
" 476,\n",
|
|
" 481,\n",
|
|
" 482,\n",
|
|
" 484,\n",
|
|
" 486,\n",
|
|
" 491,\n",
|
|
" 492,\n",
|
|
" 496,\n",
|
|
" 503,\n",
|
|
" 506,\n",
|
|
" 507,\n",
|
|
" 514,\n",
|
|
" 517,\n",
|
|
" 520,\n",
|
|
" 522,\n",
|
|
" 523,\n",
|
|
" 532,\n",
|
|
" 534,\n",
|
|
" 536,\n",
|
|
" 541,\n",
|
|
" 570,\n",
|
|
" 583,\n",
|
|
" 592,\n",
|
|
" 596,\n",
|
|
" 622,\n",
|
|
" 623,\n",
|
|
" 624,\n",
|
|
" 629,\n",
|
|
" 633,\n",
|
|
" 634,\n",
|
|
" 636,\n",
|
|
" 637,\n",
|
|
" 638,\n",
|
|
" 639,\n",
|
|
" 645,\n",
|
|
" 646,\n",
|
|
" 648,\n",
|
|
" 650,\n",
|
|
" 656,\n",
|
|
" 658,\n",
|
|
" 660,\n",
|
|
" 661,\n",
|
|
" 676,\n",
|
|
" 682,\n",
|
|
" 683,\n",
|
|
" 684,\n",
|
|
" 691,\n",
|
|
" 698,\n",
|
|
" 699,\n",
|
|
" 701,\n",
|
|
" 703,\n",
|
|
" 706,\n",
|
|
" 707,\n",
|
|
" 713,\n",
|
|
" 722,\n",
|
|
" 724,\n",
|
|
" 727,\n",
|
|
" 738,\n",
|
|
" 739,\n",
|
|
" 740,\n",
|
|
" 741,\n",
|
|
" 742,\n",
|
|
" 743,\n",
|
|
" 745,\n",
|
|
" 747,\n",
|
|
" 749,\n",
|
|
" 751,\n",
|
|
" 752,\n",
|
|
" 2001,\n",
|
|
" 2002,\n",
|
|
" 2003,\n",
|
|
" 2004,\n",
|
|
" 2005,\n",
|
|
" 2006,\n",
|
|
" 2007,\n",
|
|
" 2008,\n",
|
|
" 2010,\n",
|
|
" 2101,\n",
|
|
" 2102,\n",
|
|
" 2103,\n",
|
|
" 2104,\n",
|
|
" 2105,\n",
|
|
" 2201]"
|
|
]
|
|
},
|
|
"execution_count": 10,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"sorted(TM_FA_CRSRD_t.NODE_ID)\n",
|
|
"# display(TM_FA_CRSRD_t[:60])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 13,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"15\n",
|
|
"545\n",
|
|
"207\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"print(len(set(TM_FA_CRSRD_t.NODE_ID) - set(TM_FA_CRSRD_y.NODE_ID)))\n",
|
|
"print(len(set(TM_FA_CRSRD_y.NODE_ID) - set(TM_FA_CRSRD_t.NODE_ID)))\n",
|
|
"print(len(set(TM_FA_CRSRD_t.NODE_ID) & set(TM_FA_CRSRD_y.NODE_ID)))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 15,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"<matplotlib_venn._common.VennDiagram at 0x150b0b0d370>"
|
|
]
|
|
},
|
|
"execution_count": 15,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAGHCAYAAACTcnSoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAugElEQVR4nO3deZCc5X0n8O/79ttvH3PfGmkOjSQkdCIJJHSAwRhsbAI4cUzFLkd2Ns7GZKuSeI1ZJ44vbGcPYjuJ44StxLWOd8vYwMasEcEIm0uABEggC6FjdMzoGs19T9/9vvvHw0gazaHp7vft5z2+n6qumenp6fmN1N3ffm7FNE0TREREFlFlF0BERN7CYCEiIksxWIiIyFIMFiIishSDhYiILMVgISIiSzFYiIjIUgwWIiKyFIOFiIgsxWAhIiJLMViIiMhSDBYiIrIUg4WIiCzFYCEiIksxWIiIyFIMFiIishSDhYiILMVgISIiSzFYiIjIUgwWIiKyFIOFiIgsxWAhIiJLMViIiMhSDBYiIrIUg4WIiCzFYCEiIksxWIiIyFIMFiIishSDhYiILMVgISIiSzFYiIjIUgwWIiKyFIOFiIgsxWAhIiJLMViIiMhSDBYiIrKUJrsAIstlMkA6LS6zfX7ldaYJBAKAps18mel7ug5EIoCiyP6LiRyFwULuk8kAY2PA6OjMHzOZ4tWiKEA0CpSUXLqUlopLebm46Hrx6iFyAMU0TVN2EUTTZDLAwAAwMiICYzI0xsaAWEx2dbkJhy+FTEUFUFsL1NeL1g6RBzFYSD7DECHS13fpMjwsrvey0lIRMHV14mNtLRAMyq6KqGAMFiq+RALo6QG6u8Wlvx/IZmVXJZ+iAJWVU8OmuhpQOceG3IXBQvZLpYCzZ4Hz50WQDA/Lrsg9NE20ZJqbgdZWETREDsdgIXtMTACdncDp00BXl/e7tYqltFQETGsrsHAhWzPkSAwWss7goAiTzk7RvUX2CgaBpiYRMi0tYpIAkQMwWCh/pglcuCBaJZ2dYsYWyaEoYkxmsjVTVSW7IvIxBgvl7vx54Phx4MwZMRBPzlNZCVx7LbB8OVsyVHQMFpqfRAJobweOHBFrS8gdVBVYvBhYuRJYtEh2NeQTDBaaW3c3cPgw0NHBKcFuV15+qRUTjcquhjyMwULTpVKXWidDQ7KrIaupqhjsX7lSDP5zrzOyGIOFLuntFWFy8mRx99sieUpLRStmxQqxzxmRBRgsfmeawIkTwDvvcIqwn6kqsGwZsH69GPgnKgCDxa9MU7RM9u/nYDxdoihAW5sImNpa2dWQSzFY/GgyULi1Cs2luRnYuBFoaJBdCbkMg8VPOjpEoAwOyq6E3KSpCdi0SWyMSTQPDBY/6OwUgTIwILsScrPFi4EbbuBGmHRVDBYvO3MG2LePg/JkraVLgeuv5yA/zYrB4kXd3cDevWL6MJEdVBVYu1YEjMYTzmkqBouXxOMiUI4fl10J+UVpKbB1q5hJRvQeBosXmCbw7rui2yuVkl0N+VFLC7Btm9g2hnyPweJ23d3AK69wphfJFwiI9S/r14vPybcYLG6VSolur6NHZVdCNFV5OXDTTWKaMvkSg8WNOjqAV18FYjHZlRDNbskSMf7CPch8h8HiJrGY6Pbq7JRdCdH8BINi5tjatdxF2UcYLG5x7BiwZw8H58mdGhuB225j68UnGCxOl04Du3eLHYiJ3CwcBm65BWhtlV0J2YzB4mQDA8CvfsXdh8lbVq8GtmzhzDEPY7A41bvvillfPA6YvKimBvjAB7gtjEcxWJwmlQJefhk4dUp2JUT20jRg+3ZxeiV5CoPFSfr6RNfX2JjsSoiKZ+lS4OabAV2XXQlZhMHiFO+8A7z+OmAYsishKr7yctE1xjNfPIHBIlsyCbz4InD6tOxKiORSVWDzZmDdOtmVUIEYLDINDADPPguMj8uuhMg5rr1WbAmjqrIroTwxWGQ5dw547jmxToWIpmpuBm6/XazcJ9dhsMjQ3i5mfnE8hWh2NTXAnXdytb4LMViK7a23xLkpRHR1JSXAhz8MVFfLroRywGApFtMUG0geOSK7EiJ30XXRLcZt+F2DwVIMmYxYn3LmjOxKiNxJVcVaFy6mdAUGi93iceCXvxSLH4moMBs2AJs2ya6CroLBYqeREeCZZ4DRUdmVEHnHsmXArbdyOrKDMVjs0tsrWiqJhOxKiLxn4UIxY0zTZFdCM2Cw2KGrS4RKJiO7EiLvYrg4FtuSVuvpEavpGSpE9uIbOMdisFipv1+MqXA1PVFxMFwcicFilaEh4N//nWfSExUbw8VxGCxWGB0Fnn6aA/VEsnR1Abt2cZskh2CwFGp8HNi5E4jFZFdC5G/nzgG//rXY5YKkYrAUIhYTLRVue0/kDB0dwEsvya7C9xgs+UokxJjKyIjsSojocu3twKuvyq7C1xgs+UilRKgMDsquhIhm8u67wJtvyq7CtxgsucpkxAyU/n7ZlRDRXN5+Gzh2THYVvsRgydWLLwLd3bKrIKL52L1bLFqmomKw5GLfPuDUKdlVENF8GYaYhswJNkXFYJmvU6fE6Y9E5C7xuAgXLqAsGgbLfPT3iy4wInKn/n5OQy4iBsvVxGLcVJLIC06eBA4ckF2FLzBY5mIY4kjhiQnZlRCRFd58k0eEFwGDZS5793IGGJGXmCbw/PPA8LDsSjyNwTKbEyeAQ4dkV0FEVkulxFq0ZFJ2JZ7FYJnJ4CDw8suyqyAiu4yOcsNKGzFYrpRKcWoikR+cOwfs3y+7Ck9isFxp927xboaIvO/tt4HeXtlVeA6D5XKnTokpiUTkD6Yp1qixh8JSDJZJ8TjwyiuyqyCiYhseBt54Q3YVnsJgmfTKKzxamMivDh0SxxuTJRgsgJha3NEhuwoikunFF8XkHSoYgyUW42lzRCR2QH7tNdlVeAKD5eWXuVCKiIT2dqCzU3YVrufvYGlv575BRDTV7t0cby2QYpo+XXo6MQE8/jj7VInykA2qSEeDyIRVZDUF2QBgKAayqomsasJAFibES4v4OPkVoEKFAgUqVKimAsUUH7WsgkDGhJY2oSWy0OIZqFlJL0+LFwMf/KCc3+0BmuwCpHnpJYYK0VWYCpAq05Es0ZDWTaQDBjJKBllkAeTXhWzAAABxHwrEBQACAPT3Pq+YvCoA3QhCTynQEyb0iQy0RBHWnHR2ih6N5cvt/10e5M9gOXpUbOdARFMYmopkuY5kVEVSzyKppGAiBUDOm7AssoirWcTDAMIAKi+FTTiuIDKaQTCWtueX79kDtLYCoZA99+9h/usKSySAn/6UrRWi92TCGmKVQcSjJpJKAm57QdCgIZzWEI4B4ZEUAmnDujtfswbYts26+/MJ/7VY9u1jqJDvpaNBTFQHEQ9lkEIKgHu3NMkgg/FgBuMVgFIBhI0wSsYVRAYSUI0CY/LwYWDVKqCy0pJa/cJfLZbhYeCJJ8TJkEQ+YwQUxGrDGC8xkFS8P8VehYpINoSSURPhwcTFoZyctbQAd95pZWme568Wy+uvM1TId5IVIYxXqohpSRiIyy6naAwYmAjEMVEFaFUayuI6SnsTUDM5vgacOSPGZJua7CnUg/zTYunqAnbulF0FUVGYAGK1EYyViwF4EhQoKE2HUdaf46B/dTXwsY8BSt7tHl/xT4tl717ZFRDZzlSAifoIRkrTyPiodTJfJkyMBeMYawQiRhiV/Qb0sXkE7+AgcOSIGG+hq/JHsLS3A/39sqsgso0JYKKBgZKLuJpAvB6I1oRR2Zu9egtm3z5g2TJA1+e+HflgS5dMBnjzTdlVENkmXhXGhaU6BkrjyLh4dpcssUACXY1p9LdGkInM8V47kRAnTtJVeT9Y3nlHbN9C5DGpkiB628LorU4gLWkBo5dMaHF0LcxgqCkCQ51lLOWdd3h0+Tx4O1jiceDAAdlVEFnKCCgYbIngwoI04io3S7SSCWA0FMeFtgDi1eHpNzAMMbuU5uTtYNm3D0jbtN0DkQTxqjAuLA5gLMhxFDtlkEFvVQJ9bWFkwld0j3V0AN3dcgpzCe8Gy/Cw2BOMyAMMTcVAi+j24jhK8cTUBC4sMjDeEJn6jf375RTkEt4NlgMHAJ8s0SFvi1eH0dWqYDzIbi8ZDBgYKI2jry2MbPC9l8zz54HeXrmFOZg3gyUWE+fYE7mYCWCoOYreqsR729STTDE1gQstKhKV7+12zPHbWXkzWA4d4tYt5GrZUAC9S0IY1WOyS6HLZJFBT00SQ81RmKdPi4WTNI33giWdFitkiVwqURnChSYg4YONIt1qVI+hty2E7LsHZZfiSN4LlmPHgCSfkOROo41R9NQk2fXlAgklge50J2Jj3NXjSt4KFtMUC5iIXGZyPGUoyq4vN8mYKRw/+iucG+WJtJfzVrB0dABjY7KrIMqJqSrobwtzPMWlKsbH8MLxXTjaz+UNk7wVLAfZ30nukg2q6FmsI8YV9K6lGCaWZHW8fPplvHH+DdnlOIJ3gqW7m/PKyVWyoQB6WgK+OM3R6xpjSagADnQfYLjAS8HC1gq5SFYPoKdJRRrccsgLAtksmk2xt9iB7gPY3+XvlfneCJbRUeD0adlVEM1LNqiip5mh4jVNlzU891/YjwPdB6TVIps3guXgQW7fQq6QDaroadEYKh5Umkig9LKzE984/wYO9R6SWJE87g+WTIbbt5ArGJqK3haNZ6d42JLs1NMlXzv7Go70+W/BtvuDpbMTSPGJSs5mKkBfs44UQ8XT6mIpKFd0nuw+sxvtA+1yCpLE/cHS7q//MHKnwZYIEpxS7HlaNoMmhKZd/1LnSzg97J9xYHcHSywmtq8mcrDRhVGMazyYyy+aU9OPNTZh4oXOFzCa9Mexxu4OluPHOWhPjharCWMowhX1flIWTyCKwLTrU9kUdp3chYzh/YPa3B8sRA6VjgbRX8nFj37UbOgzXj8YH8Tu07uLXE3xuTdYBgd5FgI5lqEq6GtUYIItaj+qT85+HtTxweM43He4iNUUn3uD5eRJ2RUQzWqoKcxpxT4WTSZn7A6btOfsHvRN9BWxouJyb7CcOiW7AqIZTdRFMB7kYL3ftczSHQYAWTOL5049h0TGmzMF3Rks/f3AyIjsKoimSUc0DJZzXIWAuuTch7WNp8bxfMfzRaqmuNwZLGytkAOZAAYaAzAwe/86+Uc0mZqzOwwAzo2e8+Q5LgwWIouMNUa5BT5N0WJMXyx5pTfOv+G5LjH3BcvAgNjNmMhBMmENw1GOq9BUV+sOA4BEJuG5M1zcFyxcaU8ONNiocWoxTRNNJRE0p6/Ev9LR/qPoGe8pQkXF4b5g6eqSXQHRFLGaMOLcB4xmYgKN5uyzwy63+8xuGKY3xufcFSyGAVy4ILsKootMVcFQpfe36KD81Wfn9zI7GB/0zPkt7gqWvj4gzQOSyDnGGiLIgMFCsytPzf81a3/XfkykJmyspjjcFSwcXyEHMTQVo1HOAqO5BdMZlF92suRc0kYae87tsbki+7krWDi+Qg4ysiCELK4+64eo0QjO+7anhk6hP9ZvYzX2c0+wZDJAj3dmTZC7ZUMBjIU4YE/zU53ObVD+rQtv2VRJcbgnWHp6gCzfHZIzjDTonF5M81aWTE87snguncOdGIy7d/d29wQLx1fIIbJBFeNBtlZo/hTDQDXmN+14kptbLe4JFo6vkEOM14fZWqGc1Rhz7xt2pY6hDtceZeyOYEmlxFRjIslMVcFYmDPBKHeVOa59NGHiYM9Be4qxmTuC5cIFnm1PjjBRF+ZMMMpLSSr39U7tA+1IZtz3RsYdwdLdLbsCIgDAaCkXQ1J+9HQaITO3l9yMkXHlMcbuCJahIdkVECFRGUIa3PmB8leL+a9nmcRgscuge6fdkXdMVLjj6ULOlesAPgBMpCfQPe6uXhvnP1PSaWB8XHYV5HOGqiCmua+vm5ylLMeFkpNODJ6wuBJ7OT9Y2FohB4jXhHnkMBUsnOcmuh1DHTBdNIHJ+cHC8RVygPFS9zypybm0bBZ6Hi+78UwcXWPuWcvn/GBhi4Uky4YCSPAgL7JIpTm/nY6vdHLopMWV2IfBQnQV8YrcZ/IQzabcyO9lt2OowzUnTDo/WNgVRpLFS2RXQF5SluNalknJbBLnRs9ZXI09nB0siQQQj8uugnzMVICEmpJdBnlINJN/q+PU0CkLK7GPs4OF3WAkWbIixNlgZKlwJv/dG86MnLGwEvs4O1jYDUaSxctyX9BGNBctk0HQVPL62UQmgZHEiMUVWc/ZwcIWC0kW17k3GFmvTMlvZhgA9Ew4/yRdZwfLiPOTmbzLCChIg+MrZL1onjPDAKB3otfCSuzh7GDhwD1JlCrL7cQ/ovmKIL+uMADoGWeLpTAMFpIoGeX4CtkjkueUYwAYjA8inXX2LtvODRbTBJLc9I/kSYU4G4zsEcrmv0WQCdPx3WHODZZEgqdGklRJ1dnvCsm9QkZhr21OH8B3drAQSZLVAzyCmGwTzBb22GKLJV8cXyGJ0pH8p4MSXY1WYLD0x/otqsQeDBaiGWRCzn1qkPuphgGtgJlh8XTc0RtSOvfZw2AhiTJ6/k96ovnI51yWSSZMxNIxC6uxlnODhWMsJFFac+67QfKGQoIFACZSExZVYj3nBgtbLCRRJsBgIXvlu1/YpIk0gyV3DBaSiDPCyG7BAsZYAGA8NW5RJdZzbrCwK4wkYrCQ3QoNFnaF5YPBQpIYmnOfFuQdBQcLu8LyYLCPm+Qwgs59WpB3FDo/xMldYc5dBcZgmeLrTz2Fb+zcOeW6FQ0NOPrQQ1OuM00TH/n+9/HLd9/Fz++/Hx9dv/7i95Q//uNp9/voZz+L39u0yZaa3SqrcarxD37yDJ595W2cPNuNcEjHxlVL8KU/+h0sbV5w8TaJVBrffuRxPPXCPqTSGbzvhlX45p99EnVV5QCAx599DV98+F9nvP99jz+M2vdu51eT61ja32rHrv+9C2eOnMFI/wju/5v7sf7W9Rdv96Ov/wh7du6Z8rOrtq7Cl//nl4tZbk6cGyzcJ2ya1QsX4ld//ucXv9YC03ff/dtf/xqKMvsL4//69Kdx5+rVF7+ujEYtrdELDC0AwN/7hL1+sB2/f++tuG7FYmSyWTz8wyex47/8HZ774dcRjYQAAN/8x8fwwuvv4B+/+h9RVhLBV7//KD739Ufwf//uQQDA3bfegFs2rZ5yvw/8jx8hmcr4PlSAS91FqXgKTdc0Yfs92/HIFx+Z8bart63Gp7/66Ytfa7rm6AWSzg0Wtlim0VQVCyoqZv3+gbNn8Z3nnsO+v/xLND744Iy3qYxG57wPAkzulo8f/7c/m/L13zz4GVz/uw/gneOnceO65Rgdj+OxX76Kv/vLP8S2DdcCAB7+4mdw+3/4Gt46fAobVy1BOKQjHLp0ps3A8Bj2HDiG//6FHUX9WxzrvTfPa7avwZrta+a8qRbUUFE79XnLYMkHWyzTHO/txcIHH0Q4GMTWJUvwX3/7t9FSXQ0AiKVS+OQPf4gffOITcwbHf3r0UXz2xz/Gkro6fO5978MfbNs2ZwvHj8wCB1W9aGxCTP+vLCsBABw6fhrpTBbbN668eJtlLQuwqL76YrBc6d+e24twSMdH3rexOEU7nJrD46x9fzseuOMBRMuiWLFpBe69/17oNc49iM65wcIWyxQ3trXhR5/5DFY0NODCyAi+sXMnbn74YRz62tdQFg7j8489hm1LluDey8ZUrvTQPffgthUrENV17Dp8GH/yk59gPJnEn952W/H+EDdgrkxhGAYe+sfHcMPqpVjRtggA0Dc4Cj2ooaJ0aldqbVU5+oZmPlL8Z8+8intv2zylFeNnJub35nn11tXY8P4NqF1Ui75zfXjyB0/i+3/6fXz5XznGQgX68JpLTeV1TU24sa0NrX/xF3hs3z7UlZXh+WPH8PaX536gfeWuuy5+vqGlBROpFB7etYvBQnP6yt8/imOdXXjib7+Y933sP3wSJ85cwPe+9AcWVuZuyjzfwWz60KXJNYuWLcKiZYvwVx/9KxzddxS4wa7qCuPcYFE55XMuldEoljc04ERfH945fx4n+/pQ+fnPT7nNxx55BDdfcw1e/MIXZryPG9va8M2nn0YynUYoGCxG2e7AXtiLvvr9R/H86+/gse8+gMa6qovX11WXI5XOYGQ8NqXV0j80irqq6V2xP/v3V7FqaTPWLm8tSt1eVtdUh9LKUvSd7ZNdyqycGyzs95/TeCKBk319+P0tW3Df9dfjszfdNOX7ax96CN+77z7cvW7drPdx4OxZVEWjDJUrKEwWmKaJr/3DT/HsKwfw0+/8ZzQ31k75/pprWhHUAnjtraP48HtjJifPduN87+C08ZWJeAJPv7QPD/7hbxetfjfI91E21DOEiZEJVF0W9E7DYHGJB554AnevW4fW6mp0jYzga089hYCq4hObNqGurGzGAfuW6mq01YoXhKd+8xv0jI1hS1sbwsEgnjtyBH/9zDN44I47iv2nOJ7C4T185e8fxf97/g3880N/gpJoGL2DYtykvCSCcEhHeWkE9925Hd965HFUlJegLBrG1/7hp9i4asm0YNn54j5ksgY+evuNMv4Ux5rcgzIRS0xpffSf78fZY2dRUlGCaHkUO/95JzbethHlNeXoO9eHf/v7f0Ndcx3WbZ/9TaNszg0WdoVNcW5oCJ/4l3/BwMQE6kpLcdOyZdj7pS+hrqxsXj8fDATwgxdfxOcfewwmgGV1dfjuxz+OP7qipUOAmmWL5f889RIA4Pe+8J0p1z/8xU/j4x/aBgD4yp/cB1VVcP83Hrm0QPJPPzntvn72zKu486YN0wb6/W7yUXb68Gl893PfvXj94997HACw9be24pNf+iTOHz+PvTv3IjYWQ2VdJVZuWYl7P3cvQqGQhKrnRzFNh87rffRRYGxMdhXkQ+mohq7GjOwyyOPOlEVxJJD/YV01kRp8bNXHLKzIOs5tFrDFQpKoafaFkf0ySmHv6Uv0EosqsZ5zX711znUnORgsVAzpAoeRS4IMltxFIrIrIJ9SAKgOfmqQN6RR2BuYUr3Uokqs59xnTzgsuwLysQC4YRjZq9BRPHaF5YMtFpJIMxgsZK9UgS0WdoXlg8FCEmkZrqMie6U5eC8Bu8JIoqC/j2OhIii0xcIxlnywxUISaUlnLu8ibzAVpaBgCQVC0FQHr2+XXcCsGCwkkZbgAkmyT2aG019zURF29mF9zg0WdoWRRFo8M+9tzYlylQ4U9tLbUNJgUSX2cG6wsMVCEikAQiYX6ZI9UgW2WBpKGSz5CQS4+p6k0tOcckz2SBbYGGaLpRDsDiOJQnFu7UL2SATyT5aSYImjpxoDTg8WdoeRRPoY5xyTPRIFHPrj9G4wwOnBMs+zRojsoCWzCDj4yCJyr1ghweLwbjDA6cFS5dyjN8kfwlke20zWG0c2759li6VQ1dWyKyCfi0zIroC8xlBVxPIMloASQG201uKKrOfsYGGLhSQLDydll0Aekwzm3wpuKG2Aqjj7ZRtwerCUlwMa+7hJnkDa4HoWslRcy/9ld2nVUgsrsY+zgwVgq4WkiyT55oasM67mN9VYVVS0VbVZXI09GCxEVxEZ4b5hZJ1RNb8ZYYvKFiGsuWNtn/ODhQP4JJk+nkIQnB1G1hhGfuujlla7oxsMYLAQzUtJnMFChTNVFRNK7jPCAkoAiysXW1+QTZwfLOwKIwcoGUzJLoE8IBnMb7yuqbwJesA9k0icHywlJdyMkqTTEhmETXf0b5NzjeUZLG7qBgPcECwAu8PIEUrGeT4LFWY4kPvJpJqqobWi1YZq7OOOYGF3GDlAtD8B1SVPGXKmPuTepbqkagmCAXeN8bnjWVJfL7sCIqiGidIUu8MoP9lAAGN5DNyva1hnQzX2ckewLFwouwIiAEBZb5IHFlNeYnrurY6m8iZUR9w3FOCOYCkr4xb65AhaMotolucEUe5GtNzfkqytX2tDJfZzR7AAwKJFsisgAgCU9+e/5Tn511COK+6rI9Vormi2qRp7uSdY2B1GDqGPpzj1mHKW68D9xsaNNlViP/cEC1ss5CAVA7lPGyX/SoR0pJX5P2aqwlVoq3THhpMzcU+wRCKcdkyOER5JImKw1ULzM6TntjByQ+MGKIp7p4m4J1gAtlrIUSp7OdZC89Ojzv+xUhmudM25K7NxV7BwnIUcRJ9IozTDGWI0N0NV0Yv5n0R6U8tNrm6tAG4MFpf/g5O3VHSnoHBlC81hPKTDnOdDZFn1Miwsc/8baHcFi64DtbWyqyC6SEtmUZ5kq4Vm1z/PdZF6QMfWpq32FlMk7goWgN1h5DgVXXFo4PHFNLML6vxOIN20cBMiQW+8SXFfsHAAnxxGMUxUDzJYaLpUMIhxXD1YaqO1WFW3qggVFYf7gqWxkeezkONEhhIo4VYvdIWh0NX7wRQouLnlZtcP2F/OfcESCACt7jqbgPyh6nwSAQRkl0EOci5w9fPtV9atRF1JXRGqKR73BQsALFkiuwKiaQJpA9XD7jo3g+yTDmroV+YOlpJgCTYv2lykiorHncHS3MzuMHKk6EACZWl2iREwGJr7NUpVVNy+5HZXnWU/X+4MFlUFFi+WXQXRjKrOJaDDey8WlJtz2tyD9luatqChtKFI1RSXO4MFYHcYOZZimKi9YPIYYx9LBzX0z7Gb8dKqpVhTv6aIFRWXex/5TU1AmJsAkjMFY2lUjYVkl0GSzNUNVhWuwi2LbyliNcXn3mBRVWCpuzdqI28r7Y1zvMWnZusGC6pB3LH0Dmiqt9c9uTdYAGD5ctkVEM2p6kyc2+v7TFLXZ+0Gu2XxLagMVxa3IAncHSx1dUBlpewqiGalAKg9k0SQg/m+0R2euTWytn4tllT5Y2zY3cECsNVCjqdmTdSfN7h40gdMRUGHkph2/ZKqJdjStEVCRXK4P1iuuYZb6ZPjaYkM6voC3GLf40YiYSQVY8p1iysX47a22zy1ZcvVuD9YSkq4MSW5Qmg0hfoBneHiYaf1qaHSXN6M25fcDlVx/0ttLrzx165dK7sConkJDydRN8hw8aJUMIjuy06KXFi2EHcsvcN3oQJ4JViam4GqKtlVEM1LZCiJusEQw8VjeiKX9olbULoAdy670/PTimfjjWABgHXrZFdANG+RoQTqhhguXmEqCk6pYtC+Llrn61ABvBQs11wDRKOyqyCat8hgAnWDOrd+8YChSBgJGKiN1uIj13zEkxtL5sI7j2hVBVavll0FUU4iQ0k09AQQ4NHGrnZSz6ClogX3rLgHIY1b+XgnWABg1SpA4xOU3EUfT2PBOZOLKF1qIhzGwvoV+NDSD/m6++ty3gqWUAhYsUJ2FUQ505JZLDidQdjku123qV68Eduat/lqncrVeCtYADH1mP/B5EJqxkB9RxJlKW5c6QYqVNSjEQsWeXf7+3x5L1jKy3kIGLmWYgLVZ+OoHYlwUN/BgtCxoEtFZAlDZSbefORy6jG5XEl/HAsuBDju4kBl6SgaO9IIhkqBtjbZ5TiSN4OloUFciFwsGEtjQUcapRl2jTlBAAHUD4VRfSYGxTCBDRtkl+RY3gwWALjuOtkVEBVMNUzUnI6jfigMjVOSpYkYYTSeFWuPAABlZTxocA7eDZbFi9lqIc+IDCbQ2JlFKU+kLKoAAqgZj6C+I4FAKnvpG9ddJ9bO0Yy8/S+zdavsCogso2ZN1JyJo2EgxNZLEZRmImg8Y6K0Jz71G5WVwLXXSqnJLbwdLPX1wBJ/nNhG/hEeTmJhRxaV8ShnjtkgCB0N/SHUnI4jkDam32DLFrZWrsL7/zo33sgHAXmOYpio6Iph4VmFg/sWCSCAqlgUjadSCI8kZ75RUxPQ0lLcwlzI+6+4ZWXAGs41J28KpLKoOR1HY3cQESMsuxxXUqGiMh7Fwg4D5RdiUMxZbqgo7F6fJ+8HCwBs3Ci2eyHyKH0ijfqOBBb0hxAx+FifDxUqKpJRLDoNVHTFoBqzJcp7Vq7kuU/z5I9g0XXg+utlV0Fku9BIEvUdSTT26ijJsAUzkwA00UI5A1Sei0HNzDCOciVdB264wf7iPMI/U0tWrQIOHQJGR2VXQmQ7fSyF2jGgMqxhrE7HhJ5EFtmr/6CHhcwQykZVRAfiUMxMbj+8cSMQZlDPl2Ka5lXafx7S0QE895zsKoiKzlSAeE0Y42VA/L2TDv1AhYpoJoTSoSxCo6n87qS8HLjvPk4CyoF/WiyA2NdnwQKgu1t2JURFpZhAtD+BaD+QCQUwURvCRCiNtJKWXZrlFCiIZMMoGTMQGUxCMeNX/6G5cGZpzvzVYgGA3l7gySdlV0HkCOmIhniljngki6SShFtfDFSoCGd1RGIKogMJqFmL/pLGRuDuu625Lx/xV4sFEIsmr70WOHpUdiVE0gXjGQTjGZQDyAZVJCpDSESBpJZBGs5tzSgAdDOESEJFeDwLfTQFBRZ38XF6cd78FyyAWDl77hwwPi67EiLHCKQNlPTFUfLe19mgilSZjkSJilQwi5SShoF5zKCyQRBB6FkNegLQ4wb0sRRUY5ZFjFZZuRKorbX3d3iU/7rCJp0/Dzz9tOwqiFwlG1SRjmpIh1VkdAVpzURWNZBFFgYMmHl2pikQ04ADZgCaoULLKNBSJoJJA8HxlHVdW/NVXg787u8Cmj/fexfKv8ECAK+8Ahw+LLsKIs8wNBXZoApDD8BUIGJGUQAFMBUTgALFANSsATVjQslkoWbN4gfHXBQFuOce7o5eAH/H8Y03AmfPAmNjsish8gQ1Y4gFh/Ec14k4yXXXMVQK5O85dMEgcMstsqsgIqeoruYKewv4O1gAYOFCblJJRGKtyvvfzzUrFuC/IABs3iwG64jIv66/HqipkV2FJzBYADHz49ZbxaAdEflPfT2wfr3sKjyDwTJpwQJg7VrZVRBRsWma6ALjG0vLMFgut2mTOM+aiPzjxhuBigrZVXgKg+VygQBw223iIxF536JFwOrVsqvwHAbLlWprgZtukl0FEdktGhVjq2Q5BstMVqwQG1USkTcFAsAHPwiUlFz9tpQzBststm8H6upkV0FEdrj5ZjETjGzBYJlNIADccQePIyXymrVrgeXLZVfhaQyWuZSWAh/4AFfiEnlFU5M4NoNsxVfMq1m0iA9EIou8dvIkvv7UUxiOxYr/yysqxBtFrlexHYNlPtasEYf+EFFBXjt5Et/YubP4waLrwIc+BIRCxf29PsVgma/t28X510TkLooi1qdx8XPR+Pugr1wlEsDPf87zW4jy8PWnnsI3du6cdn3Ht7+NxXYeAbx5M/cBKzJ/H/SVq3AYuPNO4Be/AJI2n7dN5DG/s2ED2nt68Oibb+J7H/84aktLAQB1ZWX2/dJlyxgqEjBYclVVBXz4w8DTTwPptOxqiFxjXVMTNra04NE338RH16+3t5UCiHUq73ufvb+DZsQxlnzU14uWi8ZcJnKk6mrxBpDPUSkYLPlqbBQLKLnGhchZKiqAu+7iDDCJ+KpYiOZm4PbbGS5ETlFaKkIlEpFdia/xFbFQixfz9EmieVLsfJ5EIiJU3psUQPIwWKywbJnY1I6I5lSi6wCA4Xjc2jsOh0Wo8MAuR+DIllWuvRbIZIDXXpNdCZFjXd/aCgD48pNP4vc2bUIwEMDd69ahpJDxkHAY+K3fEgP25AhcIGm1t98G3nxTdhVEjvWtp5/GIy+/jAsjIzBMs7AFkgwVR2Kw2OGNN4ADB2RXQeRtk91fNTWyK6ErcIzFDps3Axs3yq6CyLsYKo7GFoudjh4FXnkFMAzZlRB5R1mZWPzITSUdi8FitzNngF/9SgzsE1Fh6urErhdcp+JoDJZi6OsDfvlLwOoplkR+0toqDuriNi2Ox2ApltFR4JlngJER2ZUQuc/q1cC2bVyI7BIMlmJKJIBnnwV6emRXQuQOigLceCOwbp3sSigHDJZiy2SA558HOjtlV0LkbJoGvP/9QFub7EooRwwWGUxTrNB/913ZlRA50+ShevX1siuhPDBYZPrNb4DXX5ddBZGzVFSI6cTl5bIroTwxWGQ7exZ44QUx/kLkd5PnHIXDsiuhAjBYnCAWA379a+DCBdmVEMmhKMCGDcD113PmlwcwWJzCNIH9+8UmlvwvIT+JRoHbbgMWLpRdCVmEweI058+LrrFYTHYlRPZraREH5bHry1MYLE4Uj4spyefPy66EyB6qCmzZAqxZI7sSsgGDxalMU2y9v28fu8bIWyoqxNYs+Z7BQo7HYHG67m4xsD8xIbsSosItXw5s3w4Eg7IrIRsxWNwgkQBefFHslEzkRsEgcPPNwLJlsiuhImCwuEl7O7B3L9e8kLssWCAG6Lng0TcYLG6TSIjtYE6ckF0J0dzCYbGB5IoVsiuhImOwuNXZs8Du3cD4uOxKiKZbuVIc0R0Kya6EJGCwuFk6LRZVHjrE44/JGWprgZtu4uaRPsdg8YLBQeDVV7klDMmj68ANN4gDubgli+8xWLzkxAkxuM9V+1RMy5aJxY7RqOxKyCEYLF6TTotFle++y+4xsldlpej24h5fdAUGi1eNjQFvvQUcP86AIWuFw8D69WI7FlWVXQ05EIPF60ZHLwUM/6upELouzp5fu5Yr52lODBa/GBkRM8hOnmTAUG40TbROrruO04dpXhgsfjM8LMZgTp2SXQk5naYBq1aJQIlEZFdDLsJg8avBQdGC6eiQXQk5ja6LFsqaNTwnhfLCYPG7gQERMJ2dsish2SIRMX6yapUIF6I8MVhIGB0Fjh4Fjh0TB42Rf9TUiC1Yli8X3V9EBWKw0FSGIbrHjhwBurpkV0N2CQaBpUuBa6/l9itkOQYLzW54WARMezuQTMquhqxQVyfCZNkyThkm2zBY6OqyWTFN+cgRoKdHdjWUK10XQbJypej2IrIZg4VyMzgIHD4s9iVLpWRXQ3NpaBBhsmQJx06oqBgslB/DELspnz4tZpTxXBhnqKsDWluBtjagqkp2NeRTDBayRn//pZAZGJBdjX9oGrBokQiTlhbuMEyOwGAh642Pi4Dp7AS6u7kJptVKSkSItLaKnYXZzUUOw2AheyWTwJkzojXT1QUkErIrcqfaWhEkra3icyIHY7BQcQ0Pi1bM5GV0VHZFzqPrYm1JXZ34WF/PvbrIVRgsJFcsBvT2ikt/P9DX5681M4GAmAJ8eZBUVMiuiqggDBZyntFRETB9fWK7/9FRcXBZJiO7ssJoGlBeLrqyJoOkpoaHZZHnMFjIPWIxETBjYyJsJgNnbAyYmJB/zoyqillZJSVAaakIkYoK8bG8nDO2yDcYLOQNhnEpZOJxIJ0WLZx0+tJlrq8NQ7QocrkEg1ODJBIBFEX2vwSRdAwWIiKyFDt3iYjIUgwWIiKyFIOFiIgsxWAhIiJLMViIiMhSDBYiIrIUg4WIiCzFYCEiIksxWIiIyFIMFiIishSDhYiILMVgISIiSzFYiIjIUgwWIiKyFIOFiIgsxWAhIiJLMVjI81544QUoioKf//zn0773k5/8BIqiYM+ePRIqI/ImniBJnmeaJlpbW7F582Y88cQTU75311134dixYzhx4oSk6oi8hy0W8jxFUfCpT30KO3fuxMjIyMXr+/r6sGvXLnzqU5+SWB2R9zBYyBd27NiBZDI5pcXys5/9DJlMhsFCZDF2hZFvbN68GaWlpXj++ecBAFu3bgUAjq8QWYwtFvKNHTt24KWXXsK5c+dw8uRJ7N27l60VIhuwxUK+0d/fj4ULF+Lb3/424vE4vvWtb6Grqwu1tbWySyPyFAYL+cq9996Lzs5OJBIJrFixAr/4xS9kl0TkOewKI1/ZsWMHDh48iPb2dnaDEdmELRbylVQqhQULFsAwDHR3dyMcDssuichzNNkFEBWTqqrQNA133303Q4XIJuwKI1958skn0dfXhx07dsguhciz2BVGvvD666/j4MGD+OY3v4na2lq89dZbsksi8iy2WMgX/umf/gn3338/6uvr8eMf/1h2OUSexhYLERFZii0WIiKyFIOFiIgsxWAhIiJLMViIiMhSDBYiIrIUg4WIiCzFYCEiIksxWIiIyFL/H9x9tdwDsrW7AAAAAElFTkSuQmCC",
|
|
"text/plain": [
|
|
"<Figure size 640x480 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"import matplotlib.pyplot as plt\n",
|
|
"from matplotlib_venn import venn2\n",
|
|
"\n",
|
|
"venn2([set(TM_FA_CRSRD_y.NODE_ID), set(TM_FA_CRSRD_t.NODE_ID)], ('y', 't'))"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "siggen",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.8.10"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|